Decision Procedures for flat
set-theoretical syllogistics.lI.
General union, powerset and

singleton operators

Domenico CANTONE * Vincenzo CUTELLO T

TR-92-031

Abstract
In this paper we show that a class of unquantified multi-sorted set-theoretic formulae
involving the notions of powerset, general union, and singleton has a solvable satisfiability
problem. We exhibit a normalization procedure that given a model for a formula in our
theory, it produces a simpler and a priori bounded model whose cardinality depends solely

on the size of the given formula.

Key words: Automated Deduction, Decidability, Symbolic Computation.

*Dipartimento di Matematica, Universita di Catania, Catania, Italy

'International Computer Science Institute, Berkeley, California, USA and CoRiMMe (Consorzio per la Ricerca

sulla Microelettronica nel Mezzogiorno), Catania, Italy



i



1 Introduction

In this paper we investigate the satisfiability problem for the class 3155 PU of multi-sorted set-
theoretic formulae where singleton, powerset and general union operators can occur.

Our results relate to the ongoing research work in the field of Computable Set Theory. A
comprehensive description of this subject and most of the results of the first decade of research

can be found in [CFO89]. Briefly, the goals of such a research are twofold:
(1) to have a clear understanding of what is decidable and what is not;

(2) to produce a large collection of satisfiability tests so that common deduction steps can be

mechanized.

Satisfiability tests (and, dually, validity tests) have been already provided for numerous classes of
unquantified and quantified formulae of set theory. We are in the process of implementing them
into an effective system for the verification of the correctness of computer programs (written in set-
oriented programming languages such as those in the SETL family) and semi-automatic checking
of proofs of mathematical theorems.

The basic set-theoretic language that has been considered is MLS (an acronym for Multi-Level
Syllogistic), i.e. the unquantified language of set theory with =, C, and € as predicate symbols, U,
N, and \ as function symbols, and the propositional connectives A, V, —, <, and =. A decision
test for MLS has been first given in [FOSS80].

Subsequently, many extensions of the language M LS with various other set operators and predi-
cates have also been shown to have a solvable satisfiability problem. Also, some classes of quantified
set-theoretic formulae properly extending MLS have been shown decidable.

In two recent Ph.D. Theses at New York University, the focus of research has been centered
on one hand (see [Pol90]) on enhancing standard theorem proving techniques, such as resolution,
by combining them with satisfiability tests for classes of formulae known to have a solvable sat-
isfiability problem; on the other hand, on proving that for specific mathematical fields, such as
general topology (see [Cut91]), complete satisfiability tests for certain classes of formulae exist
and in many instances allow a more feasible approach to the problem of automating and checking

proofs.



In the latter thesis, the formalization of topological and specific set-theoretic concepts has led to
the investigation of the satisfiability problem for classes of multi-sorted set-theoretic formulae, i.e.
formulae where the variables of the underlying language can range over the disjoint homogeneous
classes of individuals, sets of individuals, sets of sets of individuals, etc. We will refer to such classes
of formulae as multi-sorted flat syllogistics, as opposed to the more studied one-sorted multi-level
syllogistics in which variables can range over the Von Neumann universe of sets, i.e. sets which
are well founded over the empty set and characterized by Zermelo-Fraenkel axioms (see [Jec78]).

In this paper, we will continue the investigation in the multi-sorted direction and, specifically,
we will give a complete satisfiability test for a multi-sorted flat syllogistic, denoted by 3LS55PU,
which involves powerset, general union, and singleton.

We recall that the corresponding one-sorted class of formulae is still not known to have a
solvable satisfiability problem. Therefore the present result can be seen as the first contribution
towards the solution of the satisfiability problem for M LS extended with powerset, general union
and singleton operators.

Partial solutions can be found in [Can91] and in [CFS87] where, respectively, the satisfiability

of MLS with powerset and singleton and that of MLS with general union are established.

2 Preliminary definitions

Let us now introduce some basic definitions.

Let S be a nonempty set, whose elements are individuals with no internal structure. Recursively,

define

pow®(§) = S

pow' ()

pow(5) = {5’

S'C 5}
pow*(S) = pow(pow*1(S5)) fork >0
Moreover, for any k£ > 1 and any T € pow*(5) define
Un(T) = T
Un'(T) = Un(T)= |J T

T'eT
Un™(T) = Un(Un"Y(T)) forh<k



In view of the above definitions, it is natural to associate to each set 7' € pow*(S) the value k
as its sort.
By Two Level Syllogistic (2LS) we mean the two sorted unquantified set-theoretic class of

formulae obtained as the propositional closure of atoms of type
e X=YUZ X=Y\Z X=YnNZ
ezeX 2=y X=Y,

where capital letters denote set variables and small letters denote element variables. Then a given
a formula ¢ of 2L is said to be satisfiable if there exists a nonempty set S and an assignment M
(mapping element variables into elements of S and set variables into subsets of S) which makes
the formula ¢ true, when the symbols of 2LS5 are given their standard meaning. An efficient
satisfiability test for this class of formulae has been given in [FO78].

Subsequentely, in [CC90a] it was proven that 215 extended with the singleton operator X =
{z} and the cartesian product operator X =Y x Z! has also a solvable satisfiability problem.

The class of formulae 2L .5 can be naturally extended to the class n LS which contains n different

sorts of variables and whose atoms are of the following types
o Al =0, Aic Bt A= B AiC B
s A =B UC" A=B'NnC* A= B\ (!

for 0 < i < n, and where A’ denotes a variable of sort 7.

