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ABSTRACT

This report describes a measurement technique and corresponding
statistical evaluation options that can be used for assessing the mean duration
of performing a particular operation, even when this duration is small
compared with the resolution of an available, readable clock. The technique
has been developed with regard to measuring operation durations of
distributed system kernels, and to measuring durations of sub-activitics
embedded in these operations. The technique employs repetitive executions of
the mecasured operation, but does not however depend on the usually employed
“tight loop" around the operation. It also allows for simultancous assessments
of several different time intervals within the repetitive pattern. Based on an
initial guess about the mean length of the smallest time interval to be
measured, the necessary number of loop cycles can be determined before an
experiment, for a selectable width of the confidence interval of the mean to be
estimated, and at a selctable confidence level.
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1. Motivation

The ideas for this report arose during a visiting period with the DASH projectat UC Berkeley. DASH
studies general issues in the design of large, high-performance distributed systems, and isat the same
time building an experimental system. An overview over the DASH projectis givenin ANFES88, ad-
ditional references are supplied there.

In every such project, there is an obvious interest in experimentally verifying that all performance
goals forthe system are being met by the growing implementation. For distributed systems, interpro-
cess communication performance is particularly interesting and, hence, latency and through-
put/bandwidth figures for corresponding kernel operations need to be determined.

Measuring the time taken for executing any such operation can be difficult due to its small duration.
Moreover, interpretations (and subsequent improvements) of operation durations necessitate a
quantified break-down of operations, i.e. the assessment of shorter, operation-embedded sub-activi-
ties. With 1 MIPS and faster processors, sub-activities of about 50 psec and below may well have to
be measured.

Ideally, then, a good measurement environment would be asked for, such as the one used for meas-
urements of the Accent system, cf. FIRA86, where special (profiling) versions of the system were
employed, and where a high resolution (1 psec) clock was available.

In the absence of such an environment, statistical techniques have to be employed, sometimes based
on fairly low resolution (1...10 msec) clocks. A widely used measurement approach consists of exe-
cuting the operation to be assessed "ina tight loop", i.e. repeating the operation over and over again.
The low frequency clock is read before and after the loop, and the duration of the operation of interest
(basically, of one loop cycle) estimated from the number of loop cycles executed and the total time
used for executing the totality of loop cycles. For any clock frequency, a "sufficiently” high cycle
number should exist to offset the low precision of the clock, for any required result precision.

The sketched approach may work well for larger, "total" operations. It fails, however, when sub-ac-
tivities of operations must be assessed: Not every sub-activity lends itself for being measured within
"its own" tight loop as the execution environment within the loop becomes increasingly atypical
with shrinking size (buffer, cache, paging effects can only be reproduced to a lesser and lesser de-
gree). One alternative for assessing sub-activities despite these difficulties consists of combining the
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tight loop measurement of the total operation with inspections of the (assembly level) code executed,
in order to arrive at a quantitative break-down of execution time. This approach was for instance (in
addition to further measurement instrumentation) applied in SCCO87. As easily understandable, a
fully consistent, quantitative break-down of operations into sub-activities is still hard to obtain.

In the DASH environment, SUN 3 workstations have been used for the first implementations. On
these workstations, a low resolution (10 msec) clock is available by standard. In addition, an adjusta-
ble frequency clock has been installed employing facilities of a presently unused RS232 port. This
timing feature has been implemented by Shin-Yuan Tzou, who is also to be acknowledged for in-
stalling the measurement experiment to be reported on in section 4. The second clock improves the
basis for measurements considerably; it must, however, be used with care as the interrupt handler for
the additional timer consumes about 100 psec of CPU time perinterrupt - so, a theoretical limit (leav-
ing no CPU time at all for actual program execution) is given by aresolution of 100 psec; in practice,
the frequency of the adjustable clock should be considerably lower - a frequency of 1000 Hz, i.e. a
resolution of 1 msec, has often be employed in our measurements (using up about 10% of the availa-
ble CPU capacity); measurement results can, of course, be adjusted to exclude the effects of the cor-
responding timing overhead.

