On-line Graph Algorithms for
Incremental Compilation

Alberto Marchetti-Spaccamela* Umberto Nannit
Hans Rohnert?
TR-92-056
August 1992

(preliminary version)

Abstract
Compilers usually construct various data structures which often vary only slightly
from compilation run to compilation run. This paper gives various solutions to the
problems of quickly updating these data structures instead of building them from
scratch each time. All problems we found can be reduced to graph problems. Specifi-
cally, we give algorithms for updating data structures for the problems of topological
order, loop detection, and reachability from the start routine.

*Dipartimento di Informatica e Sistemistica, Universitd di Roma “La Sapienza”, Roma, Italy. This report was
written while the author was visiting ICSI. The author’s email address is: marchett i@vxscaq.infn.it.

tDipartimento di Matematica Pura e Applicata, Universita di L’Aquila, L'Aquila, Italy. This report was written
while the author was visiting ICSI. The author’s email address is: nanni@vxscaq.infn.it.

This report was written while the author was on leave from Siemens AG, Munich, Germany. The author’s email
address is: rohnert@ztivax.zfe.siemens.de.

1 INTRODUCTION 1
1 Introduction

One way to speed up compilation times is to incorporate mechanisms for incremental change of im-
portant data structures into the compiler. In fact the first compilation run of a program is generally
followed by several other compilation runs each time with a slightly changed program. Therefore it
is desirable that data structures built during the first compilation run are maintained dynamically
without building them from scratch during every subsequent run. Namely, after having made these
data structures persistent on disk during the first compilation run, subsequent compilation runs read
in these data structures again, modify them as much as necessary because of changes in the input
program text, and write them back to disk storage. The data structures we have in mind can be
modelled by directed graphs such as the call graph and, notably in object-oriented programs, the
inheritance graph. Also, some type of consistency checks may be reduced to graph problems.
Specifically, we consider the following problems in directed graphs: loop detection, topological
order and reachability from a start or “main” vertex. These problems are considered in their static
and dynamic solutions: the dynamic operations considered are insertions and/or deletions of an
edge/vertex of the graph. The accent here is on “practical” approaches, leading to algorithms and

data structures that are simple and easy to implement.

We will often give two or even more solutions to a problem and the best solution for the problem
at hand depends on its size and some more specific requirements. In particolar, different solutions
for the same problem will have different space/time requirements. The consequent tradeoff’s must
be resolved on the basis of the available resources and the size of the input. In fact the size of the
graphs are sometimes fairly small or of medium size (the inheritance graph is seldom really large),
but they can reach a considerable size (the call graph of large systems may have many thousands
of vertices). Another issue is the tradeoff between the costs for updating and querying the data
structures. In fact we will see that some of the solutions will have a high cost for updating and a
small cost for querying; in this case the choice of the best solution will be influenced by the relative
frequency of these operations.

Finally, another intriguing issue, while dealing with incremental algorithms, is the evaluation of
time performances. The time cost of a dynamic algorithm may be expressed in terms of worst case
cost (i.e. an upper bound to the time spent for a single operation performed on the data structure),
or amortized cost [11], which provides the average time spent per operation over the worst possible

sequence of operations. A possible way to evaluate such a cost is to bound the worst case total

2 PRELIMINARIES 2

cost of any sequence of operations and then dividing it by the length of the sequence. Note that
the amortized analysis does not use any probabilistic assumption on the distribution of the possible

operations.

The rest of the paper is organized as follows. In section 2 we introduce the terminology and
we give preliminary definitions. In sections 3 and 4 we will consider the problems of performing
loop detection and topological sort in a graph that can change under sequence of insert and delete
operations. Finally in sections 4 and 5 we will consider the problems of reachability from a start
vertex and of maintaining transitive closure.

Since one of the purposes of this document is to serve as a collection of optimization hints
for compiler writers, some of the presented solutions and techniques are already known in the
literature [3, 4, 6, 7, 2] and are described here just for the sake of completeness. We present original
contributions from the algorithmic point of view in Section4, with the dynamic maintenance of
topological ordering; in Section6, with a parallel implementation of an algorithm for the dynamic
transitive closure.

