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Abstract

In this article we present a method to speed up agglomera-
tive clustering used in speaker diarization by using long-term
prosodic features. A set of these features is used to decide which
clusters should be merged. This strategy reduces the numberof
decisions that have to be performed using the more calculation-
intensive method based on the Bayesian Information Criterion
(BIC). We show a speedup of 30 % to a state-of-the-art diariza-
tion system.
Index Terms: speaker diarization, prosodic features

1. Introduction
The goal of speaker diarization is to segment audio into speaker-
homogeneous regions with the ultimate goal of answering the
question “who spoke when?” [1]. State-of-the-art systems
use a combination of agglomerative clustering with Bayesian
Information Criterion (BIC) [2] and Gaussian Mixture Mod-
els (GMMs) of frame-based cepstrum features (MFCCs) [1][3].
While these systems obtain a satisfactory accuracy in termsof
the speaker diarization error, this approach exhibits inherent
complexity due to the sophisticated online modeling of spectral
features leading to very slow processing. However, for mostof
the applications of speaker diarization, either as a preprocess-
ing step for automatic speech recognition (ASR), for large vol-
ume audio retrieving, or for multi-modal meeting understand-
ing, high-speed processing is required.

In this paper, we propose a novel approach to speeding
up an existing state-of-the art system, the ICSI speaker di-
arization system [4][3], by introducing a component exploit-
ing speaker discriminant long-term prosodic features modeled
in a comparatively simple and light-weight fashion. Together
with other high-level features such as lexical features, long-
term prosodic features have attracted increasing interestin the
automatic speaker recognition community. Despite the domi-
nance of short-term cepstral features in speaker recognition, a
range of high-level features can provide significant information
for speaker discrimination, as summarized in [5]. By looking
at patterns derived from a larger segment of speech, they reveal
individual characteristics of the speakers’ voices as wellas their
speaking behavior, which can not be captured by frame-based
short-term cepstral analysis.

Particularly, we propose a new scoring scheme to compare
two clusters using simple single Gaussian modeling of long-
term prosodic features and KL-divergence measurement. When
profiling the ICSI speaker diarization system, we find that BIC-
based merge score calculation takes more than half of the to-
tal running time. BIC-score calculation is computationally ex-
pensive because each iteration involves BIC merge score com-
putation for all pair-wise merge hypotheses and each of them

involves a new round of GMM training. Instead of perform-
ing full pair-wise BIC score calculation, we use our new merge
score based on long-term prosodic features as a pre-processing
step to filter out many highly unlikely merge hypotheses. This
strategy is also known as fast match [6].

The rest of this article is organized as following: Section
2 introduces the initial set of candidate long-term prosodic fea-
tures we explored; Section 3 analyses the runtime bottleneck
of most state-of-the-art speaker diarization systems; Section 4
explains the experimental setup; Section 5 presents the results;
Section 6 finally summarizes this article and points out future
work.

2. Initial Set of Prosodic Features
Our initial set of candidate long-term prosodic features consists
of a total of 39 measures that are expected to be speaker dis-
criminative. Each of the variables detailed below is calculated
on the basis of the entire speech segment and can therefore be
considered a long-term feature. All of them are extracted using
the system PRAAT [7] and rendered by simple statistics deriva-
tion. Further research in exploring the parameters of extraction
and representing the features to better capture the complexpat-
terns is certainly warranted.

Pitch. The speaking fundamental frequency (pitch) is ob-
tained by performing an acoustic periodicity detection using the
accurate autocorrelation methodas described in [8]. On the ba-
sis of the resulting pitch track, the following statisticalderiva-
tives are calculated: the mean, the median (or 50 % quantile),
the 5 % quantile, the 90 % quantile, the difference between the
latter two, as well as the standard deviation. The 5 % and 90 %
quantiles are used rather than the minimum and the maximum
values, respectively, to eliminate the effect of outliers caused by
artifacts. The difference value is intended to capture the pitch
range of the speaker. However, we are aware that speakers are
unlikely to use the entire range of their voices within a single ut-
terance. The standard deviation is used as a simplified measure
of the variance of the speaking fundamental frequency.

