Static Allocation of Periodic Tasks
with Precedence Constraints in
Distributed Real-Time Systems

Kang G. Shin and Dar-Tzen Peng!
TR-88-005

October 21, 1988

I Authors are with the International Computer Science Institute, 1947 Center Street, Suite 600,
Berkeley, California 94704-1105, on leave from the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109-
2122.

o

ol

i

P

¥
-

i
il

i

3hvesd

e

!
o«

] ‘llt

F 4

ok

4
L

-
T}

R

-
-

.ﬁ!' a

i e

G

i

vl T

— '

L, ','i

e

AL 5

PR T T W A e O Sk rads I 4 AT T

.

I.l“:'l Tf.:l - 'L.l

L1

Laan -'.?,l

o

-

.ﬂ;..-:

=

=

STATIC ALLOCATION OF PERIODIC TASKS WITH
PRECEDENCE CONSTRAINTS IN DISTRIBUTED REAL-TIME SYSTEMS

Dar-Tzen Peng and Kang G. Shin

ABSTRACT

Using two branch-and-bound (B&B) algorithms, we propose an optimal solution to the
problem of allocating (or assigning with the subsequent scheduling considered) periodic tasks to
a set of heterogeneous processing nodes (PNs) of a distributed real-time system. The solution is
optimal in the sense of minimizing the maximum normalized task response time, called the
system hazard, subject to precedence constraints among the tasks to be allocated.

First, the task system is described as a task graph (TG), which represents computation and
communication modules as well as the precedence constraints among them. Second, the exact
system hazard of a complete assignment is determined so that an optimal (rather than suboptimal)
assignment can be derived. This exact cost is obtained by optimally scheduling the modules
assigned to each PN with a B&B algorithm guided by the dominance relationship between
simultaneously schedulable modules. Thirdly, to reduce the amount of computation needed for
an optimal assignment, we derive a lower-bound system hazard that is obtainable with a
polynomial time algorithm. This lower-bound cost, together with the exact cost of a complete
assignment, is used to efficiently guide the search for an optimal assignment. Finally, examples
are provided to demonstrate the concept, utility and power of our approach.

Index Terms - Branch-and-bound (B&B) algorithm, computation and communication modules,
dominance properties (DPs), inter-module communication (IMC), inter-processor communication
(IPC), task invocation and release times, multi-project scheduling, lower-bound cost, system
hazard.

! Authors are with the Intemational Computer Science Instiute, 1947 Center Street, Suite 600, Berkeley, California 94704-1105,
on leave from the Real-Time Computing Laboratory, Department of Electrical Engineering and Computer Science, The University of
Michigan, Ann Arbor, Michigan 48109-2122

o o
Cor P wie I8 LG
- o 0 TN

._.‘F“

— - M —
i
Tin
= Wi A T e Vi i SLTLT LI (PR
qt = Uy SUTSTL i it g2
> B R i I i p]l'..
o : ‘
. .
a1 =l
i 11 L t wi
. ” =} 1 -
I 1
I sl "
- {2 -
Yi: T .
L w " TR TIT
fi W=t AW ’ ar’ -
LI e oo
.
"] ‘ ._“.-& ol _1'. (1] B
_Dl 4 . - N : I I
e v 1 (Al N ‘\'1 i F.i
L
. :

I'-‘ Il‘f‘ _T.‘a-.-,- <
ML LT TNTROEY T
i -
N Srtetall of ‘[x."_‘-" y g’.
1 . 4 U PYURES (Mt
» u e 4 . ol
b an w .y T e
. O 'F A
% -
M -
.:_1,
" ' 1 N
$i h; Ji] L ! V.
R i3 4 ian !
G TRE 4 4o W .
- o by

1. INTRODUCTION

The workload in a real-time system consists of periodic and aperiodic tasks. Periodic tasks
are the ‘‘base load’’ and invoked at fixed time intervals while apericdic tasks are the *‘transient

load’’, arriving randomly in response to environmental stimuli.

Since both task response times and system reliability can be improved by using mulitipie
CPUs and memories, distributed computing systems are attractive candidates for implementing
real-time systems. (The task response time is the time interval between a task invocation and its
completion.) However, one of the most important design issues is the distribution of workload
over the processing nodes (PNs) in the system to achieve the desired performance. In this paper,
we deal exclusively with the static allocation of periodic tasks to the PNs in a distributed real-
time system. The allocation is static because it remains unchanged during the entire mission
lifetime as long as PNs are fault-free. By ‘allocation’ we mean both assignment and scheduling
of tasks. Specifically, the performance of our task allocation is that of task assignment determined
by simultaneously considering the subsequent optimal scheduling of the assigned tasks. This is
in sharp contrast to conventional methods which deal with either assignment or scheduling of
tasks, but not both. Note that the performance or cost of any assignment strongly depends on the
scheduling of the assigned tasks. The allocation of aperiodic tasks is usually treated as a dynamic

load sharing problem and beyond the scope of this paper.

Three features that distinguish our task assignment” problem from others are:

F1. Tasks communicate with one another to accomplish a common system goal. These
communications impose precedence constraints during the course of concurrent execution

of communicating tasks ([PeS87]).

F2. The tasks to be assigned are executed periodically at fixed time intervals during the mission

lifetime,

Since the performance of our task allocation is determined by scheduling the tasks assigned, the terms ““allocation’ and **as-
signment’"’ are used interchangeably for the rest of the paper.

1 October 21, 1988

F3. Tasks are usually time-critical, meaning that each task execution is associated with a hard
~deadline. If the execution of a task is not completed before its deadline, catastrophic
outcomes might ensue, e.g., a robot may collide with another robot or even with an

operator.

F1 and F2 describe the structure of the task system, while F3 can be used to specify the
criterion function for the task allocation problem. Because of F2, only the task invocations in a
planning cycle (to be defined in Section 2) L need to be considered for the allocation of tasks
since the behavior of task invocations within L repeats itself for the whole mission lifetime. The
criterion function to be minimized for our allocation problem is the system hazard ©, or the
maximum normalized task response time, where the maximum runs over all invocations of all
periodic tasks of the system within L, and the normalized response time of a task is the ratio of
the task response time to its invocation period. This criterion is chosen because it subsumes other
criterion functions related to avoidance of a task missing its deadline. Moreover, an allocation
with a lower © will result in a lower probability of each task missing its deadline should the task
execution time be a random variable rather than a fixed expected value. As we shall see in

Section 2, our task allocation model is quite different from others in the following two aspects:

e Our model has a finer granularity in describing the precedence constraints between tasks.
This captures the fact that in many cases tasks are communicating with each other during

the course of their execution.

e All invocations of tasks in a planning cycle, rather than only one execution of each task, are

considered.