Furthermore some of the previously known techniques (or similar algorithms matching existing

bounds) have been proposed with the target of a practical and simple implementation.

2 Preliminaries

In the following we assume the standard graph theoretical terminology as contained for example
in [1, 10]. A directed graph G = (V, E) (also referred to as a digraph) consists of a finite set V' of
vertices and a finite set of ordered pairs E C V x V of edges. A path from v; to vy is a sequence
(v1,vs,...vg) of vertices such that any adjacent pair (v4,vp+1) is an edgein E. A cycle is a nonempty
path from a vertex to itself. A digraph with no cycles is called a directed acyclic graph (in short
dag). A vertex y is said to be reachable from a vertex z if there exists a path from z to y. We will
denote as Reach(v) the set of vertices reachable from a vertex v (including v itself).

If G = (V, E) is a digraph, the digraph G* = (V, E*) such that an edge from (z,y) € E* if and

only if there exists a nonempty path from z to y in G, is called the fransitive closure of G.

In this paper we assume that graph are represented by storing the edges in adjacency lists, that

is using space O(n + m).

We consider several problems on directed acyclic graphs both in the static and the dynamic

version. In a static problem we find a solution S for a given problem for a specified graph G. If the

3 LOOP DETECTION 3

graph is updated to a new graph G’, the old solution S is no longer valid and we must recompute
the new solution S’. In a typical dynamic situation, we want to maintain a data structure under
a sequence of two kinds of operations: query and update. The update operation will modify the
graph by inserting or deleting an edge or a vertex. The query operation requires to find an answer
to the particular problem. The trivial approach to this kind of problems consists in using the static
algorithm either when a query has to be answered, or when an update occurs.

In this paper we study algorithms and data structures that allow to obtain the new solution S’
without recomputing it from scratch. The time and space requirements to maintain a solution to a
given problem depend on the kind of allowed updates, for example whether we can only add edges
to the graph, or also delete edges, or if we consider a fully dynamic situation in which insertions and
deletions are arbitrarily performed. In the former cases we can often gain advantage by the natural
monotonicity of the solution.

In the rest of the paper we will concentrate our attention on the insertions and deletions of
edge because this is the most interesting problem. In fact we will see that the insertion/deletion
of an isolated vertex (i. e. a vertex with no ingoing or outgoing edges) does not pose any problem.
Therefore the deletion of a vertex can be performed by executing a sequence of edge deletions followed
by an update operation that deletes a vertex with noedges. The case of vertex insertion can be dealt
analougously. Furthermore we do not consider the problem of of updating the representation of a
graph after insertion and deletion of edges, but only the updates to the structures handled by our
algorithms.

3 Loop Detection

The first problem that we consider is loop detection, that consists in finding whether a given graph
is acyclic or not. An example where it is necessary to check a graph for the existence of loops, is
the inheritance graph of programs written in object-oriented languages, which has to be a directed
acyclic graph. The introduction and the deletion of new classes and new inheritance relationships
between classes give raise to the problem of repeatedly checking the acyclicity of a dynamically

changing graph.

Given a graph G = (V, E) with vertex set V and edge set E it is well-known how to test &
for cycles: Simply run a topological sort [6]. If the algorithm terminates and assigns a topological
number to every vertex the graph is acyclic. If it aborts prematurely because in the remaining graph

there are no more vertices with no ingoing edges the graph contains cycles. The time complexity of

3 LOOP DETECTION 4

this procedure is O(n + m) where n = [V| and m = |E|. The space complexity is also O(n + m),

just for storing G.

Dynamic Loop Detection

Given an acyclic graph G = (V, E) we deal now with the problem of performing an intermixed

sequence of operations of the followind kinds:
a) updates to the structure of the graph, consisting in insertion or deletion of edges;
b) queries concerning the existence of loops;
c) test whether the insertion of an edge (u,v) would introduce loops.

Observe that the deletion of an edge e from G = (V, E) is trivial since this operation can not
introduce cycles. Furthermore insertions or deletions of isolated vertices require just to handle entries
in the tables representing the graph. Therefore, in the sequel of this section, we concentrate on the

operation of inserting an edge e = (v, w), with v,w € V.