In this report, a technique will be described which allows the measurement of small (execution) time
intervals with slow clocks. The technique is based upon a repetitive execution of some regular exe-
cution pattern (in a tight loop), does, however, allow for simultaneous measurements of sub-activi-
ties within that execution pattern (within that loop). Given enough time for an experiment, sub-activ-
ities may be very short and the clock very slow; measurements of the indicated 50 psec intervals with
a 1...10 msec resolution clock typically have fairly reasonable execution times of a few minutes. The
necessary number of loop cycles can be determined before the experiment, based on the approximate
duration of the shortest sub-activity to be measured and upon the width of the confidence interval re-
quested, at some selected confidence level.
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2. Statistical Issues

Assume that we are interested in the duration, t(a), of a particular activity, a, and that we want t(a) to
be measured. Also assume that t(a) is not constant but may vary due to certain environment influenc-
es, which assumption can be acknowledged by capturing the activity duration by a corresponding
random variable, T(a). In the present context, "a" will often denote the execution of some particular
piece of kernel code, such that we might be lead to argue t(a) were in fact constant. However, as
masking and unmasking of interrupts at various levels constitute a mechanism inherently used by
kernel code itself, environment influences (such as clock interrupts) cannot be strictly safeguarded
against without impairing kernel dynamics, and thereby potentially invalidating any measurements.
Moreover, if "a" also includes sub-activities on different, asynchronously operating hardware com-
ponents (such asdifferent CPUs and/or hosts, transmission media, etc. ), acknowledging the variabil-
ity of t(a) is obviously mandatory. Thus, measurement of t(a) will involve the collection of samples
of t(a) and statistical estimation of distribution properties of T(a), from these sémples. Although t(a)
will not be constant, it may in the present context be justified to assume that its variation is not large,
i.e., that T(a) exhibits a relatively small variance.

The standard set-up for corresponding experiments will then consist of
* embedding the activity, a, in a looping execution pattern;
* collecting the durations, tq(a), ty(a),..., ty(a), of the repetitively arising a-executions;

* statistically analysing the collected sample, ( t;(a); i=1,2,...,n).

With the Tj(a), i=1,2,...,n, considered identically distributed as some common random variable,

T(a), with expected value, ET(a), we will for instance use the usual estimator, MT(a), for ET(a)
1 Tl
(1a) MT(@ =3 Ti(a)
=l

which is unbiased
(1b) EMT(a)=ET(a)
and renders a sample estimate, mT(a), for ET(a) as
1 n
(1e) mT@ == )
=
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Other characteristics of the distribution of T(a) may obviously of interest, too.

Difficulties arise when the individual t;'s cannot be measured with reasonable accuracy, such as in

the setting considered, where t;'s may range in the 50 psec proximity whereas available discrete time

clocks exhibit a resolution in the 1 ... 10 msec range. Fig. 2 depicts this situation.

(i-1)th repetition i-th repetition (i+1)th repetition
1 ] I 1 I I
, < - -1(a) - - »} - -t@) - - - -t)-- P
execution process, .. . .a A— " o b
repetition of a-activities : .
b(a) e(a)
@) 1 e
clock process, + + + : * : * +
regularly spaced =] R W -~ | |
"clock ticks" —>b'(a) € = ¢'(a) *
] ]
- U@ < -
ﬁ. —dc@

Figure2: Execution and clock processes and their relationship

Following notation is used:

3) t;(a) (continuous time) duration of i'th repetition of a
b;(a) (continuous time) begin of i'th repetition of a
ej(a) (continuous time) end of i'th repetition of a

b;*(a) (discrete time) begin of i'th repetition of a,
i.e. the clock time closest to, and prior to b;(a)
e;*(a) (discrete time) end of i'th repetition of a,
i.e. the clock time closest to, and prior to e;(a)

bj'(a) timing deviation at begin of i'th repetition of a, where bi*(a) + b;'(a) = bj(a)
¢/()  timing deviation at end of i'th repetition of a, where ¢;"(a) + ¢;/(a) = e;(a)
ci(a) number of clock ticks during i'th repetition of a, rendering the discrete time
duration of this repetition according to
ti*(a) =d-¢(a) = ei*(a) - bi*(a) (with a clock tick interval, d)

Please note that ¢;(a)=0, i.e. bi*(a)=ei*(a) is possible (and will in fact often occur) and also that,
across the a-repetitions, ci*=bi*=ci_1*=bi_1*= ... is not unlikely to happen for small t(a)'s.
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Our interest is in some sample of the t;'s where
() = ¢;(a) - bj(a) 1=1,.2,..n
With the T;'s (and, Iikgwise, all otherrecurring time intervals) considered identically distributed, this

relationship translates into its stochastic version
T(a) =E(a) - B(a)
from which we obtain with (3)
T(2) =E"(a) + E@) - (B"(@)+B'@))
=T"(a) + E'(a) - B'()
(4a) =d-C(a) +E') - B'(a)