Task assignment and scheduling problems are studied extensively in both fields of
Operations Research and Computer Science [Bak74, Fre82, WoS74, CHLZ0]. For a set of
independent periodic tasks, Dhall and Liu [DhL78] and their colleagues developed various

assignment algorithms based on an optimal scheduling algorithm called rate monotonic priority

14

October 21, 1988

assignment [LiL73] or intelligent fixed priority algorithm [Ser7Z]. However, if precedence
constraints exist among tasks like our case, a general approach to nonperiodic task assignment
problems must be taken, and the set of ‘tasks’ to be assigned includes all task invocations within
a planning cycle. (Of course, all invocations of the same task must be assigned to the same PN.)
Depending on the assumptions and criterion functions used, nonperiodic task assignment
problems are formulated in different ways. However, most prominent methods for task
assignment in distributed systems are concemed with minimizing the sum of two scalar
quantities: task processing costs on all assigned processors and interprocessor Comumunications
(TPC) costs [CHLS0, Sto77, Efe82, DaF84, ShT85, ChL87, Vir84, PrK84]. As was reviewed in
[CHLS80], these methods are based on graph theoretic (Sto77, Sto78, StB78, ChA83, DaFg4d],
integer programming [Chu69, CHL80, MLT82], or heuristic (Gon77, EIH80, Efe82, ChA8&3,
Kan84, ShT85, ChL87, Vir84, PrK84] solutions. Real-time constraints are difficult to impose
when the graph méoretic approach is used. Integer programming methods, on the other hand,
allow for constraints that all of the tasks assigned to a processor must be completed within a
given ume. However, these constraints do not account for task queueing and precedence

constraints between tasks.

Few results have been reported on the task assignment with precedence constraints, because
most of such problems are NP-hard [LeK78, Cof76, GaJ79, LLK82]. This fact calls for the
development of enumerative optimization methods or approximate algorithms using heuristics
(KoS76]. For example, in ([KaN84] an enumeration tree of task scheduling is generated and
searched using a heuristic algorithm called the CP/MISF (Critical Path/Most Immediate
Successors First) and an optimal/approximate algorithm called the DF/THS (Depth-First/Implicit
Heuristic Search) to obtain an approximate minimum schedule length (i.e., makespan) for a set of
tasks. Chu and Lan [ChL87] chose to minimize the maximum processor workload for the
assignment of tasks in a distributed real-time system. Workload was defined as the sum of [PC

and accumulated execution time on each processor. A wail-lime-ratio between (wo assignments

3 October 21, 1988

was defined in terms of task queueing delays. Precedence relations were used, in conjunction

with the wait-time-ratios, to arrive at two heuristic rules for task assignment.

To our best knowledge, there are no results reported in the literature on the task allocation
problem dealing with all of the foregoing three features of distributed real-time systems. This is
probably because the problems associated with designing and analyzing such real-time systems
are very hard. For example, even for a given assignment, it is shown in (GoS78, LRB77, LLK32]
that most job-shop scheduling problems, which are special cases of our scheduling problem after

task assignment, are already NP-hard. Thus, heuristic or enumeration algorithms must be sought.

Two branch-and-bound (B&B) algorithms are proposed to solve our task allocation
problem: one, called the B&BA algorithm, for the optimal assignment of tasks, and the other,
called the B&BS algorithm, for the optimal scheduling of assigned tasks. The exact cost of a
complete assignment determined by the B&BS algorithm is used by the B&BA algorithm to
derive an optimal assignment. For non-terminal vertices® (i.e., partial assignments) of the B&BA
algorithm, however, lower-bound (rather than exact) costs are estimated by a polynomial-time
algorithm to ease the ensuing computational difficuity. Thé B&BS algorithm uses the dominance
relationship between simultaneously schedulable modules to simplify the search for an optimal

schedule of modules assigned to each PN.

The rest of this paper is organized as follows. The description of the task system and
problem formulation are the subject of Section 2. The B&BS algorithm that determines the exact
cost for a terminal vertex of the B&BA algorithm is presented in Section 3. Secton 4 presents a
polynomial-time algorithm t0 evaluate a **good’” lower-bound cost for a non-terminal vertex of
the B&BA algorithm. This lower-bound cost is used, together with the exact cost obtained in
Section 3, to derive an optimal assignment of periodic tasks. An example is presented in Section

5 to demonstrate the power and udlity of our task allocation method. Finally, the paper

YWe use the tem “ventex'', instead of the more frequently used ““node’, to avoid confusion with PNs and the nodes of a sk

4 October 21, 1988

concludes with Section 6.

2. TASK SYSTEM DESCRIPTION AND PROBLEM FORMULATION

It is desirable to model critical real-ime systems (e.g., nuclear reactor control) in great
details such that the true nature of the system under study is accurately represented. For example,
inter-task communications depend on the assignment of the communicating tasks. Therefore, we
shall model the task system under consideraton to include modules associated with pure

computations as well as those with communications.

LetT ={T;,1<i<|T| }be the setof| T| =2 periodic tasks to be allocated among the
set of | N| =2 processing nodes (PNs), N = (N, , 1 £k <|N| }, of the system, where | A| is the
cardinality of the set A. It is assumed that any two tasks residing in different PNs can
communicate with each other by using the usual primitives SEND-RECEIVE-REPLY and
QUERY-RESPONSE. If T; e T issues a SENDto T; € T, T; remains blocked (thus establishing
a precedence relation) until a REPLY from T is received. If T; executes a RECEIVE before the
requested message amives, it also remains blocked. A task may QUERY another task for
information, which replies by executing a RESPONSE. Unlike SEND-RECEIVE-REPLY, the

task being queried does not get blocked regardless whether the QUERY has arrived or not

Each T; € T with period p; consists of one or more compurarion modules M, ’s for pure
computation, and communication modules X;; ;, Xji i, j #6, 1< j €| T|, where Xj;; and Xj; ;
are modules on the T;'s side associated with the communication from T; to T; and
communicaton from Tj- to T,, respectively. Note that if T; communicates with TJ— (by, say,
sending a message to T;) more than once during each execution, then different Xj; ; and X ;
need to be introduced for each such communication. Communication modules represent routines

for assembling packets and packetizing messages. It is worth pointing out that, while M, 's, X;; ;

and X; ; are to be executed by N, to which T; is assigned, they do not all have to be completed

graph (to be described).

5 October 21, 1988

in order to complete T;. For example, the completion of T; does not require the completion of

X;;; associated with a RESPONSE from T; to T; meaning that N, can, for some reason,

ij i
postpone the response to T; 's query until T; is completed.