Trivial solutions to dynamic loop detection consist in applying the O(m+n) algorithm to compute
a topological sort of the vertex set either when a query or test is requested, or when an update occurs.

Another simple solution, usually better than performing a topological sorting, consists in per-
forming a depth first search from vertex w. If it reaches v then adding e introduces a cycle into
G, otherwise is does not. The time complexity for dfs(w) is O(|G chh(w)n where Reach(w) is the
set of vertices reachable from w and G g1, (w) 18 the subgraph induced by Reach(w). In the worst
case this means O(m). The space complexity of dfs(w) is O(n) for storing a marker array and the

call stack of the recursive dfs procedure.

As far as a really dynamic solution for the loop detection problem is concerned, it can be re-
conducted to the dynamic maintenance of a topological sorting, that is considered in section 4: as
shown there, it will require O(m - min {n, k}) total time to perform any sequence of k consecutive
edge insertions (that leave the graph acyclic) followed by a sequence of h edge deletions. If we start
from an empty graph the insertion of m edges requires O(n) amortized time per update, which is a
considerable improvement over the O(m) static algorithm, especially for long sequences of insertion
in a dense graph. In the worst case a single insert operation may require O(m) time. This solution

is space efficient since it requires O(n) additional space beside the space necessary for storing the

graph.

4 MAINTAINING TOPOLOGICAL ORDER 5

Using the above solution, to perform a test(u,u) operation (testing whether a new possible edge
(u,w) leaves the graph acyclic or not) requires O(m) worst case time (by using dfs, for example),
since the cost can not be amortized over a sequence of operations.

It is possible to improve the time requirements of the test operation at the expenses of space
requirements. In fact testing in costant time is indeed possible if we maintain the transitive closure
G* of the graph G. In fact the insertion of the edge (u, w) leaves the graph acyclic if and only if
there is no connection from w to u in G*, and this can be checked in constant time. This solution
requires more space to be maintained, since we have to store the whole n x n matrices describing
G+. This leads to O(n?) > O(m) space for a simple matrix implementation, that can be reduced
for sparse graph storing only the meaningful (non-empty) items of G+ by using, for example, perfect
hashing [2].

Nevertheless the maintenance of transitive closure might be preferred in some context, and it is

considered in section 6.

4 Maintaining Topological Order

Sometimes it is sufficient a partial information about the ordering among the vertices of a directed
acyclic graph. A topological order among the vertices of a dag with n vertices maps each vertex v
to an integer ord(v) between 1 and n which fullfills the following property: for each (z,y) € E we
have ord(z) < ord(y). As shown in the previous section of this paper, finding (or maintaining) a
topological order may provide information about the acyclicity of the graph. A description of the
simple static solution of the topological sort can be found, for example, in 1, 5].

In this section we consider the problem of maintaining a topological order of a directed acyclic
graph. We assume that the topological order is stored in array A and we show how to maintain A
under insertions and deletions of edges. Afterwards we briefly discuss an alternative implementation

using doubly linked lists.

Let G = (V, E) be a directed acyclic graph and let A be an array representing a topological order
of the vertices of G in the obvious way: A[i] = v if ord(v) =i (i. e. vertex v is the i-th vertex in the
topological order). We say that vertex x follows vertex y in ord if ord(z) > ord(y); equivalently we
also say that y precedes z in ord.

Deleting an edge does not pose a problem for maintaining the topological order of a directed
graph, and so there is nothing to do in this case. Edge insertion is computationally more complicated;

the trivial way to perform the insertion is to first check whether the new edge does not introduce a

4 MAINTAINING TOPOLOGICAL ORDER 6

cycle and then to recompute the topological order from scratch. In the worst case the running time
is O(m).

In the following we propose an algorithm that avoids the recomputation of the topological order
from scratch. In the worst case the algorithm has the same time complexity of the procedure that
computes a new topological order form scratch. However we claim that the procedure is often
faster than recomputing the full topological order from scratch again. To substantiate this claim
we will show that the total time spent for performing a sequence of m edge insertions is O(mn),
thus improving on the O(m?) bound obtained by performing m topological orderings of the graph.
Equivalently the cost of an insertion amortized over a sequence of O(m) insertions is only O(n)
(see [11] for examples of amortized analysis). The space requirements are favourable: the algorithm
uses O(n + m) space for the representation of the graph and O(n) space to store the topological

order; O(n) additional space is required during the execution of the update operation.