Now please convince yourself that (although being mutually dependent) E'and B are identically dis-
tributed due to the assumed asynchronism of the clock and execution processes; in fact, both E' and
B' arg continuously uniformly distributed over (0,d). Hence, takin g expectations on (4a) yields
(4b) ET(a) =d-EC(a)
and the unbiased estimator, MC(a), for the expected number of clock ticks per a-activity

1 n
(5)  MC@ =<3 Ci(@

1

can be utilized to obtain, based on (1,4), an unbiased estimator MT(a), for ET(a)

@ M@=SYce
1

with the sample estimate, mT(a), based on a c;-sample, given as

@) mT@=3Yce
1

Equ. (6) does not come as a surprise. A corresponding, more intuitive derivation could argue as fol-
lows: A total measurementinterval, I, spanning c(I) clock ticks, has a duration of d-c(I). If, in this in-
terval I, n a-activities are observed, with an assumed average duration of mT(a), then the portion
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n - mT(a)
d - c(I)

of Iwill be "covered" by a-activities. Assuming a random distribution of a-activities across I, these
activities should together collect the same portion of the total number of ticks "hitting" them, i.e.

q&Mmy=qD-%E%%?
=% - mT(a)

which coincides with (6b).

Compared with this intuitive derivation, equ.(6) provides a safer basis for assessing the sampling
properties of MT(a); we shall in the following drop the explicitreference to activity, a, unless ambig-
uities arise. With respect to the sampling properties of MT we have:
(7a) as a repetition of the unbiasedness statement:
EMT =ET
(7b) using the usual limit theorem:
With n sufficiently large (n will in fact need to be fairly large)
MT normally distributed
(7c) as a warning factor:

With MT based upon the Cj's, and with the Cj's exhibiting considerable variance (think

of ET small and d large), MT might possess a dangerously high variance. In fact, as

well-known: If the Cj's could be considered mutually independent, an assumed variance,

VC, of C would result in a variance, VMC, for MC corresponding to
VMC =VC/n
and hence, cf. (6), in a variance, VMT, for MT corresponding to
VMT =d2-VC/n
We shall take these relationships for granted and return only later to the independence
question.

What variance should we expect MC (and accordingly MT) to exhibit? Assume T had (as indicated
before) in fact a relatively small variance, which we consider expressed through
(8) For
k'd <ET < (k+1)d k integer-valued
the probabilities of an interval T being hit by less than k or more than k+1 clock ticks
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disappear (can be neglected), i.e.
P[ <k clock ticks in T] = P[ > (k+1) clock ticks in T] =0

From (8) we obtain EC2, the second moment of C
(9a)  EC2 =P[k hits]-k2 + P[k+1 hits]-(k+1)2

According to (8)
Plk hits] + P[k+1 hits] =1
and, of course,
EC = P[k hits]-k + P[k+1 hits]-(k+1)
From the latter two equations
Pk hits]=k + 1-EC
Plk+1 hits] =EC -k
easily derives; with (9a) we obtain the sought-for second moment of C

(9b)  EC2 = (k+1-EC) - k2 + (EC-k) - (k+1)2
= (EC-k) - (2k+1) + k2

and the variance, VC, of C

(%) VC=EC2-E2C
= (EC-k) - (EC-k)2

Now from (7¢c)
VMT =d2-VC/n
=d2: { (EC-K) - ECk)2 }/n
with (4b)

(10a) VMT=d2 ( (ET/d-k) - (ET/d-k)2 }/n

Due to assumption (8), the term ET/d -k varies between O and 1, the bracketed {...} expression taking
a maximum at ET/d-k = 1/2, with a value 1/4, such that we arrive at the tight bound

(10b) VMT <d2/(4n)
7/1/88
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(10b) is independent of ET, which is not surprising as assumption (8) prescribes exactly that; a sim-
pler derivation of (10b) could start directly from (8), realizing that under this assumption the maxi-
mum variance of T is attained when 50% of the measurements indicate a duration of k-d, the remain-
ing ones of (k+1)-d, yielding the value d2/4 for the variance of T. (8) is not a particularly fair restric-
tion for the variance of T as the implied relative variation, as expressed by the corresponding coeffi-
cient of variation, becomes more stringent with larger ET. For relatively small ET, however, (8)
seems justifiable and both (10a) and (10b) useful for assessing the variance of MT as obtained from
(6); in fact, the really interesting case is for ET considerably smaller than d.