Let e;, >0 be the nominal computation (measured in number of basic steps) of M, and
qi 20 be the processing power (measured in number of basic steps per second) of Ny for T;.
Then, the execution time (measured in seconds) of M, on N is described as ef =e;,/qi. The
quantity e;, is just a measure of the computation needed for M;, without considering the
processing ability of a PN that executes it, while q,ﬁ is the description of such an ability of N, for
T;. Unlike ey, 's, the nominal computation y;; , 20 of X;;,, ¢ =1.j, depends on the assignment
of T; and T;. If the two communicating tasks T; and T; are assigned to the same PN, then ¥;; , is
small since such communication can be achieved via accessing shared memory. Otherwise, a
larger y;; , will be needed for packetizing (assembling) a message (packets) from T; to 7; into
packets. (a message) for transmission (processing). Let ;;,(0) and y;; (1), e =i, /, denote,
respectively, the value of y;;, when T; and T; are, and are not, assigned to the same PN.
Similarly to M,'s, we can obtain the executon time of Xj; and X;; on N, as
(i) = (Vae and xf(s) =% (s ¥gqs, s=0,1. Unlike ey, ¥, (fi;) may not
necessarily be the same for all invocations of T;. As mentioned earlier, even though X;; , 's are
on the T,'s side, where ¢ =i or j, their completions are not always required to complete 7,.

Also, it is worth mentioning that the division of T; into My 's, X;; ; and X; ; is essential to the

i Ji
B&BA algorithm in Section 4.

Let ;El-j > 0 be the nominal communication delay (measured in seconds per distance unit)
from T; to T; and d,, 2 0 be the communication distance (measured in distance units) from N, to
Ny, 1 €h,k €| N| . Then, the actual communication delay ,E;;‘k from T; to T;, which are assigned
to N, and Ny, respectively, is described as 3/ =;;dye. The quantity %;; is usually a function of

the ‘‘size’’ of message to be transferred, and d,, a functon of the actual distance (e.g., the

6 October 21, 1988

number of hops) between N, and ¥,. Therefore, if h =k, we may set d,, =0 to ignore ;ij
On the other hand, we may set d,, =< if there is no path between &, and N,. Following the
usual practice, dy =dy, is assumed in our problem formulation. Besides, we assume
deterministic communications in the system, i.e., for any communication from T; to T;, it is
always possible to identify which invocations of T; and T; this communication is associated with.

. Define a planning cycle L as a time period from the time when all tasks are simultaneously
invoked to that of their next simultaneous invocations. The behavior of the task system within L
repeats itself for the whole mission lifetime. Without loss of generality, we may simply choose
L =(0, 1), where [, the length of L, is the least common multiple (LCM) of { p;, T;eT }.
Consider all invocations of periodic tasks in a planning cycle L. T; is invoked [/p; times within
L; denote the v-th invocation of T; by T;, 1 <v <l/p;, with its deadline being the v+I-th
invocation time of T;. To describe the nominal computations and communication delays of all
modules within L and the precedence constraints among them, an acyclic directed task graph
(TG) with Activity On Arc (AOA) [Tah76] is used, where an arc represents a module and a node
is an event representing the completion of some module(s). Following common practice, the
nodes in TG are numbered in such a way that the number assigned to the event at the tail of an
arc is always smaller than that assigned to the event at its head, and the number assigned to an arc
is always smaller than those assigned to the arcs it precedes. The weight of an arc represents the
nominal computation or communication delay of the corresponding module in the TG. As a node
n, in TG can also represent the completion of a certain invocation Ty, we write n, =T;, should
this happen. Fig. | shows an example TG consisting of three tasks T, T'; and T3 with periods
40, 40 and 20, respectively, where ¢, X;j ., and ;Z‘-J- are also given. Within the planning cycle
(0, 40), except for T4 which is invoked twice, both T and T, are invoked only once. Therefore,
in this TG, nyg=T1, g =T2y, Ag=T5; and n,; =T5,. The various communications involved

in the TG can be explained as follows. T, packetizes (X;;;) a QUERY message to T, for

‘Only the communicarion delay is ignored, but the execution tmes of the corresponding communication modules are not.

7 October 21, 1988

information, T, assembles (X;,7) the message after it arrives, and then T, packetizes (X3 2) the
RESPONSE message which contains the queried information and sends it back to T';. After the
RESPONSE message arrives, T assembles (X, ;) the message to get the queried information.
On the other hand, T; and T, exchange messages using SEND-RECEIVE-REPLY for both
information and synchronization., Ty packetizes (X3, ;) a SEND message to T, and T ; executes
a RECEIVE and packetizes (X,32) the corresponding REPLY message. The REPLY message,
which may also contain information for T3, is used by T to unblock Ty and, thus, can only be
sent out after the original SEND message from T; has been received. As T, may proceed to
assemble (X3;7) the SEND message only after receiving it, T3 may also assemble (Xz3) the
REPLY message only after it arrives at T5. Notice that y»5 3 Will have different values for T'y; and
T4, Also, the completion of X,y 5, a RESPONSE from T to T, is required for the completion
_ of Ty, ﬁmer than T,, meaning that T, may choose to finish its own computation first before

responding to T|’s query.
Let B =T be the subset of tasks assigned to N, by an algorithm & such that

BENB3=0 ¥h#kand \ BS=T, and let C{ and r;, be the completion and invocation
MeN

time instants of T}, , respectively. Define the normalized task response time C_',f of T;, as follows.

5
a G —Ti

&2
v pi

(1

Then, the node hazard of Ny, 8¢, and the system hazard, 65, are defined as:

g max{ max C_',f} and
T.eBd 1 svsiip
2)
€° = max 0o,

MeN

In other words, €° is the maximum C, over all invocations of all tasks in T which are distributed

8 October 21, 1988

over the PNs of the system. We want to find an optimal task assignment algorithm §" that

achieves €% = mﬁin ©%. Since 5" minimizes the maximum C_l-f. it allows for better system load

sharing (rather than balancing) and a smaller probability of each task missing its deadline. Notice
that C;° (thus 62 and ©%) depends not only on 3, but also on how the tasks assigned under are
actually scheduled on each PN. An optimal preemptive (resume) scheduling algorithm " needs

to be derived such that the ©° obtained is the smallest value of E,f for each o.

For example, suppose the TG in Fig. 1 is to be assigned to two PNs, N and ¥,, with
g =¢5=1,i=1,2,3, and d|; =d,; =1. Then, since the two PNs are identical, only four
different assignment algorithms need to be considered: y, §;, 8, and &;, where &, assigns all
three tasks 1o a single PN, while §; assigns T; to a PN and the other two tasks to the other PN.
By using an optimal scheduling algorithm {" under each of these assignments, we obtain

©% =max (8%, 8% } as follows.

5 31 31 5 39 29] 39
= —, = —, ' = —_— ===
“m{ 40 O} 40 m‘“{ 30" 40[T 40
o 4 42| 42 5 0 32| 3
e] — — = — o T e akt— Nt
m”{ 40" 40} 0 P m‘“{ 20° 40| 40

Therefore, 8" =8, for ©% is the smallest among these four system hazards. This counter-
intuitive result comes from the fact that communication modules and delays are the predominant
part of the example task system. Thus, the algorithm which assigns all tasks to a single PN is
superior to the others because it minimizes the actual communication delays. The TG with
execution times and actual communication delays under 85 is given in Fig. 2, and the associated

optmal schedule in Fig. 3.