Formants. The formants F1 to F5 are approximated per-
forming a short-term spectral analysis. Thereby, the waveform
is re-sampled to 11 kHz which corresponds to twice the value
of maximum formant. Subsequently, a pre-emphasis of +6 dB
per octave for frequencies above 50 Hz is performed to flatten
the spectrum. The LPC coefficients are finally computed based
on a Gaussian-like window applied to each frame using Burg’s
algorithm[9]. Similar to pitch, a set of statistics is calculated for
each formant: the mean, the 5 %, 50 %, and 90 % quantiles, the
standard deviation, and the formant dispersion which is defined
as the sum of the differences of subsequent formants. One dis-
persion value is obtained for each of the respective quantiles,
leading to a total of 28 formant features.



Long-term Average Spectrum. The long-term average
spectrum (ltas), representing the power spectral density as a
function of frequency, is calculated using a bin-bandwidthof
100 Hz. This measure is intended to represent the individual
articulatory behavior of the speaker. The resulting vectorof db-
values for each frequency bin is analyzed according to the fol-
lowing statistics: frequency of the minimum value, frequency
of the maximum value, the slope, the local peak height, and the
standard deviation.

3. Runtime Analysis of the ICSI Speaker
Diarization System

The ICSI speaker diarization system [4][3], similar to other
state-of-the-art systems, uses the agglomerative clustering ap-
proach followed by Viterbi re-alignment of speaker segments
based on frame-based MFCCs. At each iteration, a merge score
based on Bayesian Information Criterion (BIC) is calculated be-
tween each merge candidate. The score is then used to deter-
mine which clusters should be merged at this stage and whether
the merge should continue or terminate. Subsequently, a new
GMM is trained for the merged cluster and the Viterbi align-
ment is repeated to re-align the data. The computational load
can be decomposed into three components: 1) finding the best
merge pair and merge, 2) re-training and re-alignment and 3)ev-
erything else. The time break-up for the whole system depicted
in Table 1 shows that the BIC score calculation takes62% of
the total running time.

Table 1: Runtime distribution of the ICSI Speaker Diarization
System.

Component Runtime
Finding Best Merge Pair and Merge 62%
Re-training/Re-alignment 28%
Everything else 10%
Total 100 %

Analyzing how the best merge hypothesis is found, the rea-
son for the high cost of the score calculation can be identified.
Let Da andDb represent the data belonging to clustera and
clusterb, which are modeled byθa andθb, respectively.D rep-
resents the data after mergea andb, i.e. D = Da ∪ Db, which
is parameterized byθ. Thus, in the case of GMM,θ can be
written as{(wi, µi, Σi)} and for single Gaussian modeling,θ

is (µ, Σ). The merge score (MS) is calculated as:

MS(θa, θb) = log p(D|θ) − (log p(Da|θa) + log p(Db|θb))
(1)

For each merge hypothesisa andb, a new GMMθ needs
to be trained and this needs to be performed for all merge hy-
potheses. When the system is configured to use more initial
clusters, which is preferable for better initial cluster purity, the
computation load becomes prohibitive.

4. Experimental Setup
As shown in Figure 1, we propose a new merge scoring based
on long-term prosodic features (described in Section 2) together
with an inexpensive distance measure. These are used as a pre-
processing step to filter out many highly unlikely merge hy-
potheses. Only the promising merge pairs are kept and passedto
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Figure 1: Diagram of the proposed improved agglomerative
clustering step. A prosodic features filter speeds up the entire
system by filtering out unlikely merge decisions.

the BIC merge score calculation. This way, the overall system
speed can be substantially increased. This section describes the
experimental setup. A Universal Background Model (UBM) is
trained in order to obtain a more robust stastical base. We then
introduce our basic distance measure, KL-divergence, along
with our feature selection process.