Given a graph G let ord be a topological ordering of its vertices and let G' = (V, E U {(u,v)})
where (u,v) ¢ E. If u precedes v, i.e., ord(u) < ord(v), there is nothing to do since the new graph
complies to the existing topological order. On the other side if u follows v in the topological order,
then the new edge introduces a new path from u to v and, hence the topological order needs to be

modified. The proposed algorithm finds a topological order ord’ that is obtained from ord.

Lemma 1 Given a graph G = (V, E) and a topological order ordof its wertices, let G' = (V,E U
{(u,v)} be the graph obtained from G inserting edge (u,v). If G’ is acyclic, then there is a topological
order ord’ of G such that ord'(w) = ord(w) for all w such that either ord(w) < ord(v) or ord(w) >
ord(u).

Proof Without loss of generality we can assume that u follows v in ord (otherwise the lemma is
trivially true since ord is a topological order of G').

Let w be a vertex that precedes v (follows u) in the topological order ord. To prove the lemma
it is sufficient to show that the set of predecessors (successors) of w is not modified by the insertion
of the new edge.

If w is a vertex such that ord(w) < ord(v) then there is no path from v to w in G. Hence the
insertion of the edge (u,v) does not introduce new paths from any vertex of the graph to w and,
therefore, the set of successors of w will not be modified by the inserted edge.

Analougously, if ord(w) > ord(u) then there is no path in G from w to u and to vertices that

precede u in the topological order ord. Hence the insertion of the edge (u,v) does not introduce new

4 MAINTAINING TOPOLOGICAL ORDER 7

paths from w to any other vertex of the graph and we can conclude that if G’ is acyclic then there

must be a topological ordering ord’ such that ord'(w) = ord(w). O

As a consequence of the lemma it is sufficient to focus on vertices w such that ord(v) < ord(w) <
ord(u); in fact these are the only vertices that may eventually have a different position in ord and
ord'. In order to obtain ord’ it is necessary to modify the position of these vertices in such a way that
v and all vertices in Reach(v) follow u and all vertices in Reachiny(v) in the new topological order.
These modifications must be done without violating any order relationship in the graph before the
insertion of edge (u,v). In order to perform this task we start a depth first search dfs starting from
v. If ord(u) > ord(v) then v and all its successors, i.e., all vertices in Reach(v), have to be moved
after of u in the new topological order (if they are not yet already after u). Those vertices which
were in the topological order between v and u (inclusive u) and are not successors of v, have to be
shifted ahead while preserving their relative ordering to make room for v and its successors. The
details are as follows.

The algorithm consists of two stages. In the first stage it detects whether the new edge introduces
a cycle or not and marks those vertices that in the new topological ordering must follow u. The
second stage is performed only if a cycle has not been detected and computes the new arrangement.

The first stage consists of a dfs starting from v to explore Reach(v). The individual dfs
invocations stop when hitting a sink with no outgoing edges or when hitting a vertex = with
ord(z) > ord(u). Such a vertex z is already after u in the topological order, therefore, by lemma 1,
z and its successors do not have to be considered since they already are after u (and therefore we
do not need to modify their positions in the topological order for the insertion of edge (u,v)). Dur-
ing the depth first search the algorithm marks the components of the array A that correspond to
visited vertices that in the topological order precede u. The set of marked vertices includes v and
corresponds to the set that must follow u in the new topological ordering ord’. If the depth first
search hits vertex u, then edge (u,v) introduces a loop and the procedure stops, since there is no
way to define a topological order.

If a cycle has not been detected, the second stage of the algorithm updates the array A. The
new order ord’ is obtained from ord in such a way that u and all its successors will follow v without
modifying their relative order.