(6) covers, as a borderline case, the situation of a contiguous sequence of a-activities (cf. Fig.2). (6b)
is then identical to the simple measurement approach of executing some a-activity "in a tight loop",
and of determining the duration of "a" (in fact, that of one loop cycle time) directly from clock read-
ings just before and after the total loop (the difference between those clock readings obviously
agrees with the total number of clock ticks during the loop). The assessment of the result's precision,
however, differs for the two interpretations. For the simple measurement approach, it would be
argued that a clock resolution, d, renders a total c-sum precise up to +/- 1, and the mT-value corre-
spondingly precise up to +/- {d/n}. The latteris only justified if constant t(a)'s can be absolutely guar-
anteed. For a statistics based assessment of VMT for that case, equ's (10a,b) could in principle be ap-
plied. It is, however, to be expected that the confidence intervals obtained would turn out rather
large, i.e. very pessimistic, as the special situation of the contiguity of the measured intervals (an ad-
ditional information) is not reflected in the derivation of (10a). We have for this case (cf. fig. 2)

>T;=dYC; +E; - By
i i

Continued use of the estimator (6a) gives

MT = —- ZCI
i
= — (D) T;-E;, +B}")
i

which is still unbiased (E, and B identically distributed):
EMT=(1/n) 'n-ET=ET

7/1/88
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The variance of MT is provided by (T's, E;', B{' considered independent):
(10c) VMT=(1/n®) (VT + VE'+ VB{')

with the U(0,d) distributicn of both E,;' and B{'

= VT/n + (d/n)%/6
<( S_DT/sqrt(n) + d/(6n) }2

and the standard deviation of MT correspondingly

1 a2
(10d) S_DMT = —-VT 4+—
n 2

6:n

:S_DT d

"(H+E

The basic variability of MT, hence, stems from the variability of the T's; the correction term d/(6n)
for which the clock resolution is responsible decreases faster, namely (for the standard deviation)
linearly with n. Ana priori forecast of VMT (withoutinvolving VT), like (10a,b) for the non-contig-
uous case, would require additional assumptions about the variability of T. As a comparison of the
variability interpretation of the simple measurement approach (mT precise to =/- {d/n}) with the ex-
pressions derived here: Arguing from (10d), a 99%-confidence interval of MT would be given
as
mT +/- { 2.58 - sqrt( VT/n + (d/n)2/6 ) }

if we stick with the normality assumption for MT (which is questionable, as MT is given as the sum
ofatermwhich is approaching a normal distribution and two uniformly distributed terms; as an alter-
native to assuming normality, the more conservative Chebychev Inequality would have to be used).
For this interval to have a width of {2:d/n) it is required that

2.58 - sqrt{ VT/n+ (d/n)2/6 } < d/n
ie. VT/n < (d/n)2/2.58 - (d/n)%/6
VT < (d%/n):0.02209

which obviously does not automatically hold for all possible VT-values.

7/1/88
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We mustreturn to the independence question, pushed aside whendiscussing (7¢). If independence of
the C's is not assumed, the variance of MC is, as well-known:

(1)  VMC =E[ (MC-EMC)*]

i (% > Ci- EMC)?]

B[~ - { T (CEQ+ 3T CEQ): (C;EQ) )
M i i

=2 VC+- 3'Y ENCECHCEQ) ]
b
The covariance terms can be >0 or <0 and will disappear for independent C's, then rendering the
VMC-expression of (7c). Without further assumptions, all three possibilities may become effective:
Examples can be easily drawn up with a deterministic setting of the a-activities relative to the clock
loop start | 4m loop end

n repetitions

Figure 12: Several activities of a sequential execution pattern observed in one loop

process, in which case the execution and clock processes are involved in a repetitive pattern; the sum
of the covariance terms may then turn out smaller or larger than 0 or may disappear depending on the
sample size, n. Experience with using (10) has shown that point estimates for VMT, as obtained in
actual experiments, turn out slightly smaller than predicted by (10), such that (10) may be regarded as
somewhat pessimistic (and therefore: safe) variance predictors. A numerical example of these ob-
servations is provided in sect. 4.
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3. Practical considerations

For purposes of measuring the execution time of some activity, "a", this activity will be included ina
looping execution pattern. At the beginning and at the end of "a" an available clock will be read, the
difference between these two clock readings determined and the consecutively obtained differences
accumulated. The clock readings and, optionally, the updating of the cumulation counter have to be
installed in the software to be measured, at the appropriate points in code. Upon leaving the loop, the
total number of clock ticks is known that occurred while a-instances were active. The approach is ad-
vantageous in that

* it provides the possibility for executing "a" in a realistic execution environment,

* several different activities, a1,33,...,ap, all included in the loop, can be assessed in one experiment,

for which purpose cumulative clock tick counts must be collected for each activity; cf. fig. 12.