4.1. Universal Background Model training

To obtain more reliable variances for feature combination and
normalization we use a Universal Background Model (UBM)
that is trained as a single Gaussian Model to correspond to our
online distance measure. Since Meeting Databases typically
contain a small number of different speakers, we use TIMIT

[10] as our training database. It comprises a total number of
630 speakers from 8 major dialect regions of the United States,
each contributing ten sentences. We use the TIMIT training set
of 462 speakers, including 136 female speakers and 326 male
speakers. For each sentence (treated as a natural speech seg-
ment), prosodic features are extracted and used as a training
sample for a single Gaussian UBM. One of our objectives of
future work is to train the UBM based on a larger dataset of
conversational speech. However, the results obtained herein-
dicate that using the TIMIT database for background modeling
can be an admissible simplification.

4.2. Feature selection

Another advantage of using a UBM is that it facilitates feature
selection. We performed a speaker discriminability study using
TIMIT data by measuring the ratio of inter-speaker variance and
intra-speaker variance:

rank =
Σi=1Σj=1(µi − µj)(µi − µj)

T

ΣiΣj:yj=i(xj − µi)2
. (2)

whereyj is the speaker index for thjth sample.
We assume that features perform better when the ranking

of the ratio between inter- and intra-speaker variance is higher.
Table 2 shows the results of that ranking. Alternatively, wealso
use the RankSearch attribute subset selection technique asde-
scribed in [11]. Interestingly, the RankSearch algorithm,which
is based on correlation, comes out with exactly the same subset.



Finally, we take a closer look at the selected feature set, wesim-
ply remove the pitch mean because it is highly correlated with
the pitch median.

Table 2: Ranking of the different Prosodic Features according
to the ranking discussed in Section 4.2

Prosodic Feature Intra-Spk Var Inter-Spk Var Inter

Intra

Pitch Median 17.0 971.2 57.0
Pitch Mean 89.6 1721.9 19.2
F4 Stddev 7.9 56.8 7.2
F4 Min 12.8 80.4 6.2
Pitch Min 28.3 164.6 5.8
LTAS Stddev 90.6 516.4 5.7
F4 Mean 114.9 649.2 5.6
F5 Mean 180.7 929.0 5.1
F5 Stddev 66.7 327.4 4.9
F5 Min 218.3 1032.5 4.7

This analysis shows that the average pitch is a measure
that exhibits a very small intra-speaker variance togetherwith
a high inter-speaker variance which is desirable for the task at
hand. This finding corresponds to the results of related stud-
ies which found pitch to be the single best long-term feature
for speaker recognition (see, [12]. The superiority of the me-
dian to the mean can be explained by the fact that the median
is less sensitive to outliers: artifacts in pitch tracking can lead
to a significantly different mean value, but leave the median
unaffected. However, the mean and the median pitch are ob-
viously highly correlated, which has to be taken into account
when combing the measures. The priority given to F4 and F5
are explained to the lower formants is presumably due to the
fact that higher formants capture more speaker-discriminative
information whereas lower formants discriminate mainly be-
tween different voiced phonemes. The results indicate further-
more that, given the relatively short extraction segments,the
minimum pitch (here calculated more reliably by using the 5 %
quantile) is a more meaningful measure than the actual differ-
ence between the maximum and the minimum.

4.3. Calculating merge score based on KL-divergence

Each cluster is represented as an adapted single Gaussian of
long-term prosodic features. KL-divergence is a natural dis-
tance measurement for two distributions and in case of single
Gaussian it has close-form solution as:

KL(θa, θb) = tr(ΣaΣ−1

b )−d+tr((Σ−1

a )(µa−µb)(µa−µb)
T )

(3)
The symmetric version of KL-divergence is,

K̂L(θa, θb) = KL(θa, θb) + KL(θb, θa)
= tr(ΣaΣ−1

b ) + tr(ΣbΣ
−1

a ) − 2d+
tr((Σ−1

a + Σ−1

b )(µa − µb)(µa − µb)
T )

(4)
Since we are using adapted single Gaussian modeling, all

Gaussians share the same covariance trained from the UBM de-
scribed before, i.e.Σa = Σb = Σ Eq. 4 can be simplified
to:

K̂L(θa, θb) = 2tr(Σ−1(µa − µb)(µa − µb)
T )) (5)

SinceΣ is trained offline,Σ−1 can be calculated offline
as well. The new merge score calculation is a simple matrix
multiplication.