The second stage is implemented by scanning the array A that stores the topological ordering
from Aford(v)] to A[ord(u)). We use a counter shift initialized at 0. When the algorithm considers

component 7 of the array A it distinguishes between two possibilities. If A[i] has been marked during

4 MAINTAINING TOPOLOGICAL ORDER 8

the first stage then the counter shift is increased by one. The corresponding vertex, A[i], is one of
the vertices to be moved after u and is inserted into an ordered list.

If A[i] has not been marked during the first stage then the algorithm moves ahead in the topo-
logical order the corresponding vertex by shift many places decreasing its entry in by shift (i.e.
Ali—shift] := A[i]). When the algorithm considers the component relative to vertex u (i.e. A[ord(u)])
then the counter shift is equal to the number of marked vertices during the first stage. Therefore
moving ahead vertex u there is room in the array for placing the marked vertices. These vertices are
inserted into the array preserving their relative ordering (which was consistent with a full topological
ordering of the graph before the insertion of (u,v)).

Notice that if we maintain the topological order using a doubly linked list A, then it is not
necessary additional space (beside the queue used by dfs). In fact, during stage 1, the visited
vertices can be eliminated from the original list A and enqueued to form a new list L. Stage 2

consists in inserting the new list L within A just after the vertex u.

As far as the time complexity of the insertion algorithm we first observe that the running time
of the second stage is proportional to the number of vertices with ord numbers between ord(v)
and ord(u); therefore, the worst case cost of the second stage is O(n). On the other side the time
complexity of the first stage is proportional to the total degree of the successors of v to be moved
after u plus; this in the worst case can be O(m). Therefore O(m) is the worst case complexity of
the procedure for maintaining the topological order under edge insertions.

We now show that the total time spent for performing any sequence of k edge insertions is
O(m - min{n, k}) where m is the total number of edges in the graph after the insertions have been

performed.

Theorem 2 The total running time necessary for performing a sequence of m dfs edge insertions

starting from a graph with no edges is O(mn).

Proof Since the running time of the second stage is O(n) then, in order to prove the theorem it
is sufficient to show that the running time of the first stage over a sequence of m edge insertions is
O(mn). In order to prove this claim it is sufficient to show that, during any sequence of m edge
insertions, each edge of the graph is scanned at most n times.

Each time edge (z,y) is visited by the dfs starting in v due to the insertion of edge (u,v), it will

be labelled u. Hence an edge (z,y) is labelled u if there exists a vertex v such that before inserting

4 MAINTAINING TOPOLOGICAL ORDER

1. Procedure INS((u,v):edge);

2. begin
Stage 1
s Perform a DFS search starting from v
without continuing the search from a vertex w
such that ord(w) > ord(u)
and
by marking components of A that correspond to
visited vertices such that ord(w) > ord(u);
4. if vertex u has been visited
5. then HALT {a cycle has been detected}
6. else
Stage 2
T begin
8. shift :=0;
9. let L be an empty list;
10. for i:= Alord(v)] to Alord(u)]
11, do if A[i] has been marked during stage 1
12. then begin
13. insert Afi] at the end of L;
i4. shift := shift +1
15. end
16. else A[i — shift] := Ali];
17 insert vertices belonging to the list L in the array A

using components from A[i — shift +1] to Ali]
18. end
19. end;

Figure 1: Maintaining Topological sort while inserting edges

5 MAINTAINING REACHABILITY FROM START VERTEX 10

edge (u,v):
z € Reach(v) and ord(u) > ord(z) (1)

Since each time an edge is scanned it gets a label, it follows that the total number of labels
assigned is proportional to the running time required for the m dfs searchs.

We now show that for any graph G and any initial topological ordering, each edge (x,y) is
labelled u at most once during any sequence of edge insertions. Clearly this latter claim implies the
theorem.

Assume that (z,y) is labelled u during the insertion of edge (u,v); we show that any successive
insertion of an edge (u,v') will not label again vertex u. In fact, if edge (z,y) is labeled u during the
insertion of (u,v), then there is a path from u to z and thereafter ord(u) < ord(z). This implies that
any successive edge insertion (u,w) cannot label u edge (z,y) anymore because this would violate

condition 1. O

Note that the above theorem is not true if edge deletions occur during the sequence of insertions.
This is due to the fact that we cannot bound anymore the number of times that an edge is scanned,
as shown in the following example.