A given formula ¢ of nLYS is said to be satisfiable if there exists a nonempty set S and an
assignment M (mapping variables of sort i into elements of pow()(S)) which makes the formula
© true, when the symbols of nLS are interpreted according to their standard meaning.

Since set variables of different sorts can interact by means of the membership predicate only, it
is clear that a satisfiability test for formulae of n .S can be obtained in a straightforward manner

from the satisfiability test for 21.5.

1Some syntactical restrictions are placed on the sorts of X,Y, 7 to meet the intuitive definition of the cartesian

product of two sets.



A class of more expressive formulae is obtained by also allowing in the language nL.S atoms of

the following types

() A=
(pow) A" = pow(B~1)

(Un) B=! = Un(A?)

for i < m.
We denote such a class of formulae by nLS5SPU.
In order to show that nL.55PU has a solvable satisfiability problem we will reason as follows.
Given a satisfiable formula ¢ of nLSSPU and a model M for ¢, we define the support of M
as the set ¢/ defined by

U= J U a4y, (1)

1=1,...,n AigV:?

where V* denotes the collection of set variables of sort i occurring in ¢, 0 < i < n.

Therefore, for any 1 < i < n and for any A* € V¢, we have that
MA* C pow'=Y(U). (2)

We will exhibit a normalization procedure which allows to transform the given model M into
another model M* of ¢ whose support has a cardinality that can be a priori bounded, and which
depends solely on the size of the formula ¢. This clearly will imply the solvability of the satisfiability
problem for nLSSPU.

For sake of clarity, we will first prove that the satisfiability problem for the class 3LSSPU is

solvable. Subsequentely, we will extend such a result to the general case.

3 The class of formulae 3LSSPU

In order to simplify our notation, we will use lower case letters ..., z,y, 2z to denote individual
variables (variables of sort 0), capital letters ..., X, Y, Z to denote set variables (variables of sort
1), and capital letters A, B,C, ... to denote set of sets variables (variables of sort 2).

By using disjunctive normal form and elementary reductions, it is possible to reduce the satis-
fiability problem for the theory 3LS5SPU to the same problem for normalized conjunctions (n.c.)

of 3LSSPU. These are conjunctions of literals of the following types



e X=0, A=0, X=YUZ A=BUC, X=Y\Z, A=B\C
o X ={z}, A={X}, A=pow(X), X =Un(A)

Let ¢ be an.c. of 3LSSPU and let V' be the collection of variables of sort 7 = 0, 1,2 occurring

in . We say that ¢ is a closed normalized conjunction (c.n.c.) if the following conditions hold:
(1) the literal Ag = {0} occurs in ¢;
(2) for all X in V! there is a literal A = pow(X) in ¢, for some variable A in V?;
(3) for all Ain V? there is a literal X = Un(A) in ¢, for some variable X in V1.
A c.n.c. ¢* can always be obtained from a n.c. ¢ in the following way:
(step 0) ©* := ¢

(step 1) for all A of type 2 in ¢ introduce a new variable X 4 of type 1 and put in ¢* the conjunct
X4 =Un(A);

(step 2) for all X of type 1 in ¢* introduce a new variable Ax of type 2 and put in ¢* the
conjunct Ay = pow(X)A X = Un(Ax)

(step 3) introduce a new variable of type 2 Ay and put Ag = {0} A0 = Un(Ag) A Ag = pow(D).

Therefore from now on, without loss of generality, we will focus our attention on the satisfiability
problem for closed normalized conjunctions of 3LLS PU.
The following lemma, which will be proved in the following section, guarantees the existence

of certain models, that we call normal models.

LEMMA 3.1 Let ¢ be a satisfiable c.n.c. of 3LSSPU and let V' be the collection of variables of
sort 1 = 0,1,2 occurring in ¢. Then there exists a model M of ¢ such that denoted by o1,...,0%
the disjoint Venn regions of the sets M A, for A in V%, for all h = 1...k there exist Ej, C o}, such
that

(a) Un(Ep) C Un(oy);

(b) {MX :X inV'} CUi_, En;



(¢) |Uj=1 En| < 3n-2%m,

where n = |V1| and m = |V?|.

O

Let ¢ be a cnc of 3LSSPU and let M be a normal model for ¢, with Ep, h = 1...k, as in

Lemma 3.1.

Let n = |V, m = |V?|, £ = Uf_, Ep, and let U be the support of M.

The following procedure produces a subset I/* of I which will be used as support for a bounded

model of ¢.

Procedure 1
Input: collection &;

Output: set U™;

U* ={Ma:aecV'}
for any pair I1, I € € do
if Iy € I1 then
pick w in Ip \ Iy;
U* =uU*u{wl,
end if;
end for;

return U™ ;

end Procedure.

It is easily seen that since |£] < 3n-22™, then [U*| < 9n? - 24™,

Now we define an assignment M* having as support the set {/*
(t1) M*z = Mz, for z in V9
(t2) M*X = MX NnU*, for X in V1;
(t3) M*A=(MANU)UEY, for Ain V?

where

Uy = powU)\{INU*:T€E}
€1 = {InU*:TeMANEY.

. We put:

It only remains to be proven that the assignment M* as defined above is a model for ¢. To

this end we will use the following two elementary lemmas.



