

§ Helsinki Institute for Information Technology HIIT, Finland
* International Computer Science Institute, 1947 Center Street, Suite 600, Berkeley, California, 94704
ⱡ University of California, Berkeley

This research is supported by TEKES as a part of the Future Networks, Society and Modeling ‐ FuNeSoMo program.

STEM+: Allocating Bandwidth Fairly To Tasks

Andrey Lukyanenko §* ⱡ, Ilya Nikolaevskiy §* ⱡ, Dmitriy Kuptsov §* ⱡ,
Andrei Gurtov §* ⱡ, Ali Ghodsi ⱡ, and Scott Shenker* ⱡ

TR‐14‐001

April 2014

Abstract

Fair sharing of bandwidth among tenants in datacenters is important to guarantee prompt
execution while providing isolation between different jobs. Existing bandwidth allocation
methods lack a concept of a task reflecting the dependency between allocations on links.
Moreover, existing approaches do not consider the tenants to be smart individuals and lack
understanding of a threat that strategic players can produce. In this work we introduce a
Strategy‐proof Task‐Enforcement Mechanism (STEM) which is the only strategy‐proof
mechanism for datacenter allocation. It seamlessly utilizes task‐aware models. While tenants
are able to improve their allocations by relocating demands among links, it also improves the
global allocation resulting into a strong Nash equilibrium among tenants. This is in contrast to
pricing or Competitive Equilibrium from Equal Incomes (CEEI) which permits tenants to inflate
their demands and in some cases loosing sharing‐incentives. We extend STEM with STEM+ ‐a
work‐conserving allocation mechanism.

1. INTRODUCTION
Recent works on bandwidth allocations in datacen-

ter suggest multiple solutions; many of them provide
some of the desired properties of bandwidth guarantees,
work-conservation and fairness. However, performance,
as a flow completion time, seems to be of a higher
value for production networks1 rather than fairness. An
anecdotal example of difference between performance
(FIFO) and fairness (process sharing) appears in differ-
ent works [20, 11, 15]. Fairness is not a proclaimed goal
in production networks, rather fairness plays the role
of a mechanism weakening requirement for global job
scheduling.
Non-production networks2, as opposed to production

networks, define performance differently. There is no
single administrative domain anymore, no strict behav-
ioral control or same utility function. Fairness in cloud
plays an additional behavior-enforcement role. Cloud,
while aiming at network isolation, benefits from sharing
incentives, i.e. if a tenant of a cloud does not require as
much bandwidth at one path as she requires bandwidth
at another, then she can willingly reduce the flow rate at
the first path in exchange for additional available rate at
the other path. Moreover, the exchange of one capacity
for another can be not equivalent, but still beneficial.
Thus, in cloud fairness plays the main role for incen-
tivizing tenants to behave in the public network. Many
studies on production networks as well as public cloud
networks don’t address the strategic properties of the
tenants at all. Some works address the simplest strate-
gies, e.g., rate control misbehavior. We observe that
because of that many solutions lack strategy-proofness
i.e., misbehaving tenants can gain more than behaving.
Task-aware allocation is yet another topic that gets

less attention than it should. While generally it is un-
derstood that “stragglers” impact and even define net-
work applications’ performance, such as MapReduce,
to our best knowledge, there is no work on the study of
tenants utility based on task-aware models. The task-
aware models studied are rather limited by their hose-
models representations [3, 18, 21], i.e., models requir-
ing bandwidth guarantees expressed in forms of hose-
models; after the allocation each flow utilizing a part of
the hose-model-based share in its own fashion.
While it is tempting to use local individual flow allo-

1Instead of “Production network” we can name such net-
works as private data center network running single com-
pany’s jobs or having extensive administrative control over
tenants. However, we prefer to avoid such bulky naming
especially that many production networks are exactly like
that.
2Here and further we use“non-production network”or“[pub-
lic] cloud” meaning an infrastructure-as-a-service (IaaS) ar-
chitecture (many of discussions apply to PaaS, SaaS, etc.),
where tenants are not controlled by the same administrative
domain and have some control over the network.

cations, as it requires small to no coordinations, a task-
aware allocation model needs to provide better under-
standing of the network. One of the drawbacks of task-
aware model is requirement of coordination, but later
we will show that otherwise misbehavior is always pos-
sible. CoFlow is a recent work that introduces a form of
task-aware model [9], the presented model is fully valid
in our case but slightly differs from ours (§3). CoFlow
also defines API which exposes task semantic to the
network. In this work we introduce an algorithm that
does not require such API, but can in an obvious way
benefit from it.
To address the described problems and challenges we

want to introduce an allocation protocol, which has the
following properties:

1. Seamless task-awareness. The allocation needs
to address problems for task-aware application, but
it should work for individual flows as well.

2. Strategy-proofness. The tenants should be treated
as strategic individuals, which are able to misbe-
have. A strategy-proof mechanism de-incentivize,
the misbehavior.

3. Sharing incentives. Sharing is more beneficial
than non-sharing, i.e., the whole capacity is di-
vided equally for all tenants and tenants are fully
isolated.

4. Work conservation. This is a form of high uti-
lization guarantee for the network. As in a task-
aware allocation not the whole network usage is
required, work conservation can distribute unused
resources at a run-time.

5. Fairness. The tenants should have understanding
of fairness of their allocations, if they trade some
of own capacity they should understand what they
get for the lost capacity.

6. Backward compatibility. Avoid any changes to
the infrastructure (hardware).

The first obvious solution that satisfies at least a few
of the above properties is to use any pricing mechanism
as suggested in [19]. However, we show that pricing
breaks the sharing incentive property in some cases, and
leads to misbehavior in general (§4). Also we show that
no local (task-unaware) algorithm can satisfy strategy-
proofness property.
Finally, to achieve the desired properties we intro-

duce the Strategy-proof Task-Enforcement Mechanism
(STEM). We use dominant resource fairness (DRF) [13]
as fairness metric for STEM, however DRF is not only
option available. Moreover, we find that strategy-proofness
cannot be achieved with work conservation, thus we in-
troduce a work-conserving extension for the architec-

1

ture with STEM+ at the cost of weakening the strategy-
proofness property.
The rest of the paper is organized as follows. Sec-

tion 2 provides the motivation for our work. In Section 3
we introduce the task model for bandwidth allocation
and define our model. Section 4 describes the pro-
posed bandwidth allocation mechanism. In Section 5
we analyze a datacenter oriented model from a game-
theoretic perspective and show the existence of equi-
libria for CEEI and DRF allocations. In Section 6 we
present results of trace-driven simulation. In Section 7
we give insights on implementation of DRF bandwidth
allocation in datacenter. In Section 8, we briefly review
the related work. Section 9 concludes the paper.

2. TENANT STRATEGY SPACE AND MO-
TIVATION

The previous work on bandwidth allocation in data-
centers primary is focused on performance [15, 21], min-
imum bandwidth guarantees [3, 21, 23] and local fair-
ness [20] without any explicit study of behavior, strat-
egy space and “happiness” of tenants. To show that the
tenants have different network experience based on their
sizes, we will use state-of-the-art algorithms from exist-
ing literature, namely proportional sharing at link-level
(PS-L) and proportional sharing at network-level (PS-
N) [20]. Both of them aim at achieving fairness using
weighted fair queuing (WFQ) at switches, the difference
is only on the weights which each mechanism assigns to
tenants. For PS-L the weight is the number of VMs
which flows3 are going through current switch, while
for PS-N the weight is simply the total number of VMs
that the current tenant has in the cloud.
Our intuition is that there is no local fair allocation

algorithm which is capable of achieving global fairness
for different types of tenants; although PS-N seems to
be aiming exactly at that, because it uses the tenant
size for WFQ. To support our intuition we run a trace-
based simulation with data from 3200-node Facebook
production data center [10] (§6 has details about the
setup). For that analysis we introduced three classes of
differently sized tenants, where the size is defined as the
total number of VMs of the tenant: (i) A for interval
[0,150), (ii) B for [150,300), and (iii) C for [300,450).
The flow allocation results are shown in Figure 1 as
CDFs.
For both policies, PS-L and PS-N, we observe that

the tenants form three separate clusters of performance
based on their sizes. The flows of lowest class A gain the

3Here we consider that a unique pair of VM-to-VM can cre-
ate only one flow. Technically, they create multiple parallel
TCP flows, but from our perspective this will be one batch
of flows, each individual TCP flow will get a fraction of the
batch as throughput. In this paper by “flow” we mean this
batch flow, if it is not said otherwise.