Our task allocation problem is general enough to capture the three aforementioned features
of disaibuted real-time systems. For example, X;; , may be defined for any (T; , T;) pair and the
precedence constraints imposed by X;;, can always be embedded into the TG. Moreover, the

ij.e

9 October 21, 1988

criterion function, 3, is directly related to F3.
3. EXACT COST OF A TERMINAL VERTEX IN B&BA ALGORITHM

The exact cost of a terminal vertex in the B&BA algorithm corresponds to the system
hazard © (the superscript 3 is dropped for notational simplicity) of a complete task assignment.
The lower-bound cost é(:c) of a non-terminal vertex x, however, represents the lower-bound
estimate of 8" (x), the minimal 8 obtainable among those complete assignments each of which
has x as its partial assignment. Therefore, ©(x) is usually the sum of two costs: a) the actual path
cost from the root to x (i.e., the part of © contributed only by the tasks already assigned within
x), and b) a lower-bound estimate of the minimum path cost from x to a terminal vertex (i.e., a
lower-bound estimate of the part of © to be contributed by those tasks not yet assigned within x).
The exact cost of a complete assignment is essential for the B&BA algorithm (0 derive an
‘optimal assignment because it offers an upper-bound cost against which other lower-bound or
exact costs may compare to decide whether or not the corresponding vertex should be pruned

during the search process [KoS76].

Given a complete assignment, the problem of finding an optimal schedule that achieves © is
a multi-project scheduling problem. Unfortunately, the multi-project scheduling problem is NP-
hard because it contains a job-shop scheduling problem, an NP-hard problem [GoS78, LRB77],
as a special cases [BEN82]. To obtain ©, an optimal multi-project scheduling algorithm, called
Algorithm B [PeS88], will be used. In other words, the aforementioned B&BS algorithm is the
algorithm resulting from the application of Algorithm B to our scheduling problem for given
complete assignments. For completeness, we will briefly describe Algorithm B and its use for our
scheduling problem in the remainder of this section. (A complete account of Algorithm B is
given in [PeS88].) Since Algorithm B will be described in the context of multi-project
scheduling, it is informative to make the correspondence of terms between this algorithm and the

scheduling problem for a given assignment (Table 1).

10 October 211, 1988

Table 1.

The Correspondence of Terms

Muiti-Project Scheduling — Complete-Assignment Scheduling

project J; task invocation T,
machine M, processing node (PN) Ny
multi-project graph (MPG) task graph (TG)
operation computation or communication module
time delay communication delay

release ime r; of J;

completon ume C; of J;
normalization factor w; of J;
normalized project flowtime Ej of J;

machine hazard 6

invocation time r;, of T},
completion time C;, of T;
invocation period p; of T;

nomalized task response time C;, of T,
node hazard 6

R A IR I U

system hazard © system hazard ©

** The term ‘job’ is reserved for Algorithm A of [BLL83] (see Section 3.2)

Algorithm B deals Iwir.h the optimal preemptive (resume) multi-project scheduling problems
subject to (i) precedence constraints of a general form as in any AOA network, and (ii) time
delays present between operations. Each project J; is to.be executed by a pre-specified machine,
and each machine M, can execute an operation of a project at any one time. We want to derive a

schedule that minimizes the system hazard, ©, the maximum (over all projects) of the normalized

; . ~ A : . i :
project flowtime C; =(C; —r;) / w;, where C; is the completion tme, r; the release time and w;

the normalizatdon factor oij ;

Using an AQA type of network, the multi-project is modeled as an acyclic directed graph,
called a multi-project graph (MPG), in which an arc represents an operation or 2 time delay and a
node represents an event of some activity’s completion. This MPG is used to identify, among

others, the dominance properties (DPs) which will be used to reduce the number of branches

11 October 21, 1938

generated to search for an optimal schedule.

3.1. Dominance Properties in Multi-Project Scheduling
The DPs to be identified are based on the following observations:

OB1. Preemptions which do not improve performance must be disallowed to reduce the number

of possible branches generated in the B&B algorithm.

OB2. It is undesirable to leave a machine idle when there are schedulable operations on the

machine since preemptions are allowed.

OB3. It is always advantageous to use a scheduling algorithm, if any, which can reduce the
completion time of a project without increasing others’ if a regular (performance)
measure is used. (A performance measure Z is said to be regular if the scheduling
objective is to minimize Z, and Z increases only by increasing at least one project

completion time in the schedule (Bak74].)

The DPs necessary for the multi-project scheduling are summarized below in theorem (and
corollary) form without proofs, where O, and O, are two simultaneously schedulable operations
(time delays are not subject to scheduling) on M, (see [PeS88] for their formal treatment).
Theorem 1: For any regular measure, the decision for M, as to which of 0, and O, should be

executed first is always ime-invariant.

For the purpose of eliminating unnecessary preemptons, Theorem 1 simply states that if O
should be executed before O, (or O, should preempt O.) at fg then it will never be
advantageous 1o let O, preempt O, at any future ime ¢ > ro. The other necessary DPs are based
on two 2-tuple of sets Q0) = (Q(05), 21(04)) and QO) = (0.), £2,(0.)) associated with
0, and O, respectively. Q4(0;) (Q9(0.)) is the set of nodes in MPG on M, each of which
represents an event of project completon, and is preceded by O, (0.). 21(0p) (21(0,)), on the

other hand, is the set of nodes in MPG on M, , each of which is located at the **tail’” of some time

12 October 21, 1988

delay, and preceded by O, (0,). An example showing how Qu(e) and Q,(s) are obtained for a
operation is given in Fig. 4, where four projects, J, /,, /5 and J,, are to be executed by two
machines, M, and M ,, and all operations at the LHS and RHS of time delays are to be executed
by M | and M ,, respectively.

Theorem 2: If Qy(0,) < Qy(0,) and Qy(0,) < Q4(0,), then it is advantageous for M, to

execute O, before 0, w.I.t. any regular measure at any time fo.

Theorem 2 is obvious since completing O, before O, will result in more schedulable
operations, thus making it possible to reduce the completion times of some projects without
increasing those of the others. Let the notation O, =7 0, represent that both conditions

Qp(0,) € 5(0,) and Q(0,,) < Q,(0,) hold.