LEMMA 3.2 For any sets s,t,u and v

(a) (s\t)Nu=(sNu)\(tNu);

(b) if (sUt)N(uUv)=0 then (s\t)U(u\v)=(sUu)\ (tUv). 0
LEMMA 3.3 (a) If MA= MBUMC then & = £ U £x;

(b) if MA=MB\ MC then &% = €5\ £x;

(c) Uy NEZ =0, for all A in V2.
Proof. (a) Let MA= MBU MC. Then

Ey = {InUr:TeMANE={InU":Te(MBUMC)NE}
= {InU:TeMBn&U{InU*: 1€ MCNE}
= EpUEL.

(b) Let MA=MB\MC. If J € £ then J = INU* for some [ € MANE. Clearly I € MBNE,
so that J € €. Moreover I ¢ MC. If J € &}, then J = I'NU* for some I' € MC N E. But then
by the strong version of M.G. we would have I'N¥/* # I'NU* with I # I, a contradiction. Hence
J ¢ & which implies &5 C &3\ &£

Conversely, if J € €5\ &, then J = I NU* for some I € MBNE. Obviously I ¢ MC,
ITe( MB\MC)NE =MANE, implying J € £4 and in turn £ \ £& C &£4. Thus in conclusion
we have &% = &5\ £

Finally, property (c) follows immediately form the definition of 24;. [

Next we show that the assignment M* defined by (t1)-(t3) above is a model for ¢. We proceed

by cases.
(case 1) Conjuncts of type ({-}).
(1.1) Suppose that X = {a} is in ¢.
Then M*X = MX nU* = {Ma} nU* = {M*a} nU* = {M*a}.
(1.2) Suppose that A = {X}is in ¢.

Since {M X }nUy C {M*X} and &4 = {M*X }, it follows that M*A = (MANUF)UE, =
(M*X).



(case 2) Conjuncts of type (U).
(2.1) Suppose X =Y U Z is in ¢.
Plainly, M*X = MXNU* = (MY UM Z)nU* = (MY NU=)U(MZNU*) = M*Y UM*Z.
(2.2) Suppose that A = BUC is in .

Then by Lemma 3.3(a)

M*A = (MANU)UE, =[(MBUMC)NU; U (E5UES)

(MBNU)UERIUI(MCNUYUEE] = M*BUM*C
(case 3) Conjuncts of type (\).

(3.1) Suppose that X =Y \ Z is in ¢.
Then by Lemma 3.2(a), M*X = MXNU* = (MY\M Z)NU* = (MY NU*)\(MZNU*) =
M*Y \ M*7Z.

(3.2) Suppose that A = B\ C is in ¢.
Then by Lemmas 3.2 and 3.3(b),(c) we have

M*A = (MANUHUE, =[(MB\MC)NUJU(E\ E)

= [(MBNU;)UES\[(MCNU)UES] = M*B\ M*C

(case 4) Conjuncts of type (pow).

Suppose that A = pow(X)is in ¢.

We need to show that (MANUF)UEY = pow(MX NU*). Solet J € (MANUS)UEL. Tf
J € MANUz then J € pow(M X )Npow(U*) = pow(M X NU*). On the other hand if J € £,
then J = INU* for some I € MANE. But then I C M X, so that J C M X Ni*, which yields
J € pow(MX NYU*). Summing up, we have proved that (MANU;) U EL C pow(MX NU*).
Conversely, let J € pow(M X NU*). Assume that J ¢ MANU;. Since J C M X, we have
J € MA. In addition, J C U* so that J € pow(U*). Thus we must have J € {INU* : I € £}.
Let J = I'NU* for some I € £. Observe that I € M A, because otherwise I ¢ M X which by
the strong version of the M.G. would imply J = INU* € M X NU*,i.e. J ¢ pow(MX NU*).
Hence J € &4 which in conclusion implies pow(MX NU*) C (MANUZ) U E.

We can then conclude that M*A = pow(M*X).



(case 5) Conjuncts of type (Un).
Suppose that X = Un(A) is in ¢.
Since M is a normal model (cf. Lemma 3.1) there exist sets Iy,..., I, in M ANE such that
MX = Jj=1,. 5 I;- This implies that M*X = (U;=q,. 4 ;) NU* = Uj=1,.. n(L; NU). Since
IinU*e M*A, for j =1,...,h, we have M*X C Un(M*A).

On the other hand, if u € Un(M*A) it follows that v € ¢/* and u € J, for some J € M*A.

Two cases are possible.

(5.1) J e MANU;3.
In this case J C M X,sothat u € JNU* C MX NU* = M*X.

(5.2) J € &3.
In this case J = I NU* for some I € MANE. Thus IC MX andue J =1NU* C
MX NU*=M*X, and again v € M*X.

It follows that Un(M*A) C M*X which together with M*X C Un(M*A) proved earlier

gives M*X = Un(M*A).

Then we have the following lemma.

LEMMA 3.4 A c.n.c. of 3LSSPU with n variables of sort 1 and m wvariables of sort 2 is

satisfiable if and only if it has a model with a support whose size is bounded by 9n? - 24™, [ |

We can then conclude with the following theorem.

THEOREM 3.1 The class of formulae 3LSSPU has a solvable satisfiability problem. [ ]

4 Proof of Lemma 3.1

Let ¢ be a satisfiable c.n.c. of 3LSS PU. Let M be a model of ¢ and let I/ be its support. As above
for i = 0, 1,2, denote by V* the collection of variables of type i occurring in ¢ and let n = |V1|.