0.01 0.05 0.50 5.00 50.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bandwidth (Mbps)

C
D

F

0−150
150−300
300−450

(a) PS-L

0.01 0.05 0.50 5.00 50.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bandwidth (Mbps)

C
D

F

0−150
150−300
300−450

(b) PS-N

Figure 1: Tenant classes produced with local allocation
policies

most resources, while the flows of largest class C gain
the least. Moreover, the 80% of flows of class C perform
not better than 10% worst-performing-flows of A. On
average each flow of the class A is 10 times faster than
class C. This observation is quite contradictory to the
fact that the worst performing tenants are the highest
contributors to the system, as each tenant commonly
pays on per VM usage.
On another hand, large tenants have more control

freedom in the network, they can influence the part of
the network which small tenants cannot. For all tenants
we observe the following strategic ways to improve their
allocations:

1. Manipulating flow data rates, e.g., by viola-
tion of TCP congestion control rates. This is well
understood misbehavior in the literature as well as
solutions are known (rate control at hypervisor or
observation of misbehaving flows).

2. Splitting the task in space or time. Some jobs
can be split into smaller ones and then united, if
the current allocation algorithm favors smaller job
sizes. At the same time some on-line profiling al-
gorithms favor small traffic volumes (by discrimi-
nating elephant flows). Thus tenants can benefit
by splitting jobs in space or time into subjobs and
after finalizing unite them again.

E.g. let f(k) be the function of utility for the job
size k, then we introduce another utility function
f̂(k) as f̂(K) = max[f(K),maxI{f̂(K\I)+f̂(I)−
g(I,K\I)}], where g is the cost for uniting subjobs

I and K \ I. Condition f̂(N) > f(N), where N
is the total size of the job, is true when splitting
a job is more beneficial then executing it as one
unit.

3. Extra blocking traffic. Consider Figure 2. There
are three tenants (A,B,C) and two bottlenecked
identical links (L1,L2). L1 is shared by tenants B

2

Figure 2: Tenant A can manipulate the allocation by
creating extra flows. E.g., in order to reduce flow B1 →
B2, tenant A creates a flow A3 → A4.

and C. It also can be used by A, although there is
no need in that traffic for tenant A. L2 is shared
only by tenants B and A. L1 is shared equally
between B and C, L2 is shared equally between
A and B. Now let us assume that A creates jam-
ming traffic at link L1, then three tenants start
to share it equally. As a consequence the rate at
which tenant B is using the link will reduce to the
same value (13L2, as L1 = L2). This will result in
acquiring 2

3L2 by tenant A. So it turned out that
this misbehavior is beneficial for tenant A. Extra
blocking traffic is always possible with work
conservation property.

4. Changing the roles of VMs. This is rather sim-
ple, when a part of mappers, for example, becomes
reducers and otherwise. It can allow a tenant to
localize traffic, etc. To do so only a program (pa-
rameter) that is run at local machines needs to be
changed, see Figure 3. There is one straggled flow
A1 → A2. Tenant A can get rid of the straggler
simply by switching the roles of A2 and A3.

5. Other solution-specific misbehavior/strategies.
For example, one of the recent works on a task-
aware algorithm suggests to order flows by their
creation time and based on that organize priority
in queues [11]. The simplest way to misbehave in
that case would be pre-creation of multiple flows
which may be used in future (i.e., capture high
priority values as fast as possible).

We observe that previous works were oblivious to the
aforementioned strategic (mis-)behavior, which is quite
a reasonable assumption for production networks. How-
ever, production networks rarely have fairness as a key
criteria for performance. Public clouds have completely
different situation. Some of the previous work [20] men-
tions the strategy-proofness problem in the cloud, but
leaves an assumption that at application-level abstrac-
tion tenants cannot influence allocations, i.e., alloca-
tions are uncontrollable from Hadoop API. However,
this is a completely invalid argument for IaaS, as any

Figure 3: Tenant A can get rid of“straggling”flow A1 →
A2 by changing the roles of VMs. Traffic patterns (a)
and (b) are isomorphic to each another.

new application mechanism coming to the market can
easily break this assumption.
Big tenants observing the unfair flow distribution in

Figure 1 above and having big strategic space have a
strong incentive to start misbehaving, e.g., by using
strategic options presented above.

3. MODELING
First of all, we formally study the properties of the

allocation models in consideration. First we introduce
the task model we employ – an essential connection be-
tween flow performance requirements, then we define
the network and application graph model, finally we
introduce the utility function which we will use to com-
pare performance and fairness of allocations.

3.1 Task model
Our entire model revolves around the notion of tasks.

We are not claiming the novelty for the task model at
flow level here. We note that some motivation for our
work can be found in CoFlow [9]. However, we claim
that the model is novel in terms of generality: (i) we
employ relative bandwidth requirement, while CoFlow
counts only flows, and (ii) we even do not restrict all the
mathematical analyses to only network resource (it can
be a mixture of CPU, memory and link bandwidth). For
clarity we give a small motivating example and provide
a formal definition.
An example. Imagine we have a tenant which has

three virtual machines (VMs) — A, B and C — desig-
nated for some job. The job is processed as follows: VM
A (master node) receives the job, splits it to two tasks,
sends them to VMs B and C (workers) and collects the
results. On a high level, the performance of the entire
job is measured by the time VM A receives the last re-
sult. For simplicity assume that CPU time for tasks is
the same for both workers or negligible in comparison
to communication time (see Fig. 4).
We are interested in finding the amount of resource

allocated to communication channels A–B and A–C.
For a moment, imagine that after our allocation for the

3

Figure 4: Task model

channel A–B the communication time is 10 ms and
for the channel A–C it is 100 ms. Independently of
the performance on the channel A–B, the entire task
will not complete in time faster than 100 ms. In other
words, this means that the performance of the task is
determined by the slowest channel. Moreover, there
is no benefit in receiving the excess bandwidth on a
non-bottleneck channel A–B, which may be given to or
traded with another tenant. However, we name A–C
slowest channel in terms of completion time, in fact the
flow rate on channel A–C can be 10 times of that on
channel A–B. The fact of slower compeltion time comes
from the fact that the job sends 100 times more data
over A–C, than A–B.

The aforementioned problem can be solved if the ten-
ant could explicitly proclaim how many bits per second
she needs on channel A–B for every bit per second on
channel A–C. This requirement leads us to the following
definition of the task model.

Definition 1 (Task model). A set of (commu-
nication) tasks of a tenant is defined by a set of vir-
tual machines S and bandwidth requirements D for a
set of links L over which the communication between
these machines occurs. The job is said to be limited
(after resource allocation) by the smallest ratio (Al

Dl
) be-

tween allocated (Al) and demanded (Dl) bandwidth at
some bottleneck link l (the slowest task in the set).