The DPs w.rt. © are used to determine the reladve ‘‘superiority’” (or urgency) and
‘‘equality’” between any two projects in Q4(0,) and Q0.). Let/,, and J, be two projects to be
executed on M, with release times and normalization factors r,,, w,,, 7, and w,, respectively. J,
is said to be superior 10 J,, w.r.t ©, written as J, spe Jm, at time rg if the following inequality

holds:

(C=r)w, 2@ =rp)! Wp, Fe2tg+REUL.TL) (3)

where R,’: (Jn.J,) is the minimum time M, needs to complete both /,, and J, since . That is,
R,‘: (J .. J,) is the sum of the remaining execution times of all operations each of which is o be
executed by M, and precedes at least one of J,, and /,. On the other hand, J, is said 0 be equal
t0J, w.rt ©, wrtten as J, eqefm, ifw,=w, and r,, =r,. Thus,J, eqefm i sp®J/, and
S spe J, Fig

The nodon of superiority and equality can be easily seen in the case of a single machine
multi-project scheduling problem. If J, spe J, at any time rg, then it is advantageous to

complete J, before J,, and if J, eqe J,, then the order of completing /, and J, makes no

13 October 21, 1988

difference. Notice that Eq. (3) holds iff the following inequality holds:

WPy — W, T)
fo"'R;i(Jm,f,,)Z—M. if wy,>w,, or
Wn — W,
@
To 2Fqs i Wy =W,

where the RHS of the first inequality represents a particular time ¢ such that
(@ =rp)iw, =(t—r,)i#,,. Based on the notion of superiority between two projects, O, is said to
sub-dominate O, w.I.L. 8, written as O, =>09 0y, at tg if for every J,, in Qu(0,) there exists a
J, in Q4(0,) such that J, spe J . attg, and O, is said to be sub-similar 10 Oy, W.r.L. ©, written as
0. S8 0,, at tyif 0, =>§ 0, and 0, =>5 O, at to. Accordingly, O, is said to dominate O,
w.r.t. © at tg, written as 0, =>° 0,, if (3) 0. =>5 O, at tq, and (b) Q,(0,) 2 Q(0;), and that
0. is said to be similar t0 Op w.r.l. © at tq, written as O, S®0,, if 0, Sg Oy at tg, and
Q,(0,) = 2,(0,). The following theorem captures the relative urgency of one operation over the
other in terms of the dominance relation between them.

Theorem 3: Executing O, before O, at ty is advantageous if O, =>2 0, at 14, but it makes no
difference as to which of 0, and 0, is executed first at ¢q if O, S® 0, at 7,

Since neither =>°

nor S is transitive, the following three corollaries of Theorem 3 are
essential to the efficient implementation of the underlying B&B algorithm.

Corollary 1: Let S, (tg)= { O; ,1<j s | be a subset of schedulable operations on M, at to,
where s =| S (tg)| 2 2.

(@ Ifo; =90 i i =5° 0,9, "+, and O-_.::-e 0, at tg, then it is advantageous for M,

to execute O, before O at .

® Ifo =>9 O, in addition to the conditon in (a), then it makes no difference as 10 which
1

operation of S (¢q) is executed first at ¢q.

Corollary 2: Let §;(to) be the same as in Corollary 1. If O, $® 0,_, 0, S° 0,5, -+, and

er) 5° 0, at tq, then it makes no difference as to which operation in S5, (¢) is executed first at ¢4,

14 October 21, 19838

Within S, (tg), 0, S® 0,1, 0,.18%0,,, -+, and 0,820, at ¢y do not necessarily

imply that O, =>° 01, 05 =>° Oy mreg 02=>9 04, and O, =9 O, at 1, the converse is
not true either. For convenience, the set of schedulable operations for which execution order is
immaterial is called an immaterial set.
Corollary 3: Let I}(tg= { 0,04, ---,0, } and T¥(te)= (0}, 0%, - -, 0% } be two
distinct immaterial sets of M at tq. If there exists O, € [1}(rg) and O, e ITX(¢g) such that
executing O, before O, at rq is advantageous, then it is advantageous to execute O,* before 0;' at
BB,

Corollaries 1 and 2 are useful because they show that, even though neither =® nor §° is
ransitive, the execution orders of operatons implied by these two relations are transitive.
Moreover, since 0, =>° (S%) 0, at ¢, implies those at ¢, to, Corollary 3 simply states that it is
advantageous to execute all operations in Hf(ro) before any operation in T} (r). Corollary 3 --
which deals with the ‘‘uninterruptability’” of an immaterial set -- can be thought of as a different

version of Theorem 1, which deals with the uninterruptability of a single cperation.

The DPs described in Theorems 1-3 and Corollaries 1-3 are used to generate a subset of
active schedules which conuins at least one optimal schedule as follows. Theorems 2 and 3
suggest that it is never advantageous for M, to execute O, at fp if there exists another
schedulable operation O, such that (T1): O, =>7 0, and O, does not equal O,, and/or (T2):
0. =>° 0, and (a) 0, is not similar to O, or (b) O, and O, are not a part of either dominance
cycle described in Corollary 2 or Part (b) of Corollary 1. Moreover, T1 should be tested before
T2 because =>° implies =>° ¥ty (Note that =>% does not always imply =7, though.) The
DPs described in Theorem 1 and Corollaries 1-3 suggest that the B&B algorithm should keep

track of the operations (immaterial sets) on a stack L, (/,) for each M, that have been partally

e:;t:en:::.m:ci.5 The operation (immaterial set) on the top of L, ({;) is the one being executed by M,

By 'an immaterial set has been panially execuled', we mean that at least one of its elements has been executed and there exist

15 October 21, 1983

An operation (immaterial set) is pushed into L, (/) if the operation (the immaterial set
containing the operation) is to preempt the operation (immaterial set), if any, on the top of L,
(1). Similarly, an operation (immaterial set) is popped off L, (/;) if it is completed, and the
operation (immaterial set) W be executed next is chosen in a LIFO fashion from the stack
provided no preemptions occur. Therefore, the depth of the search tree of the B&B algorithm is
at most twice the total number of operations to be scheduled. A complete account of this

algorithm is given in [PeS88].

3.2. Lower-Bound Costs of a Non-Terminal YVertex

For a given non-terminal vertex (i.e., a partial schedule) y, we shall derive two lower-bound
costs ©,(y) with computational complexity O(| M| (P log P +log| M|)), and ©4(y) with
complexity O (| M| (P*+log| M|)), of ®' (y), where | M| is the number of machines in the
system and P the average number of uncompleted operations on each machine. Both 91@) and
©,(y) are derived by ignoring the precedence constraints between machines, and ©(y) is a
lower-bound of ©,(y). Thus, 65(y) is a beter estimate of ©° (y) than ©,(y), but requires more

computation to derive.

For a non-terminal vertex y at ¢y, let g;(y) be the actual path cost of J; from the root to y,
and /;(y) be the costof J; from y to a terminal vertex (i.¢., a complete schedule) provided that J;
is executed last on its corresponding machine, say M,. Then, g;(y) can be computed from the

partial schedule y as the normalized *‘partial’’ flowtime of J; at ¢:

C; if J; iscompleted before ¢,
&= ®)

fi—."j_)a'r w} otherwise,

where C;, rj and w; are the nommalized flowtime, release time and normalization factor of J’j.

respectively. Note that g;(y) <0 if J; is not yet released at r;. Let R (*) be the sum of the

remaining execution times of all unfinished operations at r, on M, which precede at least one

at least an element that has not yet been complered.

16 October 21, 1988

project on M. Then,

if J; is completed before ¢,

hi)= R,f (*) I w; otherwise, ©)

and g;(y) +h;(y) is the total cost of J; provided that J; is executed last. Thus, ©,(y) 2 rr;fax (

min { g;()+h @)} } is a lower-bound cost, where B, is the set of projects on M.