Let o1,...,0% be the Venn regions of the sets M A for A € V2. Thus to each A in V? we can
associate a set H4 C {1,...,k} such that

MA = U o (3)
h€H 4



Since ¢ is closed for all 1 < h < k we have
(P1) if a C oy, then Un(a) € Uk, ov;
(P2) if there exists X € V! such that M X € o}, then Un(oy,) = M X.

Let us consider the following two procedures whose effect is to modify some of the Venn regions

OlyeeeyOf.
Procedure TRANS (h, ¢, 1) Procedure TRAN Sy (h, ¢, o)
Input: A, L€ {1,...,k}; [ € pow(l)(u). Input: A, L € {1,...,k}; « C pow(Q)(Z/{).
Output: modified oy, 04. Output: modified oy, 04.
on = o \ {I}; o = (o \ {Un(a)}) U a;
oy = o U{I}; op = (o \ ) U {Un(a)};
return; return;
end Procedure. end Procedure.

By using properties (P1) and (P2) above, we will now show that if for some h,¢ € {1,...,k},
I € powM(U) we have

(a) I € ap;

(b) I # MX,for all X € V1;

(¢) Un(on \{I}) = Un(on);

(d) I C Un(ag) C Un(oy,);

(e) oy is not a singleton of type {M X}, for any X € V1;

then after the execution of TRAN Sy(h,¢,I) (and the subsequent modification of the sets o;) the

assignment M’ defined by

(i) M'z = Mz, for = in V°

(i) M'X = MX, for X in V1;
(i) M'A = J;ep, 0i, for Ain V?;

is still a model for ¢.

Likewise, if for some h,£ € {1,...,k} and a C pow?) (/) we have

10



(f) a C oy

(8) Un(a) C on;

(h) Un(a) ¢ {MX : X in V1};

then after the execution of TRAN Sy(h, !, ) (and the subsequent modification of the sets o;) the

assignment M’ formally defined as above is a model for ¢.

Indeed, in both cases we have that

e the sets o), remain pairwise disjoint then M’ models the conjuncts of type (U),(\);

e because of (d) and (h) neither o), nor o, can be singletons of type {M X} for some X € V.

Therefore, conjuncts of type ({-}) are well modeled too;

e Un(on) and Un(oy) remain unchanged, therefore conjuncts of type (Un) are well modeled.

Finally, notice that o5 U oy does not change. This allows us to claim that also conjuncts of type

(pow) are well modeled by M’. Let us consider separately the two cases.

(a) Suppose first that the applied procedure is TRANS;. If h € Hy for some A = pow(X)
conjunct of ¢, then I C Un(op) C MX, therefore I € MA and so £ € H,. Conversely,
suppose that £ € H 4 for some A = pow(X) conjunct of ¢, then I C Un(oy) C M X. On the
other hand, by (¢) Un(oy) C M X therefore 0, C M A and so h € H 4.

(b) Suppose now that the applied procedure is TRANS ;. If h € Hy4 for some A = pow(X)
conjunct of ¢, then Un(a) C MX so oy C MA,ie. (€ Hy. Analogously, if £ € H4 and
Un(a) € M A then all elements of a are subsets of M X i.e. &« C M A and then h € Hy4.

Now we are ready to exhibit a procedure that normalizes models in the sense of Lemma 3.1.

11



Procedure Normalize;
Input: collection o1,...,0%;

Output: modified o1, ..., ox; the set &;

£:={MX:X eV}
for £:= 1 to k such that ¢, is infinite do

I:=Un(os);
pick distinct w,v,w, z € I such that
(A1) there exists h € {1,...,k} such that T\ {a} € o, for a = u,v,w, z;

(A2) I\ {a} ¢ £, fora = u,v,w, z;
TRANSy (h, 0,1\ {u});
TRANSy (h, 2,1\ {v});
€= £ U\ {u}, T\ {u}};
end for;
for £:= 1 to k such that o, is finite do
while there exists o C o, such that Un(a) ¢ €U o, do

pick h € {1,...,k} such that Un(a) € op;
TRANS, (h, £, a);
end while;

pick the minimum o« C o, (w.r.t. cardinality ) such that
o Un(a) =Un(os);
£ :=€&Uaq
end for;

return &;

end Procedure.

Let M be the assignment defined as in (i)-(iii) above after the execution of the first for loop
of the procedure Normalize applied on the given model M of ¢. From the previous discussion, it
follows immediately that M* is a model for ¢. Moroever, M T verifies the following property:

Finite Property (FP): for any Venn region o C Mt A for some A € V?, there exvists a C o
such that

(FP1) a is finite and
(FP2) Un(a) = Un(o).

Notice that given h, if it is possible to find u,v,w,z € I = Un(oy) such that (A1) and (A2)

are verified then

IN

) Un(av)

Un(ow) = Un(or\{I\{u}, [\ {v}}
)
)

Un(on U{I\ {u}, T\ {0}
= I\ {u}UT\{v}

12



Therefore, we only have to prove that for any infinite o} it is always possible to find four

distinct elements of its union verifying (A1) and (A2).

So, let o, be an infinite Venn region. Since & is finite there clearly exist infinitely many
elements of type Un(op,) \ {a} for a € Un(o},), that do not belong to £. Moreover, since each of
these elements belongs to one Venn region, there clearly exists one Venn region o, which contains
at least four of them.