5. Experiments and Results
Our experiments are performed on the RT06 Meeting Evalua-
tion speaker diarization development set that contains 12 meet-
ings and a total of 4 hours of audio data. Our experiments aimed
to answer two questions:

• How much speed up are we able to gain without making
the speaker diarization error rate (DER) worse?

• How well do prosodic features discriminate speakers
compared to BIC measurements in this particular setup?

5.1. Speedup gained without influencing DER

In order to guarantee that the Prosodic Features Filter willnot
affect the end-result, we have to make sure that the pair that
will be merged according to BIC measurement is not filtered-
out. In order to test this we compared the merge decisions of the
actual ICSI speaker diarization engine (as described in Section
3) to our filtering decisions for each meeting and each iteration.
We found that we can safely filter out 50 % of the comparisons
without affecting the system. We rank the possible merge pairs
by discarding all the pairs that rank poorly according the KL-
divergence merge score. As shown in Table 3, we can expect a
speedup of the entire system of about 33 %.

5.2. BIC vs prosodic features

Finally, we compare the rankings of the prosodic filter with the
ranking of the BIC measurement. Again, we ranked the pos-
sible merge pairs and discarded all those pairs that rank poorly
according the KL-divergence merge score. The amount of elim-
inated possible pairs defines the speed-up. This time, however,
we compared against the optimal merge decision according to
the ground truth. Additionally, we also ranked the scores gen-
erated by the BIC scoring. Accuracy is defined as the average
number of iterations (over all meetings) where the ground truth
merge pair is not filtered out. This benchmark enables us to
get an idea of the quality of the ranking observed by different
features and BIC. The results are illustrated in Figure 2. The
combination of the top nine features gives better results than
BIC ranking. We interpret this as an encouraging sign that in
the future we will be able to dispense with the BIC measure-
ment entirely.

Table 3:Example speed up result for a meeting with 4 speakers.
The Section 4.1 for details on the experiment.

No of Comparisons Engine Runtime x×Real time
100 % 100 % 4.2
75% 83 % 3.4
66% 78 % 3.2
50% 67 % 2.8

6. Summary and Future Work
We present a new cluster merge score evaluation using KL-
divergence measurement and a set of long-term prosodic fea-
tures. These include derivatives off0, formants and long-term
average spectrum (ltas), and apply it to the ICSI speaker di-
arization system as a pre-processing step to filter out unlikely
merge hypotheses. This application largely reduces the amount
of heavy-weight BIC merge score calculation and speeds up the
system without changing the BIC merge decision.
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Figure 2:Speed up vs accuracy for different prosodic features.
See Section 4.2 for the details of the experiment.

This work points into a new direction of combining short-
term spectral features and long-term prosodic features for
speaker diarization. Short-term frame-based cepstrum features
with GMMs modeling are good for speaker change detection
(segment re-alignment), where accurate modeling and high time
resolution features are needed; long-term prosodic features,
which carry rich speaker discriminant information, however, are
suitable for cluster modeling and cluster merge decisions.The
new merge score approach is very fast compared to the BIC
merge score approach based on short-term spectral features.
We believe short-term spectral features are still very impor-
tant in accurately locating speaker change points, but long-term
prosodic features can be combined with short-term featuresfor
faster speaker clustering.

We are planning on a further exploration of other long-term
prosodic features and parameterization. Instead of using our
new scoring approach as a pre-processing step of BIC scoring,
we would like to try to combine, or ideally replace the BIC de-
cisions.
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