Jieh

@2@) is obtained by computing the actual cost (i.e., ®) for each M, by applying the
optimal scheduling algorithm, called Algorithm A, of [BLL83] on the set of unfinished
operations. For completeness, Algorithm A of complexity O (N 2y, where N is the number of jobs®
to be scheduled, is briefly described below. A set of jobs with arbitrary release tmes and

precedence constraints is to be scheduled on a single machine-so as to minimize the maximum

task completion cost.

SAL. Modify job release times, where possible, to meet the precedence constraints between the
jobs and then arrange the jobs in nondecreasing order of their modified release times to
create a set of disjoint blocks of jobs. For example, if jobs X, Y and Z are released at
t =0, 2, 15, respectively, X precedes Y which in tum precedes Z, and S units of time are
required to complete each of X and Y, then job Y's release time is modified to r =5, Z's is

kept at t = 15 and two blocks of jobs {X.Y) and {Z} will be created.

SA2. Consider a block B with block completion time ¢(8). Let 8 be the set of jobs in B which
do not precede any other jobs in B. Select a job !/ such that f,(t(B)) is the minimum
among all jobs in B', where fi(¢) is the nondecreasing cost function of job [if it is

completed at ¢. This implies that / be the last job to be completed in 8.

#As we shall see; the **job'" in Algorithm A comresponds 1o the “operation’” of our Algorithm B.

17 October 21, 1988

SA3. Create subblocks of jobs in the set B — { [} by arranging the jobs in nondecreasing order
of modified release times as in SA1l. (If ! is preempted several times before its completion,
the deletion of ! is equivalent to punching several holes in B .) The time interval(s) allotted
to [is then the difference between the interval of B and the interval(s) allotted to these

subblocks.
SA4. Foreach subblock, repeat SA2 and SA3 until time slot(s) is(are) allotted to every job.

Let 1, (y) be the mini-max normalized project flowtime resulting from the application of

Algorithm A on the set of unfinished operations on M, and 1" (y) = max M. (). Then, ()
can be obtained as ©,(y)=max { g(y). 1" () }, where g(y) = r.rbax 8;(y). As mentioned earlier,

O,(y) 2 0,(y), ¥y, for ©,(y) is a lower-bound of Oq(y).

As was shown by the computational experience in [PeS88], Algorithm B tuned out to be
quite efficient. It can be directly used, via Table 1, to derive the system hazard © of a complete
task assignment. This optimal scheduling algorithm for the complete assignment of tasks is what
we have called the B&BS algorithm. One minor difference between Algorithm B and B&BS is
that, while it is possible for M, o execute any project, N, must execute all invocations of its

assigned tasks within a planning cycle.

4. LOWER-BOUND COST OF A NON-TERMINAL VERTEX IN B&BA ALGORITHM

The B&BS algorithm presented in the last section is necessary for the B&BA algorithm to
find an optimal assignment. But, using the B&BS algorithm also for all the non-terminal vertices
(i.e., partial assignments) of the B&BA algorithm is too costly and unnecessary. This is because
the B&BA algorithm is guaranteed to find an optimum assignment as long as the cost estimate for
each non-terminal (terminal) vertex is a lower-bound (true value) of the optimal cost for this
vertex (see, e.g., [KoS76]). A looser, but inexpensive, lower-bound cost may be more attractive

than a tighter, expensive one. [n this section, we present such a lower-bound cost which is

18 October 21, 1983

obtainable in polynomial time.

The lower-bound cost €(x) of a non-terminal vertex x is a lower-bound estimate of 8" (x),
the minimum system hazard among the set of all complete assignments each with x as its partial
assignment. The non-terminal vertex x «can be represented as a subset of

((T:,N.), T;€T,N,e N}, where each pair (T;, N,) represents the assignment of T; to N,.
The following two steps are necessary to derive O(x) foreach x.

e Construct a precedence graph TG,(x), k =1,2, -+ ,| N|, from the original task graph

TG.

. Apply an optimal scheduling algorithm ¢ on a simplified version of TG, (x) to obtain the
lower-bound cost &, (x). The desired ©(x) is then chosen as the maximum of ©,(x) over

all k.

These steps are detailed in the following two subsections.

4.1. Obtaining TG, (x)

Each TG, (x) is composed of two subgraphs, TG 1(x) and TG 2,(x): TG 1(x) represents
those tasks already assigned within x and is common for all k, whereas TG 2, (x) represents the

load imposed on N, by those tasks that have not yet been assigned within x.
For each x, let B,(x) be the set of tasks already assigned 10 N, B(X)thBk(I), and

B(x)=T - B (x), the set of tasks not yet assigned within x. TG 1(x) can be obtained from TG
by the following steps.
Step 1. ¥a, set ef =ey /g if T; € B.(x), and ef =0 if T, € B(x). This represents the
computation load cn N, contributed by T; under the partial assignment x.
Step2. Casel:T; € By(x)andT; € B,(x), h #k.
Set xfi(V)=y;: (/g and i) :=x;;(1)/gk 10 represent the

communication load between T; and T; on N, if T; is assigned to N,

19 October 21, 1988

Case2: T; e B,(x) and either T; € By (x) or T; € B (x).
Set x50 =x;:0)/qi and xf;(0):=x;;0)/q; to represent the
communication load between T; and T; on Ny if T; is also assigned to Ny or not

yet assigned at all.

Case3:T; € B (x).
Set 35 () =% () =0,5 =0, 1.
Step 3. Set x5 =7 dw if T; € By(x) and T; € B, (x). Otherwise, set ¥ := 0 to represent the
case where at least one of T; and 7 is not yet assigned within x.
Step 4. Simplify and restructure the resulting task graph to obtain TG 1(x) by deleting and/or
adding dummy modules to preserve the precedence and timing constraints. (A dummy

module is a module with zero computation time or communication delay.)

The resulting TG 1(x) is the partial task s?stem colrresponding to those tasks already
assigned within x, while ignoring those tasks not yet assigned. For example, consider the TG
shown in Fig 1, where the three tasks T, T, and T are to be assigned to N, and &, with
dip=dy =1. Assume q{=¢{=¢{'=2 and qi=gl=gi=L. Letx=((T\,N)), Ty ND), e T,
is assigned to Ny, T 0 N5 and B (x) = (T4}. The resulting TG 1(x) is shown in Fig. 5 with all
related execution times and actual communication delays properly indicated, but all modules
associated with T4, an unassigned task, are ignored. While all the nodes associated with T 5 are
merged and deleted in the restructured TG, n, and n,5 cannot be merged because the earliest
time n5 can be realized is 20 (T3,'s invocation time), but n, may be realized before or after
t=20. It is interesting to see TG 1(x) in Fig. 6, where x = (T, Ny), T3, N2}, and a dummy
module between n, and n5 and another between ns and n; are added to preserve the

precedence constraints between modules of Ty and T'5 as T, is ignored.