It is mandatory to assess two experiment parameters before actual experimentation, namely

* the clock interval, d, of the clock used; this may be a fixed value, or (for an adjustable clock)
a genuine experiment parameter,;

* the number of loop cycles, n.

The values of d and n will, together with the expected durations of the a;, determine the precision of

the measurements, as expressed by equ. (10).

The normality of every estimator MT(a;) allows a quantification of its confidence intervals, once the
variance of MT is known. r%-confidence intervals have a total width of wrS_DMT (again: S_DMT

denotes the standard deviation of MT) with the pairs (r,wp) obtainable from corresponding tables. A

required precision required number of cycles, n,
ford/ ET( amin) =
(r,p) Wr 20 40 200
(90,0.1) 3.30 20700 42500 216700
(95,0.05) 3.94 29500 60500 308900
(99,0.01) 5.16 50600 103800 529800

Table 15: Minimal sample size (number of loop cycles)
for different precision requirement (r,p)
and different relations d/ET (clock resolution / activity duration)

1/1/88
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few customarily applied pairs:
r 9% 95 99
w; 330 394 5.16

The usual requirement will consist of demanding an r%-confidence interval of a total width of no
more than (100-p)% of the mean value of a, i.c.

(13) wr' S_DMT(a) < p-ET

With (10a):
(wp-d)? - ( BT/d-K) - (ET/d-k)2 ) /n < p2 - E2T
and finally

(142)  n > (wy/p)?- (1-kd/ET) - {(1+k)-d/ET - 1)
The shortest activity measured, ap;,, is likely to take an expected duration smaller than the clock

resolution, i.e,.
ET(ap,;,) <d

which results in a marginal form of (14a)
(14b)  n 2 (wp/p)? - (d/ ET(amy,) - 1)

We may want to see some actual numbers for a few interesting cases:

In table 15, the precision requirement (90,0.1) should be considered very moderate, whereas
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(99,0.01) is very demanding; the values for r and p can, of course, be selected independently of each
other. d/ET=20 corresponds, e.g., to a clock resolution of 1 msec and a measured time interval of 50
psec, d/ET=200 corresponds to the same time interval measured with a 10 msec resolution
clock.

At the other extreme, regard the longest activity measured, a,,y, which is very likely the full loop
cycle time. To arrive at an impression of the time needed for an experiment, consider the cases that
ET(apax) =50 ET(ap;,) and ET(a,,) = 100" ET(ayy,;,). With ET(ap,;,) = 50 psec, this would

correspond to loop cycle times of 2.5 and 5 msec. The total experiments will then require the follow-
ing execution times:

*  low precision: (r,p) =(90,0.1)
reasonable clock resolution: d =1 msec

ET(apn) = 50 psec, ET( ay,,,) =2.5 msec

experiment duration: 52 sec
*  reasonable precision: (r,p) = (95,0.05)
reasonable clock resolution: d=1 msec

ET(apjp) = 50 psec, ET( ap,,,) = 2.5 msec (5 msec)

experiment duration: 74 sec (145 sec)
*  high precision: (r,p) =(99,0.01)
low clock resolution: d =10 msec
ET(apin) = 50 psec, ET( aj,,) =5 msec
experiment duration: 2650 sec

Although the extreme cases are obviously extreme in experiment duration too, they are not altogeth-
er infeasible; moderate cases, on the other hand, have very reasonable total experiment times.

Yet some additional illustrative numbers: With the necessary number of loop cycles determined by
the presision requirements for minimum duration activities, the longer activities will automatically
end up with higher precisions. Assume a reasonable precision of (r,p) = (95,0.05) required for

ET(amin)- ForET(ap,,,)/ ET(amy,) =50 and d/ ET(a,;,,) =20 we obtain from (14a) and table 15 the

7/1/88
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corresponding
wp < sqrt(184000) = 430

ie., for p=0.05a w,<21.5 and consequently r > 99
for p=0.01 a w;<4.3 and consequently 95 <r <99

as higher confidence levels for MT( a,,,,).