Fori:=1,...,k,put E; = 0;NE, where the values of the sets g; are meant after the execution
of the procedure Normalize. Then properties (a) and (b) of Lemma 3.1 follow easily. Concerning
property (c), we reason as follows. Let now a; be the minimum subset of o, chosen in the second
for-loop of the procedure Normalize, for each £ = 1,..., k. Moreover, let £ be the set-value of the
variable & just after the the execution of step £ of the same for-loop.

By hypothesys we have that for all 5 C ay, Un(3) € £Uo, Suppose that there exist 1, 32 C ap,
B1 # P2, such that Un(51) = Un(f2) and suppose by contradiction that 31 Z .

So, let I € 1\ B2, and let us prove that Un(ay, \ {I}) = Un(ay), which would contradict the
hypothesys that «j is minimal.

Let w € I, since Un(fB3) = Un(f) there exists I' € (3 such that w € I'. Therefore w €
Un(ap \{I}).

Analogously, it can be proven that 35 C f.

The elements of pow(ay) can then injectively be mapped into the elements of £/~1 U ay. In

particular, in view of the minimality of a its subsets with more than one element can be injectively

mapped into £=1. Therefore 2la| — |a| < £~ which implies that |a| < 2log £/-1.

It turns out that |£| is bounded by the solution of the following recurrence equation:

T0) = 3n

T(6) = T((—1)+2logT({— 1)

By induction, we have easily T({) < 3n(¢ 4 1)2, for £ > 0. Thus, since £ < 2™ — 1, we have
|€] < 3n -22™, concluding the proof that M’ is a normal model and in turn the proof of Lemma

3.1.

13



5 The class 4LSSP

Before proving that the results of the previous section can be extended to the class of formulae
where n > 3 different sorts of variables are allowed, i.e. the class n LS5 PU, it is useful to investigate
the satisfiability problem for the class of formulae 4L.55 P, i.e. the class where four different sorts
of variables occur and where only the powerset and singleton operators are present. Such a class
of formulae has a solvable satisfiability problem in view of the results in [Can91]. However, in
this special case, we wish to introduce a new technique that can be used and extended when also

occurrences of the union operators are allowed.

Let us now define more specifically the class of formulae 4L55P as the propositional closure

of atoms of types
@) X=0, A=05=90
(€)ae X, XeA AeS

(=)a=b, X=Y, A=B §=T

(C) XCY, ACB SCT

(U X=YUuZzZ, A=BUC S=TUU
(N X=YNZ A=BnC §=TNU
(\) X=Y\Z, A=B\C §=T\U
({}) X ={a}, A={X} 5={4}
(pow) A = pow(X) § = pow(A)

where lower case letters a,b,c,... denote element variables (type 0), capital letters X,Y,Z denote
set variables (type 1), capital letters A, B,C' denote sets of sets variables (type 2) and capital
letters S, T, U denote sets of sets of sets variables (type 3).

As usual, we will restrict ourselves to the satisfiability problem for normalized conjunctions

defined as conjunctions of literals of type
0) X =0, A=0 5=90

14



(U X=YUZ A=BUC S=TUU
(\) X=Y\Z, A=B\C S=T\U

({}) X ={a}, A={X} §={4}
(pow) A = pow(X) S = pow(A)

We will also suppose that such conjunctions are closed, meaning in this case that for every
variable of type 7 with 0 < 72 < 3 there exists a variable of type ¢ + 1 that represents the powerset
of the given variable. As usual our goal is to show that given a satisfiable formula ¢ of 4L55 P
and a model M with support ¥/, there exists a model M* with support /* whose cardinality is a
priori bounded in the size of ¢.

By recalling the results in [Can91] (or by using MOD; of the previous section) we can claim
that ¢/ is finite.

Let now Aq,..., A, be the variables of type 2 occurring in ¢ and S7q,...,.5, be the variables
of type 3 occurring in ¢. Since ¢ is closed for any A; there exists 5; such that S; = pow(A;) is in
¢ and therefore M S; = pow(MA;).

Let 01,...,0; be the nonempty and disjoint Venn regions of the sets M S5; for ¢ = 1,...,m.
For each region o let I, be an element of ¢ which is maximal in ¢ with respect to the inclusion.
Denote by & the collection of these elements I, .

Let also H C {1,...,n} and let

Sy = ﬂ pow(MAp)\ U pow(M Ap,) (4)
heH hg¢H
and
Iy = () MA,. (5)
heH

For all H C {1,...,k} we have that
(R1) Sy=01,gUoon - U0, H;

(R2) if for some I C Iy it is the case that I ¢ Sy then for all I’ C I it must be the case that
I'¢ Sy.

In particular, if Sgr # 0 then Iy € Sp;
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(R3) there exists at most one element of type M A;, for 1 < j < n,in Sy and one such an element

must be exactly I;
(R4) if Sy # 0 then Iy € &;

(R5) if Sy # 0, Iy = MA; for some 1 < ¢ < n and A; is a singleton variable, then there exists
1 < h < jm (see R1) such that o, = {MA;} = {Ix}.

The above properties are easy to prove. Their generalization to the case nL 5SS PU will be
treated in the next section.

To each of the sets I in £ we associate a newly introduced variable A of type 2 and we extend
M over these new variables by putting M Ay = I.

Let V! be the collection of variables of type 1 in ¢ and let V2 be the collection of variables of
type 2 in ¢ plus the above introduced variables.