Let G; = (V;, E;), for i = 1,2, be a dag and s;,p; € V; be two vertices such that for any z € V,
we have z € Reach(s;), and p; € Reach(z). Let now be G = (V; U V2, Ey U E3), and consider the

following sequence of updates of G that inserts and deletes edges (p1,52) and (pz, 81) alternatively:

insert(py, s2), delete(py,s2), insert(ps,s1), delete(ps, 1), insert(p1, $2), delete(p1,52), - - -

It is easy to see that the above sequence maintains the graph acyclic and that the proposed
algorithm for edge insertions searches the whole graph for any two successive insert operations.

This example also shows the intrinsic hardness of this problem. In fact if a topological order has
to be stored in an array or, equivalently, if the complexity is computed in terms of the number of
elements which change their position, a sequence of ¢ updates alternating insertion and deletion of

edges may require {}(gn) operations.

5 Maintaining Reachability from Start Vertex

Another question often checked in compilers is whether a specific routine is reachable via routine
calls from the start routine M or which routines overall are reachable from M. The same problem

arises in garbage collectors which try to identify data blocks no more reachable by a chain of pointers

5 MAINTAINING REACHABILITY FROM START VERTEX 11

from one or at least one of several starting pointers. This problem will be referred as the single source
reachability or, in short, reachability.

A generalization of this problem is the transitive closure of a directed graph, that is the problem
of maintaining the reachability between any pair of vertices in the graph. This is considered in

section 6.

The evident static solution to the reachability problem is to perform a graph search such as
dfs starting in start vertex s and to check which vertices are reached. The time complexity of this

approach is obviously O(IGReach(s)D < O0(G)).

Dynamic Reachability

A very efficient dynamic solution for this problem is possible in case of either sequences of edges
insertion, or sequences of deletions in a dag. The solution proposed here is similar to the one
proposed in [7], and has the same time and space complexity of [3, 4, 9].

The performances of the algorithms are the following:

- O(m) time for any sequence of edge insertions, that is costant amortized time per edge insertion

starting from an empty graph;

- O(m) time for any sequence of edge deletions, that is costant amortized time per edge deletion

finishing with the empty graph;
- constant time to test whether a given vertex v is reachable from the “main” vertex M.

The extra space required by the algorithm presented here is O(n), namely a counter C[i] for any
vertex ¢ € V. The procedures to perform insertion and deletion of an edge (i, j) are pseudocoded in
Figures 2 and 3 respectively.

The counter C[h], relative to the vertex h, is equal to the number of edges entering in h and

coming from a vertex which is in Reach(M):
ClH = [{(z,h) | = € Reach(M)}|

The graph is supposed to be stored by using adjacency lists for each vertex. In the algorithms
the adjacency list of the vertex h is referred to as OUT-LIST[R].

The initialization required before using the algorithms and starting from the empty graph is the
following:

CiM] =1

5 MAINTAINING REACHABILITY FROM START VERTEX

1. Procedure INS(i,j: vertex);
2. begin
3. if C[i] >0
4. then begin
B: Set-queue (Q,{j})
6. while @ not empty
7. do begin
8. dequeue (Q,h)
9. increment C[h]
10. if Clh]=1
11. then for each (h,y) € OUT-LIST[A]
12, do enqueue(Q,y)
13. end;
14, end;
15. end;
Figure 2: Maintaining Reach(M) while inserting edges
1. Procedure DEL(i,j : vertex);
2. begin
3. if C[i] >0
4. then begin
5. Set-queue (@, {7})
6. while @ not empty
Ti do begin
8. dequeue (Q,h)
9. decrement C[h]
10. if Clh]=0
L then for each (h,y) € OUT-LIST[A]
12. do enqueue(Q,y)
135 end;
14, end;
15. end;

Figure 3: Maintaining Reach(M) while deleting edges

12

6 DYNAMIC TRANSITIVE CLOSURE 13

C[h)=0 forany h# M.

The algorithms are to be used in order to update the counters C[h] when an edge insertion or

deletion occurs.