Concluding this section, I should like to point out that publications on measurements of kernel code
(the area of central interest here) do not always pay sufficient attention to the statistical interpretation
of experiment results. Not always are samples of the size reported in table 15 considered necessary,
and not always are experimenters aware of the consequently restricted statistical precision of their

results.

Let me quote from one particular example: Durations of executions of certain parts of kernel code
were measured with a clock resolution of (d=) 10 msec. The simple measurement approach was used
of running every activity measured”in a tight loop”, i.e. loop cycle times were to be assessed. The
loop was ("typically"?) executed (n=) 1000 times. The author uses the obvious formula (6b) for esti-
mating the mean cycle times of the various loops; with respect to precision, total experiment dura-
tions are reported precise up to +/- 10 msec and individual loop cycle times precise up to +/- 10 psec.
The latter, as we observed, can only be accepted if loop cycle times can be guaranteed absolute con-
stancy. If not, as is very likely, the estimated means have a variance as given by equ. (10d). A 99%-
confidence interval of +/- {10usec}is therefore only correct if a T-variance smaller than
0.02209-d2/n can be guaranteed, i.e. a standard deviation
S_DT<0.0479 msec
which may or may not be the case.

7/1/88
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4. First Applications

The proposed measurement technique was first applied for quantifying the time needed in passing
messages via the DASH kernel. More precisely: Two user processes were setup passing a minimum
size ("null") message repeatedly back and forth. The two processes resided in separate user spaces,
on a single host (a SUN 3-50). The processes consisted of executing the following two programs
(specified here without any reference to actual syntax):

Program / Process # 1: Program / Process # 2:
DO n TIMES DO >n TIMES
send; receive; receive; send;
OD; OD
display results

The applied message-passing operations are implemented in DASH such that they trap into the ker-
nel and return to user space upon completion. The receive operation will potentially block until a cor-
responding message is available. The above processes are (after an initial round which is not includ-
ed in the above program specifications) engaged in a synchronized, repetitive pattern as depicted in
fig. 16. Four measurement points were implanted in the DASH kernel code: One just after trapping
into the kernel, one just before returning to user space, one just after recognizing the necessity of a
context switch and one just before completing a context switch. These measurement points appear
(in different roles) as points 1 through 12 in fig. 16.
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Measurement points 1,3,7,9:
Trapping into the kernel

Measurement points 2,6,8,12:
Returning to user space

Measurement points 4,10:
Starting a context switch

Measurement points 5,11:
Completing a context switch

Depicted time intervals are only roughly pro-
portional to measured durations; indicated
times of actual switching within context
switch activity arbitrarily selected.

Figure 16: Timing diagram for the synchronized behaviour pattern of processes #1 and #2

All occurring time intervals between time-adjacent measurement points were to be assessed, i.e.
times (1,2), (2,3), ..., (11,12), (12,1); additionally, as a minimal consistency check, the total loop cy-

cle time (1,1).
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Theinitial timing guess was for aminimum of these intervals at ET(a ;)= 100 psec. With the inten-

tion of obtaining noticeable result variations across repetitions of the sketched scheme, and consult-
ing table 15, the adjustable clock was set to d = 1 msec and the number of loop cycles to n = 10000,
well below the 20700 required for a (90,0.1)-precision. The whole scheme was executed 10 times
(i.e. 10 experiments with 10000 loop cycles each were conducted).

Table 17a supplies the resulting clock tick counts, c(i,j), for all (i,j) and for all 10 experiment repeti-
tions. Also supplied are the sums of clock ticks over all 10 experiments for all (i,j), which are taken as
an equivalent of a single experiment with a loop cycle number of 100000 (moving us well above the
extreme (99,0.01)-precision - see table 15). Table 17b supplies point estimates for the ET(,j), on the
basis of the high precision column of table 17a, following equ.(6b). These times should not be taken
as an indication of effective DASH performance: The experiments were conducted less than one
week after the measured operations became operational; another week later, the round trip (i.e. cy-
cle) time was measured at less than 50% of that reported in table 17, due toinitial tuning work. Even-
tual DASH performance figures will be supplied in a separate paper. Table 17b also supplies the
standard deviations, S_DMT, of all interval means (for the original n=10000, "small", samples), ob-
tained as
S_DMT(,j) = sqrt ( VMT(,j) ) :

where VMT(i,j) is calculated from equ.(10a) with the high precision mMT(i,]) substituted for ET(i,j)
asa good approximation. Equ. (10b) supplies an upper bound of 5 pisec, forall intervals. The last col-
umn of table 17b provides point estimates for the standard deviations, s_dMT, of the low precision
means, calculated on the basis of the samples of table 17a (size: 10) following the standard formu-