Let us now consider the following formula of 3LSS P, ¢* defined as

/

e~ N
where
(a) ¢~ is the subconjunction of ¢ not involving variables of type 3;

(b) # is a formula that explicits all relations of type U, \, {:} and €, pow among the elements of
& and all the other sets of type 2 and 1, that are associated by M to the variables of type 2
and 1;i.e.

(1) for any Ay, Ay in V2, if M Ay C M Ay then Ay C Ay is in o;

(2) for any Ay, Ag, Az in V2, if MA; = MAy U MA;3 [resp. MAy = MA; N MAz, MA, =
M Ay \ MAs] then Ay = A3 U Ag [resp. Ay = A3 N A3, Ay = Ay \ As] is in ¢;
(3) for any X € V! and any A € V2 if MA = {MX} [resp. MX € MA] then A ={X}

[resp. X € A]is in 9.

The variables occurring in i are then the new variables above introduced and the variables

occurring in ¢ of type n — 2 and n — 1.
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Since ¢* is also in particular a formula of 3LSS PU, we can conclude that it has a model M*
whose support is a priori bounded in its size and therefore a priori bounded in the size of .

It can easily be checked that by putting
M*S={M*"A: MAec MS},

we obtain an assignment on the variables of type 3 which satisfies all conjuncts of ¢ but the
conjuncts of type (pow).
We now proceed as follows.

Asin (4),let H C{1,...,n} and let

Sy = ﬂ pow(M*Ap) \ U pow(M;)
heH h¢H

Ta = [ M5\ |J MS,
heH hgH

where for any h S} is the variable of type 3 related to the variable A, of type 2 by the conjunct
of ¢, Sp, = pow(Ay). Therefore,

(a) MS}y = pow(M Ay)
(b) Ty = Sy for any H C {1,...,k}
(c) for all H C{1,...,k}, Sf; = 0 if and only if 75 = 0.

Put now,

o*={M*Ar: 1 €0} (6)

Call a Venn region o singleton if and only if o = {M A} for some A singleton variable occurring
in ¢.
Let also
Rir =S \{M*A: A occurring in ¢*}. (7)

Let H C {1,...,n} such that R}; # 0. Our goal is to put the elements of R in the sets o* in

such a way that
(1) the sets o* remain pairwise disjoint;
(2) if o is singleton so is o*
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If we can accomplish this we can certainly claim that the assignment M* extended over the

variables of ¢ of type 3 in the following way

M*S =[] o (8)
ocCMS

is a model for ¢.

Two cases are now possible

(case 1) For any o C Sy it is the case that o is a singleton.

In this case, in view of (R3) above, we have that Sy = {M A} and so Sj; = {M*A} which

implies that R} is empty.

(case 2) There exists 0 C Sy which is not singleton. Therefore, we put

0" = 0" URY.

This model-extension technique above described, can easily be applied with a recursive argu-
ment to the case in which there are n different types of variables, i.e. for the class of formulae
nLSSP.

In the next section, we will show how it can be extended in the general case in which also the

general union operator is allowed.

6 Extension to n-level syllogistic

The result of the previous section can be extended to classes of formulae where n > 3 different
sorts of variables are allowed, i.e. to the class nL.SSPU.
As before we can restrict ourselves to the satisfiability problem for closed normalized conjunc-

tions, i.e. conjunctions of literals of type
(0) A'=0
(U) A'= B UCt
(\) A*= B\ ("
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({h) A ={B""}
(pow) A" = pow(B*~")
(Un) Bi=1 = Un(A7)
for 1 < i < n, where

o for any 2 < i < n — 1 and any A’ occurring in ¢ there exists B'~! and C*t! such that the
conjuncts

Bl = Un(AY) A O+ = pow(AY)
are in ¢;
e for any variable A™ occurring in ¢ there exists B”~! such that
B! = Un(A™)
is in ¢;
e for any variable A! occurring in ¢ there exists B? such that

B? = pow(A").

In the following we will call singleton any variable B'~! appearing in a conjunct of type A* =
{B*=1}. Given a normalized conjunction ¢ of nLSS9SPU it is straightforward to see that we can
always produce a closed normalized conjunction from it.

Let then ¢ be a closed normalized conjunction of nLSSPU. Let for 0 < i < n, V* be the
collection of set variables of type i occurring in . Since ¢ is closed for any A* occurring in ¢,
k < n and for any k = 1,...,n, there exist variables A* of type k occurring in . Suppose that ¢
is satisfiable and let M be a model for ¢. Let I/ be the support of M.

Suppose n > 3 and consider the closed normalized conjunction ¢™ that contains all and only

the conjuncts of ¢ of type:
(@) Am =9, An=1 =
(U) A" = BrU(Cn, An~t = pr=tyCr-t
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(\) A" = Br\ C", An=1 = =1\ Cn-!
({}) A» = {B"1}, A"~! = {B""?}
(pow) A™ = pow(B"~1)

(Un) B"~! = Un(A™)

Therefore, ¢™ is a 3LSSPU formula satisfied by an assignment M over a support H =
pow™=2(U). If we apply MOD; and MOD; to the Venn regions of,...,0f of the sets MA"

we can claim that starting from M we obtain an assignment M™% such that:
(c1) M™% models ¢";

(c2) M™t A1 = M A"~ for each variable A™~1 of type n — 1;

(c3) M™tA"=2 = M A"~2, for each variable A"~2 of type n — 2;

(c4) Lemma 3.1 holds for the Venn regions of,...,07 of the sets M A", ie. forall 1 <h <k,

there exist sj, elements of o}, I}Tfl_l, .. .,I}:Ls_hl, such that

(c4.1)

U I}:Lt_l = Un(ay).

t:l,...,sh

(c4.2) Moreover, if o7 is infinite then s; < 2.