The behavior of algorithm INS is the following. When an edge (3, 5) is inserted, if the vertex ¢ is
not reachable from M, no further work is required (line 3). Otherwise the vertex j is inserted in the
queue (@ (line 3). Thereafter a vertex y is enqueued (lines 11, 12) if and only if there exist an edge
(h,y) such that h has become reachable from M due to the insertion of the new edge (z,7) (lines
9, 10). On the other side, any time a vertex h is dequeued (line 8), the counter C[h] is increased
by one (line 9). The correctness of the algorithm can be proved by induction on the number of the
iteration of the while loop.

As far as the time complexity is concerned, we observe that for any enqueued vertex we perform
a costant number of operations. Since any time a vertex is enqueued its counter is increased by one,
the time spent by the procedure in a sequence of edge insertions is equal to the total sum of the
counters, and this is bounded by the number of edges in the graph. The additional space required,

as noted before, is O(n).

The procedure DEL is simmetrical to the previous one and its correctness and time complexity are
not discussed. Though, it is worth to notice that procedure INS retains its validity while inserting
edges in any directed graph, while DEL can be used only in acyclic graphs.

Efficient deletion of edges in a cyclic directed graph is indeed a hard problem that still does not

have a practical solution. The problem is addressed in [9].

More details about the proof of correctness and complexity of the proposed algorithms can be

found in [7].

6 Dynamic Transitive Closure

In this section we briefly describe the implementation of a simple and fast algorithm to maintain
the transitive closure G* of a graph G during insertion and deletion of edges. The graph Gt has an
edge (z,y) if and only if there is a path from z to y in G. This problem may be interesting per se
and furthermore, as remarked in section 3, maintaining explicitly the transitive closure of a graph,
allows us to test in constant time whether the insertion of a given edge (i, j) would leave the graph
acyclic. If this is a dominant operation in a given appication, it might be worthly to spend some

additional space for the implementation of this algorithms.

6 DYNAMIC TRANSITIVE CLOSURE 14

It is possible a straightforward generalization of algorithms and data structures described in the
previous section. In the following we present the algorithm also in a simple parallel version which
has the advantage to be perfectly suited to be easily adapted on any number of processors from 1
to n, where n is the number of vertices in G.

The main data structure presented here requires additional space O(n?) to store the n x n matrix
of counters, which can be reduced to O(|E*|), that is to the number of edges in G* by representing
only the non-zero values of the matrix. It is worth notice, for the parallel implementation, that any
processor will have access to a separate set of elements of this matrix (namely a row). So there is

no need of memory sharing nor interprocessor communication.

For what concerning the time required to update the data structures during insertions and
deletions the sequential implementation achieves these bounds (the complexity of the parallel im-

plementation is discussed below):

- O(nm) worst case total time for any sequence of edge insertions, that is O(n) per insertion

starting from the initial graph;

- O(nm) worst case total time for any sequence of edge deletions, that is O(n) per deletion in a

sequence that leaves the graph empty.

- testing whether there is a path from any vertex z to any vertex y (testing whether a new edge

(y,x) would introduce a cycle in the graph) requires constant time (a look up in a table).

The pseudocode of the two procedures for insertion and deletion of an edge (,7) is given in
Figures 4 and 5 respectively. From now on C will denote a matrix such that, for any z,y € V,
C|[z,y] is equal to the number of edges entering in y and coming from a vertex which is reachable

from z (including the vertex z itself):
Clz,y] = [{(z,9) | z € Reach(z)}}

Procedure PAR-INS, handling the insertion of an edge, uses a procedure CLOS requiring two
parameters: the first one is the vertex k whose closure has to be propagated, and the second one is
the first vertex to be inserted in the queue (namely the head of the new inserted edge).

If the n iterations of the pardo in line 3 are implemented on n different processors, any processor

Py it is in charge to update the set Reach(k), i.e. to increment all the counters Clk, z] for any z.