In other words, this means that an increase in the allo-
cated bandwidth Al′ on some non-bottleneck link l′ �= l,
will not improve the performance of the job, since equal
proportionality between demanded and allocated band-
widths must be observed for all tasks (involved in the
given job). In the example above the unnecessary ca-
pacity on the channel A–B can be given to some other
tenant.
For simplicity, we limit ourselves to communication

tasks. However, the limitation is not crucial. The model
can be extended to a mixture of communication, com-
putational and memory resource sharing. The latter
requires some unified metric to make them comparable,
for example, the time. For instance, the master node
can send a task over a slow link to a fast machine, or
over a fast link to a slow machine; the completion time
defines what is preferred. Thus, having the same mo-
tivation for our work as Coflow [9], we have a different
understanding of the resources than in Coflow.

3.2 Communication and demand model
Let us define a graph (V,E), where V are nodes (|V |=

M) and E = {Li, i ∈ N} are edges or links (|E|= N).
Capacity of each link is limited by Ci (|Li|≤ Ci). Any
communication channel between two stations goes by
some path and each path is defined by an ordered se-
quence of adjacent links (with no loops).
Consider K jobs are given, such that each job is ex-

ecuted by a single tenant, or a player. Each player, in
turn, has a set of virtual machines or stations (Mk, k ∈
K) placed on the graph (each station is associated with
some node). For simplicity, stations of each player are
enumerated as {1, 2, . . . , |Mk|} (see Fig. 5a, where num-
bers show the stations placement). Additionally, each
player has certain communication requirements for each
pair of stations (dki,j ≥ 0 ∀i, j ∈ {1, 2, . . . , |Mk|} for

k ∈ K) (Fig. 5b). We call matrix dki,j for tenant k a de-
mand matrix (by analogy to demand vectors in DRF)
and the values it has we consider to be relative for each
k as in the task model.
Each tenant can produce a restricted mapping of own

stations to the graph (reordering). The player has fixed
physical machines to run the code on (see Fig. 5a, where
numbers correspond to physical machines), but has some
freedom to choose which code to run on the machines,
e.g., what task to run on what VM (e.g., Fig. 5c and
Fig. 5d for alternative placements). Practically a change
of the role means that a tenant sets a permutation π
of numbers {1, . . . , |Mk|}, which corresponds to initial
mapping to the graph. The whole set of permutations
may be restricted to some feasible set Π, i.e. permu-
tations that are not in this set are not allowed. Com-
ponent i of permutation π means that the task i will
be run on station Mk

π(i) (instead of default Mk
i). We

call permutation (or change of mapping) operation a
swapping.
A single resource can be reused by multiple compo-

nents of the demand matrix, for example in Fig. 5c the
link L1 is used twice. To compute the total (relative)
requirement for a link we compute a demand vector (by
analogy to DRF), which represents a flattened version
of demand matrix: Dk = {Dk

1 , . . . , D
k
N}. Component

Dk
i of a demand vector means how much bandwidth

should be allocated on a link i if there is Dk
j of band-

width on a link j. Fig. 5c shows the case when the
tasks A, B, C are mapped to nodes 1, 2, 3 respec-
tively. The demand vector for links {L1, L2, L3, L4, L5}
is {2, 1, 1, 0, 0} and Fig. 5d shows that the demand vec-
tor for mapping {2, 1, 3} is {1, 1, 0, 1, 1}.

It can easily be seen that a tenant can manipulate
network requirement by modifying (lying on) demand
vectors (Strategy I) or by swapping between different
permutations (Strategy II).

4

(a) Graph

A B C

A 0 1 1
B 1 0 0
C 1 0 0

(b) Demand matrix (c) Mapping: Case 1 (d) Mapping: Case 2

Figure 5: Graph, demand matrix and non-symmetric mapping cases: (a) The initial graph, where numbers represent
nodes available for a tenant for placement; (b) The demand matrix in undirected form; the numbers are relative and
are defined as in the task-model; (c) Case 1 placement, corresponds to mapping A → 1, B → 2, C → 3; (d) Case 2
placement, corresponds to mapping A → 2, B → 1, C → 3 or permutation (2, 1, 3).

3.3 Utility function and the standard form of
demand vectors

The task model was defined in relative values. To
unify the understanding of performance and produce
meaningful comparable results we introduce the follow-
ing two definitions.

Definition 2. In a standard form all demand vec-
tors (D1, . . . , DN) satisfy following condition 0 ≤ Di ≤
1∀i and ∃j : Dj = 1

Definition 3. Allocation utility of a player is de-
fined as α = mini∈N :Di>0{Ai

Di
}, where Ai is the alloca-

tion of resource i the player gets and D = (D1, . . . , DN)
is the demand vector in the standard form.

It is easy to see that any non-zero positive demand
vector (D1, . . . , DN) can be written in a standard form
as follows (D1

max∀i Di
, . . . , DN

max∀i Di
) and the utility is a

multiplier of demand vector in a standard form which
determines the cluster share of a tenant.

4. STEM ARCHITECTURE
We design a Strategy-proof Task-Enforcement Mech-

anism (STEM) using the notion of task-aware allocation
in a form of demand vectors – a vector with a single nu-
merical value for each link. The demand vectors are
composed of the quantity of communication flows (sin-
gle flow for each unique VM-to-VM pair4) over each
link. As the quantity of flows are known to the net-
work through hypervisors, there is no need for any API
to expose the flow structure. By requiring the demand
vectors to be defined as flow count we achieve that all
flows of the same tenant obtain the same allocation.
Moreover as a fairness metric, we equalize all flows of
different tenants. In such a case, each flow at the net-
work will be allocated with the same bandwidth.
This approach was constructed with a reference to

DRF. The whole mechanism is similar to DRF for ab-
solute values, where we count all the flows to produce a
demand vector. Then we reduce it to a standard form

4We will talk about multipath options later.

demand vector. Finally, each demand vector is weighted
with a value of maximum number of flows that each ten-
ant has (the maximum over all links).
From the tenant perspective nothing was changed. It

works as before. From the cloud perspective, hypervisor
observes all the flows that originated locally. If a new
flow is created or an old one is deleted, the hypervisor
sends this information to a controller (Figure 9). Con-
troller adds a new flow or deletes an old flow from the
list. Using the list of flows, the controller can compute
how many flows each link has. If link L has capacity
CL and observes DL unique VM-to-VM flows (that is
the value of a cumulative demand of all tenants for this
link), then link L can allocate no more than CL

DL
to each

flow. The controller computes the maximum achievable
allocation the network can provide to all flows equally

as X = minL

{
CL

DL

}
. The value X is the only thing

that the controller needs to distribute to all hypervi-
sors. Each hypervisor, having computed value X, can
start to rate-limit all flows by this value.
All the computational mechanisms that we described

above can be easily written in a recursive manner, and,
thus, can easily scale. Although the controller needs to
know whole network structure, we can split it into sub-
controllers that know only a part of the network. For
example, if a subcontroller A computes value XA as
described above and a subcontroller B computes value
XB , then we can say that the consensus value on allo-
cated bandwidth is min{XA, XB}.