TG 2, (x) represents the total minimum load on N, imposed by the tasks in B (x), and thus,

can be expressed as TG2,(x) = {wi(x).v=1.2,...1/p;, T; € E(x) }, where wff,(:c) represents

20 October 21, 1988

the minimum load imposed on N by T}, , the v-th invocation of T; € B (x), and ! is the length of
a planning cycle. w¥(x) is derived by considering whether T; will be assigned to ¥, or not. For
each T; € B (x), let M!L,-f, (x) (ATL:, (x)) denote the Minimum Imposed Load on N, by T, when
T. is (is not) to be assigned to N,. MILZ(x) consists of three parts: 1) T, 's computation

modules, 2) communication modules X;; ;'s and X; ;'s between T;, and T;’s invocations that
have already been assigned to N,, h#k, and 3) all the other communication modules to those
tasks that either have been assigned to N, or not yet assigned. Because of the way TG 1(x) is
constructed (Step 2), MILY (x) consists of only one part: the sum of (% ;(1) - ¥ ;(0))’s and
(xk (1)=& j(0)'s for each communication berween T; € B,(x) and Tj,. In other words,
;&FL,’; (x) is an extra load on N, to facilitate the IPC between N and N, k=h, to which T}, is
assigned. Since each module of M.’L,-f(x) (mﬁ(x)) usually has a different release time and
deadline, and is necessary for the completion of different tasks, it is very difficult to determine

the actual minimum load imposed by T; without further simplification of MIL%(x) and

MILE (x). We have taken the following simplifying steps:

SP1. Since only those modules which are required for T;,'s completion are of interest to us,

those modules unnecessary for T}, 's completion are excluded from MILE (x) and MILE(x).

SP2. MIL.(x) and mf, (x) of SP1 are then treated as two independent single modules with the

following execution times E£ (x) and £ (x), respectively:

Esx)=Yeb+ ¥ [x;ﬁ,.-(1)+xﬁ,g(l)]+) [x,-’;,.-(o>+xﬁ,.-(0)}.
Tie Bu{z)or

a T,eBax), < D
Ak T;eB(x)
Eixy= Y [* — k. vk (1) =k
w == }\'.;: J (]) 1(’.;; i (0) + .r(:; J (1) .{:} ") (O) * (8)
T,EB](X)

Note that the three terms of the RHS of Eq. (7) correspond to the three parts of MILE(x)

described above.

21 October 21, 1938

It can be seen that if MILE(x) (MILE(x)) of SP1, ¥i,v and k, together with TG 1(x)
generates a lower-bound of f*z, then so does MILE (x) (MILS(x)) of SP2 together with TG 1(x),
because the single-module version of MILE(x) (MILS(x)) has less precedence and timing
constraints than its counterpart of SP1. Even though each of MIL%(x) and MIL{(x) of SP2 is
needed for T, ’s completion, they are not necessarily released at the same time. This is because
MIL% (x) is part of the T}, s communication parmer T, whose period is p;, whereas MILE(x) is
part of T;,, whose period is p;. Therefore, it is still difficult to determine the minimum imposed
load by simply comparing EX(x) and £ (x). Based on these MILE (x) and MIL (x), SP3 below
remedies this difficulty.

SP3. The minimum load w5 (x) imposed on N, by T;, is constructed with a) lumped execution
time A (x) =min { E£(x), EL(x)], b) release time 6 (x) = minimum of the release times

of MILE (x) and MILY (), and c) cost function = (t —) / p;.

The above w‘{‘,(x) is indeed the minimum load imposed on N, by T,, in the sense that
wi(x)’s together with TG 1(x) generate a lower-bound of ©" (x) regardless whether T; is

assigned to N, or to a different PN. With & (x) determined for T}, , the minimum load imposed
by T; on /¥, is constructed as ‘{‘,-*(x) 2 U wfﬁ (x), and TG 2, (x), the minimum load imposed by all
L

the tasks in B(x), is calculated as TG2,(x)= ‘PXx). Finally, calculate
Tie 8(x)

TG, (x) 2 TG 1(x) U TG 2, (x).
42. Lower-Bound Cost ©(x)

For each k, 6, (x), the lower-bound node hazard of N, (and thus, ©(x) £ max 6, (x)) can

be obtained by applying an optimal scheduling algorithm on the pargal task graph
TG, (x)=TG 1(x) UTG 2, (x). Since the problem of deriving such an @k(x} is NP-hard, some

form of approximation is called for. Some of precedence and/or timing constraints on TG, (x)

22 Qctober 21, 1988

need to be relaxed to derive an approximate polynomial-ime algorithm. Several candidate
6, (x)’s can be obtained depending on the extent to which these constraints are relaxed. For
example, on TG 1(x), we may ignore both timing and precedence constraints between PNs and
derive an ©, (x) as was done in deriving ©,(y) or ©,(y) in Section 3. Even though 8,(y) is a
better bound than &,(y), both of them are obtained without considering the completion of any
other task on different PNs. In what follows, a third method for deniving an ék(x) will be
described by considering both task completions on N, as well as on other PNs. Thus, the

resulting &, (x) should be the best among the three.

Since Algorithm A is to be used for Ny, the main theme in deriving a better @)k(x) relies
solely on how to embed the effects of those tasks of TG 1(x) located in PNs other than ¥, into the
release times and cost functions of those modules of TG 1(x) located in N. The release time of
any module m, of TG 1(x) (the release times and the cost functions of TG 2, (x) were already
determined in the last subsection) is relatively easy to obtain because it is the latest task
invocation time among those having at least a module preceding m, . For example, M4 (and also
the dummy Xg3,) of Fig. 5 has a release time of 0 since Ty, T, and Ty, are all invoked at time 0

(see also Fig. 1). However, the release time of X5, is 20 because T'3; is invoked at time 20.

To derive the cost function for each module of TG 1(x) located in N,, the notion of
ourgoing communication point (OCP) needs to be introduced. An OCP of N is a node on
TG 1(x) which is located at the tail of a delay module. A module m, in N is called an OCP
module if head (m,) is an OCP, i.e., a module whose completion may enable some modules in
PNs other than ¥,. See Fig. 5 for an example. Since n4 is an OCP of Ny, Xy, is an OCP
module. Consider an OCP and a node n, =v, on TG 1(x), i.e., ny is the node representing the
completion of certain task invocation v,. Assume that v, has been assigned to a PN other than
Ny, where the OCP is located. If the OCP precedes v, (i.e., n;), then the critical path (it may

contain some modules in V) of length B, from the OCP to v, represents the minimum time 0

23 October 21, 1988

complete v, after the realization of the OCP. Otherwise, the completion time of v, is

independent of the realization time of the OCP.

Let V (m,) denote the set of all invocations preceded by the OCP head (m;). Also, let v, be
a task invocation in Ny, and £, (¢) be the cost functon, r, the invocation time and p,, the period

of v,. The cost function f (¢) of m, can now be obtained using the following rules.

R1. If m, is not a (invocation) completing module and m, is not an OCP module then
f& (f) =0.