(c4.3) Finally, denoted by Ep = {I}7!,.. .,I}?;ll} and by £" = Jp=1,. x E}f we have that
E" D {MB™ ' : B"! occurring in ¢}

and

|gn| S 22mn_l My—1
where m,,_q is the number of variables of type n-1 occurring in ¢.

It is fairly simple to observe that the assignment M* defined as

MtAR = MA*fork <n

M*TA™ = M™tA"
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over all variables occurring in ¢ is a model for ¢. Notice in particular, that the support of M+
defined as in (1) is equal to the support of M.
Moreover, let A7~ ... AZ“I be the set variables of type n — 1. Since ¢ is closed for any 1 <

h < k there exists B} variable of type n such that M B} = pow(MA}~"). Let now H C {1,...,k}

and let
Sg = (] pow(MA)\ | J pow(M A (9)
heH hg¢H
and
Iy = () MA. (10)
heH

Suppose then that M is a model for ¢ that satisfies the condition (c4) above described. We
have that, for all H C {1,...,k}

(Rem 1) Sy =07y Uofy---Uodl, g

(Rem 2) if for some I C I it is the case that [ ¢ Sy then for all I’ C I it must be the case that
I'¢ Sp.
In particular, if Sgr # 0 then Iy € Sp;

(Rem 3) there exists at most one element of type AIAZ-L_I, for 1 < ¢ <k, in Sy and one such an

element must be exactly Iy;
(Rem 4) if S # () then Iy € £

(Rem 5) if Sy # 0, Iy = MA™ ! for some 1 < i < k and A; is a singleton variable, then there
exists 1 <1 < jpg (see Rem 1) such that o = {MA?~'} = {Ig}. Suppose, w.l.o.g. that{ = 1.
Moreover, if for all 1 <1 < jg, Un(o]'y) C In then |Ig| = IMAP Y <I—1+{1,...,k}\ H|
and for any S™~2 € Iy, we have that Iy \ {572} € &£".

Indeed, notice that for any S"~% € Iy, two cases are possible
(c1) either Iy \ {5"72?} € Sy or
(c2) Ty \ {S"2} C M A} for some b’ ¢ H,i.e. Iy \ {S"?} € pow(MA}).

Since, for all 1 < I < jg, Un(o}y) C In two distinct subsets of Iy of type Iy \ {$"7%} for

S7=% € Iy cannot belong both to a same Venn region contained in Sy.
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On the other hand, if two distinct subsets of Iy of type Iy \ {S"72} for S"~2 € Iy are

contained in a set ﬂfIAZ,_l for b’ ¢ H, then Iy C A/[AZ,_I and Sy = 0.

So each Venn region ol for 2 < 1 < jg contains at most one element of type Iy \ {572}
for S™=? € Iy. Analogously, each set pow(ﬂ]AZ,‘l for h' ¢ H contains at most one element
of type Iy \ {52} for S™=2 € Ip.

This proves that |Ig| = [MA? ! <1 -1+ |{1,...,k}\ H|.

Let now S"=% € Iy. If (case (c1)) Iy \ {5™7?} € Sy then Iy \ {S"7?} € o]y, for some
2 <1< jg. So, Un(afy) = Iy \ {5™7?} and therefore Iy \ {S"~?} certainly belongs to £".

If, on the other hand (case (c2)), Iy \ {S""2} € pow(M A} ') for some h' ¢ H, let H'
be the subsets of {1,...,k} which contains the indices of all the variables A"~! such that
MA™1 D Ig \ {S"?}. Clearly, i,h’ € H' and since MA};' N MAP! = Iy \ {572}, we
have Iy, = Iy \ {52} therefore proving that there exists a Venn region ¢ whose union is

Iz and to which Iy, belongs. This assures us that Iy, € £".

We now proceed as follows. For any set I”~! of type n — 1 in £, introduce a new variable

A}L_l of type n — 1. Extend M over these new variables by putting A/IA}LH__ll =1,

n—1

Let us now consider the following formula of (n — 1)LSSPU, ¢* defined as

/

o AY
where

(a) ¢~ is the subconjunction of ¢ not involving variables of type n;

(b) 1 is a formula that explicits all relations of type U, \,{-} and €, Un, pow among the elements
of £ and all the other sets of type n — 1 and n — 2. The variables occurring in % are then

the new variables above introduced and the variables occurring in ¢ of type n —2 and n — 1.

By applying a recursive argument, suppose that ¢* has an injective model M* a priori bounded,

i.e. with a support U/* satisfying

(1) |U*| is a priori bounded in the size of ¢*; in particular, this bound is expressed by
log [U4*| < 3T(n—1)
where T'(n — 1) is the number of variables of ¢*.
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(2) U* CU.
It is fairly easy to see that by putting
M*A™ = {M*A77L "V e "N MA™Y,

we obtain an assignment on the variables of type m» which satisfies all conjuncts of ¢ but the
conjuncts of type (pow).
In order to satisfy the conjuncts of type (pow) as well we proceed as follows.