We can extend the definition of the demand vector
with a notion of partial flows. For some jobs there is
no need to have all flows of the same size, some of the
communication tasks are small. In that case instead of
counting it as a full flow – adding a unit – we can add
a fraction of a unit to the demand vectors’ components,
which are affected by this flow. That exactly is the
place where CoFlow-like API can benefit by exposing
the quantity of the “unity” that each flow needs. Note:
at least one flow of each tenant should be non-fractional,
otherwise the tenant simply gets less bandwidth alloca-
tion at all links than she could. The same way we can

5

treat multipath flows which have the same originating
and destination VMs: each of the flow receives propor-
tional fraction of the unity (of a single flow).
The main drawback of the above-mentioned mecha-

nism is the absence of work conservation property: the
hypervisor uses strict rate-limiters for proposed allo-
cations. To deal with this problem we introduce an
extension mechanism – STEM+. For this mechanism
we define two classes of traffic: guaranteed traffic (or
high priority) and work-conserving traffic (low prior-
ity). STEM+ uses the same mechanism as STEM to
compute allocations, however these bandwidth alloca-
tions form guaranteed traffic. The excess of the guar-
anteed traffic that VMs try to send is work-conserving
traffic. There is almost no changes to the hypervisor
compared to STEM, except that right now the hypervi-
sor does marking of the packets instead of rate-limiting.
All traffic that is bellow a given rate is marked as pri-
ority traffic, all excess traffic remains unmarked.
The network switches should be able to differentiate

two classes of traffic: marked and unmarked. While
unmarked traffic can easily be dropped due to conges-
tion, marked traffic should always be delivered and the
STEM controller computes the rates which should be
enough to satisfy that. The prioritization can be done
with many legacy technologies, e.g. DiffServ can eas-
ily differentiate two classes of traffic (rather common
assumption in the field), however an exact form of re-
alization depends on network infrastructure hardware.
In case the switches do not support any prioritization
mechanism, the prioritization can be done at hypervi-
sors in the same manner as ElasticSwitch [22] does it.
As it was mentioned, work-conservation comes with

the cost of strategy-proofness. However, in this case
work-conserving traffic is a second-class traffic; if the
tenant values bandwidth traffic guarantees then we can
say that we keep strategy-proofness at the level of guar-
anteed traffic. One additional benefit of STEM+ is that
a new flow can start to work immediately as it cre-
ated as work-conserving traffic. The delayed allocation
will just move part (or whole) work-conserving traffic
to the higher class of guaranteed traffic once new X is
acquired. This mechanism is also more fault-tolerant as
in the case of controller problem, all the traffic start to
be legacy work-conserving traffic.

5. COMPARISON OF ALLOCATION MECH-
ANISMS

The defined model allows a weakening of constrains if
we consider that players can work directly with demand
vectors instead of demand matrix. We think that the
proceeding analysis can be generalized, but for the sake
of simplicity and due to space limits we omit such gener-
alization. With this assumption we are oblivious to the
underlying network structure and VM placement model;

instead users can directly manipulate demand vectors
using Strategy I – lie about demand vector components
– and Strategy II – change the order of demand vec-
tors. As before the demand vectors are N -dimensional
vectors, each dimension corresponds to a single link. In
such setup we compare main allocation policies.

5.1 Pricing and Competitive Equilibrium from
Equal Incomes (CEEI)

CEEI is a fundamental resource allocation mecha-
nism. It was shown that any market-pricing scheme
for multiple resources leads to CEEI allocation [24, 27].
Our simulation showed the same result for linear pricing
and hyperbolic pricing which depends on the links loads.
In both cases the pricing mechanisms always converge
to CEEI, thus pricing mechanisms have similar prop-
erty to those of CEEI, except that CEEI allows to find
the allocations immediately while pricing mechanisms
need some time to converge.
It means that given an equal budget to multiple play-

ers and a market-driven prices, which are based on re-
source load, the players end up allocating their budget
with the same scheme as CEEI allocation policy pro-
vides. Thus, CEEI is a very important allocation policy
as it covers a big class of pricing schemes for individual
resources.
For two players the CEEI mechanism is defined as

following

max(x · y)
subject to

a1 · x+ b1 · y ≤ C1 (first link)

a2 · x+ b2 · y ≤ C2 (second link),

where (a1, a2) and (b1, b2) are demand vectors of the
first and second player correspondingly.
In [13] the authors mention that CEEI is not strategy-

proof for non-fungible5 resources. It is easy to show
that CEEI is not strategy-proof either when resources
are fungible. However, we omit the proof of this obvious
result due to space limitations. Instead, we focus on dis-
cussion of existence of Nash equilibrium (NE) for CEEI
game with two players and two fungible resources. As
we shall see, this equilibrium either is trivial (but un-
stable) or is bad as each tenant requests the same allo-
cation of each resource independently of real demands,
leading to equal share 1/K of all resources.

Theorem 1 (Existence of NE for CEEI). For
a 2-player CEEI allocation game NE exists and is un-
desirable.

5Fungible resources can be substituted one by another with-
out any drawback, e.g., two different paths from the same
initial VM to the same destination VM are fungible re-
sources; while CPU and memory are non-fungible resources
– it is impossible to completely substitute one with another.

6

Proof. Consider two resources of equal capacities
(C1 = C2). Our solution can be generalized to non-
equal capacities. Let demand vectors of two player be
given in a standard form: (1, a) and (1, b). The case
when a = 0 and b = 0 is trivial – it leads to (1, 0)
and (0, 1) solution – however, it is also not stable –
a slight change in the second component breaks this
equilibrium. We assume that, 0 < a ≤ 1 and 0 < b ≤ 1.
If players choose vectors (1, a) and (1, b), then each

will get 1
2 of the resources (the same happens if a = 1 or

b = 1). In this setting, both players will prefer to swap
vectors, such that both can gain more than 1

2 . If both
players choose vectors (1, a) and (b, 1) then the solution
has the following form:

{
x = 1

2
, y = 1

2·b , if 1 ≤ b · (2− a)

x = 1
2·a , y = 1

2
, else if 1 ≤ a · (2− b)

x = 1−b
1−a·b , y = 1−a

1−a·b otherwise

Now, for each point (a,b), 0 < a < 1 and 0 < b < 1
in CEEI it is beneficial for players to move their non-
dominant components. The best response for any point
(a, b) for the first player will be from a to a′ = 1/(2−b),
while for the second player will be from b to b′ = 1/(2−
a′). It turns out, that this iterative process converges to
(1, 1). Hence, the sought NE is of kind when one or both
of the players choose (1, 1) as their demand vectors.

This equilibrium has a negative effect on the system,
because resources are utilized inefficiently: every tenant
has a tendency to ask for resources which essentially
she will never end up using. Moreover, it is beneficial
for tenants to create a competition (and thus increase
prices) on the links they do not need in reality. Invest-
ing higher portion of own budget into a congested link
affects another player and leads to a better allocation.
The analysis is also extensible to N -dimensional de-

mand vectors. We do not have a proof of this result
for K players, but our numerical analysis shows that
for any initial setup we had players always wanted to
change their demand. Thus, we conclude that CEEI is
not strategy-proof in general, i.e. generally for any two
players the aforementioned misbehavior exist.

5.2 Task-enforcement allocation (STEM)
STEM utilizes this type of allocation by forcing each

flow to achieve equal allocation X. STEM+ uses it
only for the guaranteed bandwidth. As in this alloca-
tion type each flow is treated equally, the creation of
extra blocking traffic (as shown in Figure 2) becomes
non-beneficial for a tenant. The player knows that all
tenants will get the same allocation X for each full flow,
thus misbehaving against another tenant, the player de-
creases own allocation. At the same time, changing the
roles of VMs as a strategy is beneficial to everyone if it
is beneficial for the player, because it helps to lighten

bottlenecked links. Finally, splitting jobs in space or in
time becomes either beneficial for everyone by shifting
bottleneck or it does not produce any improvement as
all sub-jobs will get a fraction of the original allocation.

5.3 Other allocations
With the presence of work-conservation the scheme

presented in Figure 2 is always viable. Because tenant
B have a strong connection in utilization of both links
L1 and L2. Flow B1 → B2 cannot be bottlenecked
at link L1 and use work-conservation at link L2. At
another hand tenant A always has work-conservation
property available at the link L2.