6 DYNAMIC TRANSITIVE CLOSURE

1. Procedure PAR-INS(i,j: vertex);
2. begin
3. for each {vertex} k € N pardo
4. if Clk,1] >0 then CLOS(k,j);
5. end;
1. Procedure CLOS(k,j: vertex);
2. begin
3. Set-queue (Qk, {7});
4. while @y not empty
Sy do begin
6. dequeue (Qk,h);
o increment C[k,h);
8. if Clk,h) =1
9. then for each (h,y) € DUT-LIST[R]
10. do enqueue(Qy,y)
11. end;
12. end;
Figure 4: Parallel transitive closure: insertion of an edge.
1. Procedure PAR-DEL(7,j : vertex);
2. begin
3. for each {vertex} k € N pardo
4, if C[k,i] > 0 then DECLOS(k,j);
5. end:;
1. Procedure DECLOS(k,j : vertex);
2. begin
3. Set-queue (Q,{7});
4. while @y not empty
5. do begin
6. dequeue (Qk,h);
7. decrement C[k, h;
8. if Clk,h)=0
9. then for each (h,y) € OUT-LIST[A]
10. do enqueue(Q,y)
11. end;
12. end;

Figure 5: Parallel transitive closure: deletion of an edge.

15

7 CONCLUSIONS 16

Using p processors, any of them would be in charge to update the closure of [n/p] vertices. With

p = 1 we get the sequential implementation.

Using n [k] processors the work load for any of them in a sequence of edge insertions or edge
deletions is O(m) [O(m - [n/k])]. But, as far as the time bound per update is concerned, for any
edge insertion we have to wait for the last processor which could take O(m) time, but also in the

worst case the time for any single update is always bounded by O(|G Reach(J.)|).

7 Conclusions

In this paper we have studied the problem of dynamically maintaining data structures that are built
during compiling runs. The proposed solutions show that in several cases it is possible to maintain
these data structures under a sequence of update operations without building them form scratch,
thus speeding successive compilation runs.

The proposed data structures and algorithms are simple and easy to implement. We have seen
that for some problems several solutions are possible that have different time/memory requirements.
The choice of the particular solution will be based on the available resources and their cost.

Many more questions need to be further investigated. As an example in the context of object-
oriented programs it is interesting to find the vertex that is the least common ancestor of two vertices
z and y (e.g., two vertices in the inheritance dag) or if they have common descendents. Static solution

for these problems are known but efficiently dynamic solutions still need further investigation.

8 Acknowledgements

The above problems were originally suggested by Stephen Omohundro in the context of defining the

new version 1.0 of the object-oriented language Sather and designing its compiler [8].

References

[1] A.V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA, 1974.

[2] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R.E. Tar-
jan. Dynamic perfect hashing: Upper and lower bounds. Technical Report Bericht Nr. 77,
Fachbereich Mathematik-Informatik, Universitat-Gesamthochschule Paderborn, 4790 Pader-
born, Germany, January 1991, also presented at FOCS ’88. |

REFERENCES 17

[3]

(4]

[5]
(6]

[7]

(8]

[9]

[10]

[11]

G. F. Italiano. Amortized efficiency of a path retrieval data structure. Theoret. Comput. Sci.,
48:273-281, 1986.

G. F. Italiano. Finding paths and deleting edges in directed acyclic graphs. Inform. Process.
Lett., 28:5-11, 1988.

J. A. McHugh. Algorithmic Graph Theory. Prentice Hall, 1990.

K. Mehlhorn. Graph Algorithms and NP-Completeness, volume 2 of Data Structures and Algo-

rithms. Springer-Verlag, Berlin Heidelberg New York Tokyo, 1984.

U. Nanni and P. Terrevoli. A fully dynamic data structure for path expressions on dags.

R.A.LR.O. Theorical Informatics and Applications, 1992. to appear.

S. M. Omohundro, C. Lim, and J. Bilmes. The sather language compiler /debugger implemen-
tation. Technical Report TR-92-017, International Computer Science Institute, Berkeley, Ca.,
1992.

J. A. La Poutré and J. van Leeuwen. Maintenance of transitive closure and transitive reduction
of graphs. In Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in

Computer Science, 314, pages 106-120. Springer-Verlag, 1988.

R. E. Tarjan. Data structures and network algorithms, volume 44 of CBMS-NSF Regional
Conference Series in Applied Mathematics. STAM, 1983.

R. E. Tarjan. Amortized computational complexity. SIAM J. Alg. Disc. Meth., 6:306-318,
1985.