Asin (9),let H C {1,...,k} and let

S = ﬂ pow( M*A7~1)\ U pow(M*Ay~1)
heH h¢H

Ta = () MBp\ |J MB}
heH h¢H

Notice that 7z = Sy for any H C {1,...,k}.

The following lemma holds.
LEMMA 6.1 Forall HC{1,...,k}, S =0 if and only if Ty = 0.

Proof. Suppose first that Sj; = 0 and suppose by contradiction that 7z # (). Therefore, there

exists a nonempty Venn region ¢ such that
(1) o C MB} forall h € H;
(2) oNMB} ={( forall h ¢ H.

Let I™~! € o be one of the individuals of £” above chosen from o. So, I"~! C JWAZ_l for all
h € H and I"! ¢ 1\/].42_1 for all h ¢ H. Therefore, 1\/[*.4?;_11 C 1\/]*142“1 for all h € H and
M*ATTY ¢ M*Ap=" for all h ¢ H. So, M*A77Y, € Sp.

Conversely, let 7Tz = (). Therefore Sy = () and by construction ,cp AI*AZ_I c AI*AZ,_I for
some h' ¢ H, therefore S3; = 0. |

We now extend M* in the following way.
Call a Venn region o™ singleton if and only if o™ = {M A"~'} for some A"~! singleton variable

occurring in ¢.
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Put now,

o™ = {M*A") I e o™}

n—1

Let also

Ry = Si \ {M*A™! : A»=! occurring in ¢*}.

(11)

(12)

Let H C {1,...,k} such that R}; # 0. Our goal is to put the elements of R} in the sets o™*

in such a way that
(1) the sets o™* remain pairwise disjoint;
(2) if o™ is singleton so is o™* and

(3) Un(o™*) remains unchanged.

If we can accomplish this we can certainly claim that the assignment M* extended over the

variables of ¢ of type n in the following way

MAm= | o™
o CMAn

is a model for ¢.

Let us consider all the various cases.

(case 1) Iy ¢ {MA™~!: A"~ occurring in ¢}.

In this case, let o™* be the set to which ﬂ/[*A}L;l belongs and put

o™ = o™ U RY.

(case 2) Iy = MA™! for some A™~! not singleton variable occurring in ¢.

As above, let 6™* be the set to which M*A”~! belongs and put

o™ = o™ URY.

(case 3) Iy = M A™"! for some A™~! singleton variable occurring in ¢.

Two cases are possible
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(case 3.1) There exists 0™* C S such that Un(o™*) = M*A"~! and M* A"~ ¢ o™~.
In this case we put

o™ = o™ U RY.

(case 3.2) There does not exist 6™* C S} such that Un(o™*) = M*A"~! and M*A""1 ¢
am*,
Therefore, for any o™* C S} we have that either o™* = {M*A"~1} or Un(c™*) C
M=A"=1. This obviously implies that for any ¢ C Sy we have that either ¢” =
{MA™='} or Un(o™) C MA""L.
Therefore, for any 0™ C Sy such that Un(o™) C M A"~! there exists a S"72 € M A"~!
such that Un(o™) C Iy \ {S™2} and Iy \ {5™ 2} € £". Moreover, Iy \ {S"%} € Sy
and therefore there exists o™* C M*A"~1 such that ]\J*A?;\I{Sn_z} € o™*.
For any o™* C M*A™~1 such that o™* # {M*A"~1} if pow(Un(c™*))N Ry # 0 we

do the following
o™ = o™ URY N pow(Un(c™))
R3y = Ry \ pow(Un(c™))

Since any element of R}; is contained in ]\J*A?;\I{SH_Q} for some Iy \ {S"~2} € Su, we

can conclude that all elements of R} are put in some set o™*.

Let us now compute what is the bound on the number of elements of i/*.

We know that if n = 3 then log |U/*| < 2m + logm < 3m, where m is the number of variables
occurring in the formula, whereas for n > 3 log |U/*| < 3T(n — 1) where T'(n — 1) is the number of
variables of ©*.

Notice that T'(n — 1) < 2™ where m is the number of variables occurring in ¢.

U < O (222' )

where m is the total number of variables in the formula and the length of the exponential stack is

Therefore, as it is easy to see,

n — 2.

We can then conclude with the following theorem.
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THEOREM 6.1 For any integer n > 3, the class of formulae nLSS PU has a solvable satisfia-

bility problem. [

7 Final remarks and open problems

The decidability result for the theory 3155 PU described in the preceding sections and its gener-
alization to n LSS PU for n > 4, suggest many interesting research problems.

In particular, we conjecture that the theory nLSSPU can be extended, without disrupting
decidability, by adding predicates such as u-closed(A), fu-closed(A), i-closed(A), fi-closed(A),

ranging over the variables of sort z > 2 and with the intended meaning of
o u-closed(A) = A is closed with respect to union;
o fu-closed(A) = A is closed with respect to finite union;
e i-closed(A) = A is closed with respect to intersection;

o fi-closed(A)= A is closed with respect to finite intersection.
Successively, one may try to introduce in the language functional operators such as

o u — closure(A) or i — closure(A) which for A ranging over the variables of sort i > 2 give

respectively the sets obtained by closing A with respect to union and intersection;

e sup(A, X) which for A ranging over the variables of sort 7 > 2 and X ranging over the

variables of sort ¢ — 1 gives the set of all elements of A that contain X,

e etc.

Finally, one can also try to introduce in the language the Kuratowski closure operator therefore

incrementing the the collection of results described in [Cut91].
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