However, we should note that the strategy-proofness
is not broken only in the case of work-conservation. If
there is no work-conservation property in the alloca-
tion, the Figure 2 is still a valid example. Tenant A
can still benefit in A1 → A2 creating jamming traffic
at A3 → A4. Although, there is no straightforward al-
location change in A1 → A2 by the jamming another
link, the tenant B may decide to switch from the cur-
rent path to another less congested path for B1 → B2

communication. A new allocation after this iteration
becomes again beneficial for player A. Obviously, the
network without work-conservation can be highly un-
derutilized.
From the above discussion follows that hose-model

based allocation cannot be fully strategy-proof, except
trivial cases.

5.4 Properties of STEM
DRF. As was said before STEM can be expressed in

a from of dominant-resource fairness (DRF) [13], thus
the following discussion applies to STEM. The goal of
DRF is to equalize the percentages of dominant re-
sources of participants. The usage of percentage makes
some resources more valuable than others in the task
model. To cope with this problem instead of equaliz-
ing the dominant share in percentage values we equalize
them in absolute values. We use term DRF-A for DRF
in absolute values and DRF-P for DRF in percentages.

Lemma 1. If all resources have equal capacities, i.e.,
C1 = C2 = · · · = CN , then an allocation defined by
DRF-P is equivalent to DRF-A allocation.

The allocation finding problem for DRF-A with de-
mand vectors in a standard form reduces to a very sim-
ple formula.

Definition 4. Solution of DRF-A for demand vec-
tors (D) in the standard form is defined by the following
linear system

7

max{x},
subject to

X ≤ Cj∑
i D

i
j

, ∀j (1)

X = x1 = x2 = . . . xM

or equally X = minj{ C∑
i D

i
j
}, where tenant i receives

allocation (X ·Di
1, . . . , X ·Di

N) and X is the same utility
which every tenant gets.
Now, we will formulate the existence theorem on NE

for DRF-A.

Theorem 2 (Existence of NE for DRF-A). NE
for DRF-A always exists.

Proof. DRF-A is defined for demand vectors in a
standard form equalizes utility functions of the above
game, i.e., X = x1 = x2 = · · · = xM . Thus, any selfish
improvement of utility for any player increases utilities
of all other players.
For NE to exist we need to prove that there is no

endless process of utility increase. For that consider a
total number of states in which the game can be at any
moment: each player can be in one of N ! demand vector
permutations and there are M such players, thus, it is
(N !)M . This number is bounded and there is no endless
increase of utility values.

Structure of NE. In DRF-A tenants choose own
strategy based on the cumulative strategies of the oth-
ers. There are multiple situations when different strate-
gies (non-symmetric) produce the same result for the
player. For example if only one resource is a bottleneck
for every tenant for any strategy, then they will use the
least utilization for this link, and independently of VM
roles permutation for other links, this link is the limit-
ing factor. Thus, there are multiple NE, which however
produce the same utility value. With this we proved
that these are weak NE.
We also see, following the proof on existence, that

there is a possibility of multiple different NE. For that
consider the smallest example. Let us have three play-
ers sharing three resources: player A with demand vec-
tor (1, 0.8, 0.3), player B – (1, 0.7, 0.5) and player C –
(1, 0.5, 0.1). We find that with such setup there are 3
different NE, utilities:

1. α = 1
2.1 for A: (1, 0.8, 0.3), B: (1, 0.7, 0.5), C: (1, 0.5, 0.1);

2. α = 1
2.0 (optimal) for A: (1, 0.8, 0.3), B: (0.5, 1, 0.7),

C: (0.5, 0.1, 1);

3. α = 1
2.3 (pessimal) for A: (1, 0.8, 0.3), B: (0.7, 0.5, 1),

C: (0.1, 1, 0.5).

The differences between Nash equilibria in this example
are minimal, however we clearly see that there exists an
optimal NE, which is called Pareto-efficient, as well as
we have a pessimal NE.
Approximate algorithm to find the optimal NE.

The main property of DRF-A is that the utilities are
equalized, thus a search for NE reduces to an optimiza-
tion problem. From the proof of the Theorem on exis-
tence we know that the best response strategy will lead
to a NE.
As an approximation we apply the following partial

best response once per each player. Assume that i play-
ers have done their turn, now the best response for i+1st
player is to reduce the sum of demand vector compo-
nents on each link, for that we sum up all demand vec-
tors of previous i players into a single cumulative vector
(t1, t2, . . . , tN). The best response of player i+1 to that
vector is to swap the minimum value of the player de-
mand vector to the maximum value of cumulative vec-
tor, after that the second minimal value to the second
maximal value of cumulative vector, and so on.
Let us study how well this approximation works. The

following lemma will help us.

Lemma 2. For demand vectors in the standard form,
in each step of the partial best response algorithm the
difference between the maximum and the minimum value
of the cumulative vector is no more than one.

Proof. Straightforward.

Theorem 3. The approximation algorithm achieves
utility not worse than 1+ N

S times less compared to the
best possible (idealistic) solution, where S =

∑
∀i,k D

k
i .

Proof. Let us name the final cumulative vector as
(t1, t2, . . . , tN) and the sum of all components be equal
to S : S =

∑
i ti. Let tmax and tmin be respectively the

maximum and the minimum components of the cumu-
lative vector. From the lemma we know that tmin+1 ≥
tmax. We also know that S =

∑
i ti ≥ N · tmin. Finally,

tmax ≤ C
N + 1 and utility is α ≥ N

C+N . Now we need to
compare it with the optimal utility which is achieved in
Pareto-efficient NE, let us name it as α∗. We know that
for given demand vectors the best and ideal solution is
achieved when all links share the same cumulative de-
mand, i.e. (t1, t2, . . . , tN) = (CN , . . . , C

N). This ideal
situation rarely achievable in practice provides us the
upper bound on α∗: α∗ ≤ N

C .

Finally, we get that α∗
α ≤ 1 + N

S .

We know that each vector has at least one unit com-
ponent, thus S >= N . Thus, in extreme our formula
shows that the ideal utility is not better than twice
higher than our approximation for any number of play-
ers. In practice if S = N , our algorithm achieves the

8

ideal utilization. In case S >> N the algorithm pro-
duces the result very close to ideal.
For an example above (player A with demand vec-

tor (1, 0.8, 0.3), player B – (1, 0.7, 0.5) and player C –
(1, 0.5, 0.1)) S = 5.8 while N = 3, thus by theorem
α∗
α ≤ 1.517. The best NE produces utility 0.5. If we
run the approximation algorithm above step by step,
then on the first step we will take the demand vector
A in any order, say (1, 0.8, 0.3), on the second step the
best response of player B for player A will be a de-
mand vector (0.5, 0.7, 1). Combining demand vectors A
and B we get a partial cumulative vector (1.5, 1.5, 1.3),
finally the best response of player C for that will be
demand vector (0.1, 0.5, 1) which produces the final cu-
mulative vector (1.6, 2, 2.3); the maximum component
of which is 2.3. Finally, the utility this algorithm gets
is 1

2.3 ≈ 0.435. The ratio of the ideal to the approxima-

tion is α∗
α ≈ 1.19 which is by the previous theorem is

bounded from above by 1.517.

5.5 Analytical results
The results we have are summarized in Table 1. The

first point to note is that the allocations the mecha-
nisms have are final for all except pricing mechanisms.
For pricing mechanism the allocation needs some time
to converge, i.e., a tenant has to find how much to pay
for each link. The strategic property is good only for
DRF: STEM has sustainability to lie about demands.
Performance is bad for CEEI as the tenants are unwill-
ing to share the cluster. Each gets 1/K of resources
and due to the task model a lot of own resources re-
main unused, while could be traded with others. The
same holds for local allocation policies with allocation
enforcement. However, the reason is that local mecha-
nisms cannot efficiently distribute resources using local
knowledge. Work conserving property helps local allo-
cation policies to get rid of this but makes the strategic
properties of the allocation worse.
STEM inherits from DRF the property of work-conservation

on task level, i.e. there is no allocation that will in-
crease the performance of anyone without harm for oth-
ers, but there is no work-conservation at the flow level.
The strategic property of STEM also leads to a Pareto-
efficient solution, which is beneficial for everyone. Fi-
nally, fairness is achieved on STEM by the task-enforcement
method itself, while CEEI fairness is due to full isolation
of tenants. Any local allocation policy cannot achieve
fairness at the global level. They can achieve local fair-
ness (FairCloud aims to do so), however bad strategic
property can lead the tenants to another unfair alloca-
tion after re-allocation and misbehavior.