Ia
21 2
Z(mM’I‘i) 'E(mei)
s_dMT = ‘ 5—

The tables verify equ's (10a,10b) in the sense that these equations indeed provide safe bounds for the
variability of the measurement results, in the conducted experiment.
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d= 1000 n= 10000
repetition # 1 2 4 5 7 8 9 10| sums
measured: |[# of clock ticks
c(1,1) 56913 56855 56856 56853 56854 56854 56854 56854 56853 56856 568602
c(1,2) 11931 11949 11931 11899 11912 11906 11940 11902 11963 11935 119268
c(2,3) 820 806 829 849 821 882 832 811 8288
c(3,4) 1858 1846 1847 1843 1845 1823 1816 1832 1846 18438
c(4,5) 11995 12023 12033 12013 11953 11981 12028 12014 11972 12029 120041
c(5,6) 894 872 864 909 852 832 888 847 8688
c(6,7) 1425 1403 1404 1455 1436 1459 1488 1461 1428 14358
c(7,8) 11918 11918 11924 11875 11870 11959 11867 11882 11860 11902| 118975
c(8,9) 844 867 905 892 892 865 884 898 8750
c(9,10) 1819 1823 1801 1757 1806 1806 1775 1826 1774 17993
c(10,11) 9629 9585 9597 9634 9606 9606 9636 9587 9628 96112
c(11,12) 855 8359 843 835 865 859 852 839 8483
c(12,1) 2025 2904 2940 2936 2941 2895 2903 2896 2919 29208
Table 17a: Clock tick measurement results for various activities
high precision low precision low precision
mMT(i,j) S_DMT(,j) s_dMT(@,j)

Usec usec psec
(1,1) 5686 4.64 1.86
(1,2) 1193 3.94 2.14
2,3) 83 2.76 2.22
(3.4 184 3.88 1.83
4,5) 1200 4.00 2.75
(5,6) 87 2.82 2.33
6,7 144 3.51 2.96
(7,8) 1190 3.92 3.19
(8,9) 88 2.83 241
(9,10) 180 3.84 2.31
(10,11) 961 1.93 1.92
(11,12) 85 2.79 1.15
(12,1) 292 4.55 2.03

Table 17b: High precision point estimates for mean interval durations,

low precision calculated standard deviations of means,
low precision estimatated standard deviations of means
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5. Conclusion
A measurement technique has been described that allows the estimation of means of operation dura-
tions and of means of operation-embedded sub-activities even though an available discrete-time
clock might exhibit an inter-tick interval larger than (possibly much larger than) the time intervals to
be measured. Our first experience with using the technique has been sketched and has shown to be
fairly positive.
There is certainly room for further work that would improve the technique:
* Comparisons of calculated and estimated variances / standard deviations (see table 17)
should be conducted on larger samples (in the sense of a larger number
of experiment repetitions) in order
to hopefully further confirm the usability of the variance predictors, equ's (10a,b).
*¥ . The question of independence/dependence of the c-samples, cf. equ's (7¢,11), should be
studied more thoroughly in order to obtain

s either: the conditions under which the c-sample is indepen-
dent or at least its components '

pairwise non-correlated,
- or: a provable expression for the covariance term of equ. (11), ora bound for it, to be used
as
an adjustment term in equ's (10a,b).
* For the special case of a contiguous series of intervals to be measured (the loop cycle du-
ration case), both intuition and experience to-date seem to indicate
that the variance predictor (10a) is too

large and that a smaller variance could possibly be determined. This suggestion should be
studied further and would, if correct, result in the possibility of con-
ducting smaller experiments (i.e., with

smaller "n"), if only the loop cycle time (and not any embedded time intervals) are of in-
terest.
Asin all experiments so-far the variance predictors (10a,b) have turned out slightly pessimistic (i.e.:
safe!), the technique can be supplied with sufficient confidence.
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