6. TRACE-DRIVEN SIMULATION
So far we investigated the strategic properties of STEM,

STEM+, CEEI, pricing and task-unaware allocations

Figure 6: Simulated datacenter topology

theoretically. Many of the properties are qualitative
thus we cannot easily measure them quantitatively. Now
we would like to measure performance and fairness char-
acteristics of STEM and STEM+, rather than strate-
gic properties of the protocols. For that we choose a
trace-driven approach. We use the traces collected from
Facebook production cluster running MapReduce jobs.
To characterize these traces, we found that the cluster
was comprising about 3200 physical nodes. Further-
more, for such a relatively large cluster, the mean job
arrival/completion rate was 63 jobs/second, whereas the
minimum value of this number was 4 and the maximum
was 1147. We also found that the average, minimum
and maximum number of active tenants at any given
time instant was 44, 32 and 63 respectively.
Because Facebook traces did not contain topology in-

formation we had to infer it. The FairCloud work [20]
assumed a plain tree topology which is not right. As [5]
study suggests, industrial datacenters usually have canon-
ical 3-Tier Cisco architecture. We assumed the network
to have topology as shown in Fig. 6 which is similar to
standard Cisco campus network6. It is 3-Tier architec-
ture with 3136 servers and 260 routers. All links have
capacity of 1000Mbps.

Following the work described in FairCloud paper [20],
we considered one-hour windows in the trace and ob-
served the number of jobs involved in active shuffle at
a minute’s interval in those hours. Then we chose time
instants at which there were most jobs in active shuffle.
We then created snapshots and computed correspond-
ing traffic matrices, which we further used to observe
the bandwidth allocations with different policies on the
4× oversubscribed topology.

We simulated STEM and STEM+ and benchmark
them against state-of-the-art fair allocation algorithms
for the cloud, PS-L and PS-N. We could use other al-

6http://www.cisco.com/en/US/docs/solutions/
Enterprise/Campus/campover.html

9

Table 1: Comparison of results

Allocation Allocation Strategic Aggregate Task-level
type result property performance performance Fairness

Pricing bad bad bad bad good

CEEI good bad bad bad good

w/o work-conservation good bad bad bad NA

w/ work-conservation good bad good bad NA

STEM good good bad good global

STEM+ good good* good good global

gorithms to compare STEM and STEM+ against, how-
ever, as those algorithms were not aiming at fairness
they will be in disadvantageous position.
First of all, we compare how STEM and STEM+

treat different classes of tenants. From Figure 7a and
Figure 7b we observe that both mechanisms treat ten-
ant classes identically. While their comparison against
PS-L and PS-N shows that STEM and STEM+ provide
bandwidth guarantees for slowest flows, while PS-L and
PS-N cannot do that (Figure 7c). We also observe that
STEM+ performance for the fast flows is close to PS-L
and PS-N, while STEM by design keeps the same value
for all flows. This effect comes from work conserva-
tion property. With this property all allocation algo-
rithms will achieve similar performance, but STEM+
also efficiently trades excess in fast flows performance
for the increase in slow flows performance. Figure 7d
validates our assumption that work conservation prop-
erty achieves the same utilization of the network inde-
pendently of the allocation algorithm: all three mech-
anisms (PS-L, PS-N and STEM+) conserving alloca-
tion achieve almost identical aggregated bandwidth. On
another hand STEM cannot achieve such high aggre-
gated bandwidth utilization without work-conservation;
however this is compensated by the benefit of strong
strategy-proofness. If all tenants in the network are
task-aware and provided exact task allocation model,
then they simply cannot benefit from the aggregated
bandwidth which STEM+ provides. They will still wait
for the same amount of time for the slowest links. STEM+
however makes it easy to provide not exact task model
to the cloud (if the tenant does not know exact val-
ues beforehand), then work-conservation can benefit at
the links where provision of the traffic requirement was
under-estimated.
One of the discussion points that remains is how fair is

it to provide so much network usage to big tenants. Al-
though, they stop to be incentivized to misbehave, hav-
ing M mappers and R reducers they can obtain O(M*R)
network usage, while payment to cloud provider is pro-
portional to O(M+R)7. However, we observe that it is
not true, their influence on the network and require-

7Assuming, that cloud providers take flat payments per VM.

0 2000 4000 6000 8000

0
20

00
0

60
00

0
10

00
00

14
00

00

Number of VM

D
om

in
an

t #
 fl

ow
s y=

18
x

Maximum dominant # flows
Average dominant # flows

Figure 8: Maximum demand

Figure 9: Resource allocation architecture

ment of the network is not quadratic as it may seem at
the first glance but rather linear to their size (Figure 8).
Thus the network usage of big tenants is proportional
to the number of VMs they use.

7. PRACTICAL CONSIDERATIONS
Feasibility. STEM/STEM+ architecture shown in

Figure 9. We envision that all physical servers are pro-
visioned with a hypervisor and that a centralized con-
troller is present in the network. The role of hypervi-
sors is to count the #flows and produce rate-limiting
or marking functionality. These hypervisor roles are
often met in corresponding literature [21]. As we nor-
mally observe oversubscription, the functionality can be
implemented deeper in the network (closer to the bot-
tleneck), e.g., a single exit point of a rack can do the

10

0.01 0.05 0.50 5.00 50.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bandwidth (Mbps)

C
D

F

0−150
150−300
300−450

(a) STEM fairness

0.01 0.05 0.50 5.00 50.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bandwidth (Mbps)
C

D
F

0−150
150−300
300−450

(b) STEM+ fairness

0.01 0.05 0.50 5.00 50.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bandwidth (Mbps)

C
D

F

PS−L
PS−N
STEM
STEM+

(c) Performance of allocation
mechanisms

PS−L PS−N STEM STEM+

Allocation strategy

A
gg

r.
th

ro
ug

hp
ut

 (M
bp

s)

0
50

00
0

10
00

00
15

00
00

(d) Aggregated bandwidth

Figure 7: Simulation results

same job instead of hypervisors. The controller can be
implemented in scalable distributed manner, even with
single controller the solution is feasible and similar ap-
proaches met in OpenFlow/SDN literature. STEM+
requires two-class priority differentiation, which is also
a common assumption about the network. Moreover
STEM+ allows delayed fault-tolerant calculation of the
allocations.
In future (we already allow it), the tenants can ex-

press their demand vectors explicitly to the infrastruc-
ture. We have benchmarked the performance of a sin-
gle controller placed in the network comprising 3200
servers. From Facebook traces we inferred job arrival
and departure rates, which gave us a rough estimate
on how frequently a centralized controller will trigger
calculations to update tenants’ allocations. We further
assumed that once allocations are calculated, a central-
ized controller can reliably convey new allocations to all
hypervisors via a single broadcast message containing
bandwidth allocations for all tenants and their VMs.
We show a summary of these experimental results in

Table 2. Our suboptimal implementation of controller
could calculate allocations 1260 times per second which
is enough for the worst case for a given datacenter. Note
that calculations can be easily scaled up by adding more
controllers, each responsible for some part of the net-
work. Each controller can calculate possible allocations
for all tenants using only data for some part of the net-
work. Then calculated allocations can be easily com-
bined by applying the component-wise minimum.
The data sent by controller is quite small as in DRF

only one number per tenant must be broadcasted. We
estimate that 10 bytes per tenant is enough (4-byte ten-
ant identity, 4-byte allocated bandwidth and 2 bytes re-
served). Given that the average number of tenants in
dataset is 48, broadcast messages from a controller will
require bandwidth of 230Kb/s on average, and 4.4Mb/s
at the worst case. In case of high-bandwidth links in
datacenters, such amount of control traffic is considered

Table 2: The number of jobs started and completed

median mean 95% max
28 60 253 1248

feasible.
Multipathing. We used both fat-tree and standard-

tree topologies with oversubscriptions in our simula-
tions. However, we report results only for fat-tree. Fat-
tree allows to have multiple paths. We used a few
heuristics to improve allocation by utilization of mul-
tiple paths. We find that ECMP already distributes
the load uniformly among different paths, generally we
could achieve improvements in allocations, but no more
than 10%. In our opinion, it is a rather small number
for the computational costs. At another hand, STEM
allows to use multiple paths without any changes. E.g.,
one flow with count 1 can be split into two flows with
different paths and counts as 1

2 each.
Admission control and placement. We consider

admission control and placement orthogonal to our ap-
proach. The cloud provider should itself calculate how
many tenants can be satisfied with given network and
usage expectations. What STEM can provide is the
ability to equalize all flows. If a tenant experiences
worse network performance than the expected, it means
that the problem is in the network provision. VM place-
ment is an NP-hard problem, providers normally allo-
cate VMs by using locality as a heuristic. Smart tenants
in some cases can improve placement, however generally
that should not be expected from them. In the simula-
tions we haven’t done any replacement based on local
experience after an initial placement.

8. RELATED WORK
Recently, bandwidth allocation in data centers re-

ceived much attention from researchers. In production
clusters, Hadoop Fair Scheduler [1] allocates resources
using fixed-size shares called slots. Various reservation-

11

based schemes including Oktopus [3], Gatekeeper [23]
and SecondNet [14] were proposed for bandwidth guar-
antees without work conservation properties. Those of-
ten implement a hose model [12] where each user is
connected by a virtual link with minimum guaranteed
bandwidth. Oktopus enabled a symbiotic relationship
between tenants and datacenter providers by defining
an abstraction model for requesting a virtual network
allocation. Using the model, a customer can choose
either more expensive virtual cluster with guaranteed
bandwidth among all VMs or more economic virtual
oversubscribed cluster that places nodes in several groups
with limited bandwidth.
FairCloud [20] analyzed the tradeoffs between pay-

ment proportionality, high utilization and minimum band-
width guarantees. The authors proposed three alloca-
tion policies, including PS-L for proportional sharing
on the link-level, PS-N on the network-level, and PS-
P taking into account link proximity. While FairCloud
policies can be efficiently implemented in switches, they
lack the task concept which is necessary to capture the
dependency among allocations on links forming a com-
mon path.
Seawall [25] allocates network bandwidth in datacen-

ters based on policies specified by administrators. It
utilizes tunnels between hypervisors to control conges-
tion for high scalability in the absence of fixed resource
reservations.
Kumar et al [17] consider network allocations in pro-

duction clusters where tenants are cooperating. They
propose to share resources to improve overall perfor-
mance of tasks to help parallelizing the applications
with less focus on fairness.
Mogul and Popa [19] provide a survey of network al-

location mechanisms in cloud computing. They argue
that allocation fairness is not a concern for tenants, but
isolation and pricing transparency is. They suggest the
idea of discriminate pricing for datacenter resources,
where each tenant has to pay a different amount for
same level of service. They point out that bandwidth
guarantees can be provided on varying level of granular-
ity, starting from per-tenant aggregate, to per-VM hose
model, a pipe model between each pair of VMs, and per
TCP flow between VMs.
Orchestra [10] was proposed as a management frame-

work to control data transfers in datacenters. It defines
a scheduling model permitting prioritization of transfers
and improves performance of common operations such
as data broadcast or shuffle. Using Cornet, a custom
version of BitTorrent protocol, Orchestra can reduce
the completion times of broadcast tasks and improve
the performance of high-priority transfers. Orchestra
defines a transfer as a combination of all network flows
through a multi-stage job and goes beyond prior work
on flow-level scheduling.

Ballani et al [4] argue based on datacenter measure-
ments that traffic between tenants can be as high as
30% of overall traffic within the datacenter. They in-
troduce Hadrian, a datacenter manager that controls
VM placement within the datacenter to provide mini-
mal bandwidth guarantee and take into account a pat-
tern of inter-provider traffic.
Coflow [9] provides a networking abstraction API to

communicate application requirements to a cluster com-
puting platform. Coflow combines several flows between
two groups of machines that work to accomplish a com-
mon goal, such as minimize completion time or meet a
deadline. The proposed API enables creating, updating
or terminating coflows.
Xie et al [29] argue that previous works on band-

width allocation in datacenters ignore the fact that the
task demand can vary a lot during task execution life-
time. This is supported by profiling measurements of
several popular cloud applications such as a word count
or Hive. They propose Proteus, a system that allocates
bandwidth to tasks based on their network usage profile.
This reduced the costs to tenants and improves data-
center utilization, compared to bandwidth reservation
for entire task duration.
Webb et al [28] suggest to select a path within the

datacenter network based on requirements of a job. Pos-
sible criteria include high bandwidth, flow isolation or
resilience. The study compares the efficiency of path
selector compared to currently popular VLAN+ECMP
approach.
Overall, fair bandwidth allocation is a well studied

topic in computer networks [6]. Researchers proposed
solutions typically emulating max-min allocations to ten-
ants treating bandwidth as the same interchangeable re-
source. Ballani et al. propose a simple pricing scheme
for location independent tenants [2].
The recent work on task-aware allocation Baraat [11]

shows that task-aware allocation can be implemented
by producing relative ordering over all flows of differ-
ent tasks. If flows of one task are of a higher priority
than flows of another task, then the first job will be
completed faster.
Attempts to generalize DRF to balance between fair-

ness and efficiency resulted to mechanisms that are not
strategy-proof [16].
Sinbad [7] proposes to optimize performance of Clus-

ter File System (CFS) by replica placements during
write operations. By avoiding congested links, the job
completion time is reduced without negatively affecting
the balance of storage.
A whole separate area of related work is virtual net-

work embedding [8, 30]. This problem is present, for
example, in Emulab testbed where a set of experiments
with defined CPU and bandwidth requirements need to
be mapped to a physical substrate network of servers.

12

The task requirements are generally assumed to be known
for this problem, whereas for MapReduce tasks the Re-
duce phase resources cannot be fixed until the Map
phase completes. The main difference of virtual net-
work embedding from our work is that VNE does not
consider a notion of fairness in resource allocation. A
task is either granted its requests or denied due to access
control.
A concept of ElasticSwitch [22] guarantees bandwidth

allocation and work conservation to tenants simultane-
ously, while not demanding any support from network
switches. CloudMirror [18] takes into account appli-
cation requirements when allocating bandwidth in the
cloud.
Predictable Shared Cloud Storage (Pisces) [26] ap-

plied DRF to ensure fairness and performance guaran-
tees between tenants in a public cloud. However, it
assumes well-provisioned network without oversubscip-
tion and hence does not address network abuse of by
the tenants.

9. CONCLUSION
In this work we introduced a novel strategy-proof

task-aware allocation mechanism, namely STEM. It has
a simple architecture and at the same time strong prop-
erties for tenant behavior. No any other allocation type
can provide necessary properties. Moreover, we show
that the pricing mechanism is not strategy-proof and in
some cases can break the sharing incentive for the ten-
ants. To our knowledge this is also the first work which
considers strategic tenants. The extension of the proto-
col, STEM+ achieves many of the important properties,
as well as shows the same aggregate bandwidth perfor-
mance as other work-conserving allocation methods.

10. REFERENCES
[1] Hadoop fair scheduler.

http://hadoop.apache.org/docs/r1.1.1/fair scheduler.html.
[2] H. Ballani, P. Costa, T. Karagiannis, and

A. Rowstron. The price is right: towards
location-independent costs in datacenters. In
Proceedings of the 10th ACM Workshop on Hot
Topics in Networks, HotNets-X, pages 23:1–23:6.
ACM, 2011.

[3] H. Ballani, P. Costa, T. Karagiannis, and
A. Rowstron. Towards predictable datacenter
networks. In Proceedings of the ACM SIGCOMM
2011 conference, SIGCOMM ’11, pages 242–253,
New York, NY, USA, 2011. ACM.

[4] H. Ballani, K. Jang, T. Karagiannis, C. Kim,
D. Gunawardena, and G. O’Shea. Chatty tenants
and the cloud network sharing problem. In
NSDI’13, Apr. 2013.

[5] T. Benson, A. Akella, and D. A. Maltz. Network
traffic characteristics of data centers in the wild.

In Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, IMC ’10,
pages 267–280, New York, NY, USA, 2010. ACM.

[6] J. M. Blanquer and B. Özden. Fair queuing for
aggregated multiple links. In Proceedings of the
2001 conference on Applications, technologies,
architectures, and protocols for computer
communications, SIGCOMM ’01, pages 189–197,
New York, NY, USA, 2001. ACM.

[7] M. Chowdhury, S. Kandula, and I. Stoica.
Leveraging endpoint flexibility in data-intensive
clusters. In Proc. of ACM SIGCOMM’13, 2013.

[8] M. Chowdhury, M. R. Rahman, and R. Boutaba.
Vineyard: virtual network embedding algorithms
with coordinated node and link mapping.
IEEE/ACM Trans. Netw., 20(1):206–219, Feb.
2012.

[9] M. Chowdhury and I. Stoica. Coflow: a
networking abstraction for cluster applications. In
Proceedings of the 11th ACM Workshop on Hot
Topics in Networks, HotNets-XI, pages 31–36,
New York, NY, USA, 2012. ACM.

[10] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan,
and I. Stoica. Managing data transfers in
computer clusters with orchestra. In Proceedings
of the ACM SIGCOMM 2011 conference,
SIGCOMM’11, pages 98–109, New York, NY,
USA, 2011. ACM.

[11] F. Dogar, T. Karagiannis, H. Ballani, and
A. Rowstron. Decentralized task-aware scheduling
for data center networks, September 2013.

[12] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra,
K. K. Ramakrishnan, and J. E. van der Merive. A
flexible model for resource management in virtual
private networks. In Proceedings of the conference
on Applications, technologies, architectures, and
protocols for computer communication,
SIGCOMM ’99, pages 95–108, New York, NY,
USA, 1999. ACM.

[13] A. Ghodsi, M. Zaharia, B. Hindman,
A. Konwinski, S. Shenker, and I. Stoica.
Dominant resource fairness: fair allocation of
multiple resource types. In Proceedings of the 8th
USENIX conference on Networked systems design
and implementation, NSDI’11, pages 24–24.
USENIX Association, 2011.

[14] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong,
P. Sun, W. Wu, and Y. Zhang. Secondnet: a data
center network virtualization architecture with
bandwidth guarantees. In Proceedings of the 6th
International COnference, Co-NEXT’10, pages
15:1–15:12, New York, NY, USA, 2010. ACM.

[15] C.-Y. Hong, M. Caesar, and P. B. Godfrey.
Finishing flows quickly with preemptive
scheduling. In Proceedings of the ACM

13

SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’12, pages
127–138, New York, NY, USA, 2012. ACM.

[16] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang.
Multi-resource allocation: Fairness-efficiency
tradeoffs in a unifying framework. In
INFOCOM’12, pages 1206–1214, 2012.

[17] G. Kumar, M. Chowdhury, S. Ratnasamy, and
I. Stoica. A case for performance-centric network
allocation. In Proceedings of the 4th USENIX
conference on Hot Topics in Cloud Ccomputing,
HotCloud’12, Berkeley, CA, USA, 2012. USENIX
Association.

[18] J. Lee, M. Lee, L. Popa, Y. Turner, P. Sharma,
and B. Stephenson. Cloudmirror:
Application-aware bandwidth reservations in the
cloud. In ACM HotCloud’13, 2013.

[19] J. C. Mogul and L. Popa. What we talk about
when we talk about cloud network performance.
SIGCOMM Comput. Commun. Rev., 42(5):44–48,
Sept. 2012.

[20] L. Popa, G. Kumar, M. Chowdhury,
A. Krishnamurthy, S. Ratnasamy, and I. Stoica.
Faircloud: sharing the network in cloud
computing. In Proceedings of the ACM
SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for
computer communication, SIGCOMM ’12, pages
187–198, New York, NY, USA, 2012. ACM.

[21] L. Popa, P. Yalagandula, S. Banerjee, J. C.
Mogul, Y. Turner, and J. R. Santos.
Elasticswitch: Practical work-conserving
bandwidth guarantees for cloud computing. In
Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, SIGCOMM ’13, pages
351–362, New York, NY, USA, 2013. ACM.

[22] L. Popa, P. Yalagandula, S. Banerjee, J. C.
Mogul, Y. Turner, and J. R. Santos.
Elasticswitch: Practical work-conserving
bandwidth guarantees for cloud computing. In
ACM SIGCOMM’13, 2013.

[23] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares,
and D. Guedes. Gatekeeper: supporting
bandwidth guarantees for multi-tenant datacenter
networks. In Proceedings of the 3rd conference on
I/O virtualization, WIOV’11, Berkeley, CA, USA,
2011. USENIX Association.

[24] W. Shafer and H. F. Sonnenschein. Market
demand and excess demand functions. In K. J.
Arrow and M. Intriligator, editors, Handbook of
Mathematical Economics, volume 2, chapter 14,
pages 671–693. Elsevier, 4 edition, 1993.

[25] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and
B. Saha. Sharing the data center network. In

Proceedings of the 8th USENIX conference on
Networked systems design and implementation,
NSDI’11, pages 23–23, Berkeley, CA, USA, 2011.
USENIX Association.

[26] D. Shue, M. J. Freedman, and A. Shaikh.
Performance isolation and fairness for
multi-tenant cloud storage. In Proceedings of the
10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages
349–362, Berkeley, CA, USA, 2012. USENIX
Association.

[27] H. R. Varian. Equity, envy, and efficiency. Journal
of Economic Theory, 9(1):63–91, 1974.

[28] K. C. Webb, A. C. Snoeren, and K. Yocum.
Topology switching for data center networks. In
Proceedings of the 11th USENIX conference on
Hot topics in management of internet, cloud, and
enterprise networks and services, Hot-ICE’11,
pages 14–14, Berkeley, CA, USA, 2011. USENIX
Association.

[29] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. The
only constant is change: incorporating
time-varying network reservations in data centers.
SIGCOMM Comput. Commun. Rev.,
42(4):199–210, Aug. 2012.

[30] M. Yu, Y. Yi, J. Rexford, and M. Chiang.
Rethinking virtual network embedding: substrate
support for path splitting and migration.
SIGCOMM Comput. Commun. Rev., 38(2):17–29,
Mar. 2008.

14

	TR-14-001 cover
	TR-14-001 no cover