R2. If m, is not a completing module and m, is an OCP module then f,(¢) = max ; g.(2),
Vo € iy

where g, (t)=(t +B, —=r,)/ p,, and B, is the length of the critical path from head (m,) to

Vs

R3. If head(my)=v, and m; is not an OCP module then f, (z) :=f,(t) =(t —r,)/ p,, the cost

function of Wy

R4. If head(m,)=v, and m, is an OCP module then f, (¢) := max { f,(r),

max g.(t) },
e Vim)

where g, (t)asisinR 2.

Once the release time and cost function of each module on TG, (x) located in N, are

determined, Algorithm A can be applied to obtain &, (x), and thus, 6(x) = max 6, (x). Notice
e €

that the optimal schedule obtained above is only for &, on this simplied version of TG, (x). Itis
not necessarily optimal for another PN, say N,, on that of TG, (x), rather the resulting O(x) is a
lower-bound of 8" (x) because of the cost function selection rules of the module considered.
Also, the computational complexity of deriving €(x) is O (| N| (Q* +log| N|)), where | N| is

the number of PNs and Q the total number of modules in the system.

24 October 21, 1988

5. AN EXAMPLE

Consider an example of allocating the three tasks Ty, T, and T to two PNs, ¥ and N4, in
Fig. 1. Within the planning cycle [0, 40), T and T, both with period 40, are invoked only once
3
i

while T, with period 20, is invoked twice. Suppose ¢ =2, ¢% =1,4;{ =1, ¢4 =1, ¢} =2,

q% =1, and d12=d21= E

Fig. 7 shows all the vertices x's, numbered in the order of times of their generation. The
assignment and é(x) associated with each vertex x are also indicated in Fig. 7. Our B&B
algorithm is shown to be quite efficient in this example because only two (out of a total of 3)

terminal vertices are generated before an optimal assignment is found. Specifically, vertex 6,

with @(6) = % is first eliminated as soon as vertex 8§ with the exact cost (i.e., system hazard ©)

%—% < O(6) is generated. Then, all active vertices 4, 3, and 8 are eliminated after vertex 9 is

generated since the value of 8 of this complete assignment is 23.5 / 40 is the smallest of all these
vertices. Thus, vertex 9, which assigns all three tasks to Ny, is an optimal assignment, and its
optimal schedule derived by Algorithm A is shown in Fig. 8. One reason for this counter-
intuitive result was already given in Section 2; communication modules and delays are the major
part of the TG, and thus, assigning all tasks to a single PN to minimize the communication and
delays is superior to the others. There is another reason why all tasks are not assigned to ¥ .
Since T3, is invoked at ¢=20, the length of a path from ns 10 n9q (Fig. 1) is critical 10 the
performance of the assignment. If all tasks are assigned to N, which has a smaller processing

power for T, than N, does, then this path will be longer than the optimal scluton.

To see how ©(x) is obtained for a non-terminal vertex x, 8(s) is computed as follows.
Since B ,(5)=(T,), B4(5)=(T3), B(5)=(T;}, and ¢ =q# =2, e}, =€ .12, e% :=e4,/2, ¥a,
22D =220/ 20 D =100 /20 b)) =x220/2, 1Fi2() =122/ 2,

1%3(0) =423200)/ 2, ;(327_2(0) :=%322(0) / 2 to accommodate the loads imposed on Ny and N, by

25 October 21, 1988

the tasks in B (5) and B,(5), respectively. The resulting TG 1(5) is shown in Fig. 9, ignoring T3
and the communication delays between T and T,. (Note the differences between this figure and

Fig. 5.)

To derive ©),(5), we need to obtain the minimum load TG 2,(5) imposed only by T3 on ¥,
since B(5) = {T3). Thus, TG2,(5) = (W1 (5)} = {w4,(5), W3x(5)} since T is invoked twice in
one planning cycle. However, a further examination on the original TG shows that there is no
extra load imposed on N | by T4, if T is not assigned to |, because T'; does not communicate
with T;. It follows that, though assigning Ty to ¥, will impose some load on ¥, we need not
consider T'5 to derive ©,(5). Thatis, ©,(5) can be obtained by scheduling only TG (5) = TG 1(5).
The release time and cost function of each module in T are determined as follows. Since no
modules of T are preceded by T3,, each of them has a release time of + =0. To find the cost
functions, rules R1-R4 of the last section are followed. Specifically, from R3 the cost functions
of M 5 and X, ; (Fig. 9) is ¢/40, which is identical to that of T',. From R1, the cost functions of
My and M, are 0. Finally, the cost function of X, is determined by considering the critical
paths of lengths B, and B, from ng4, which is an OCP, t0 19 and nyg, respectively. That is, from
R2, the cost funcion of X5, is max (g,(r),g2(6)} = g(t), where
g()=(+PB;—-0)/40=(r +255)/40 and g4(r) = (t +B,—0) / 40 = (t+13)/40. As a

result of applying Algorithm A, 8,(5) = %5—

To derive ©4(5), we need o obwin the minimum load TG24(5) = (¥£(©)) =
(W3(5), wh(5)) imposed by T on N, when T is and is not assigned to N,. If T; is assigned to
N4, from Eq. (7), E;'I (5)=4 (En}z (5) =35) since all modules of T5 contributing to the summation
are required for T5;’s (T'3p's) completion. On the other hand, if T; is not assigned 10 N, the
extra loads imposed on N, (Eq. (8)) are £4;(5) = (2= 1¥2=0.5 and £4,(5) = (2 - 0¥2 =1 since
the first (second) Xj55 is not required for Ty;'s (T3;’s) completion. Following SP3 in the last

section, we derive the w;(5)’s execution time as Af(5) = min {4,0.5} = 0.5, release time as

26 Qctober 21, 1988

64 (5) =0, and cost function as (¢t —0)/20. W%(5) can be derived similarly to y#;(5) except for
o%(5). Specifically, A5(5) = min {5, 1) = 1, cost function = (¢ —20)/ 20, and o3;(5) =0 since
Xa37 is executable before T3, is invoked. In order to use Algorithm A for deriving B,(5), the
release time and cost functon of each module in N, on TG 1(5) also need to be determined. Asa

result of scheduling the simplified version of TG,(5) (the union of ¥#(5) and the simplified

27.5

version of TG 1(5)), we get 8,(5) = %. Therefore, ©(3) = max {6,(5), 8,(5)} = ,(5) = ==

6. CONCLUSION

Task allocation (assignment with the subsequent scheduling considered) is one of the most
important design issues in distributed real-time systems. However, this problem is generally
known to be NP-hard even without considering the precedence constraints among tasks. In this
paper, we have addressed the problem of allocating a set of periodic tasks with precedence
constraints among the set of processing nodes of a distributed real-time computing system. We
solved this problem by using two B&B algorithms. Evaluation of the performance of a given
assignment is equivalent to optimally scheduling assigned tasks and was handled by a B&B

algorithm guided with the dominance properties between simultaneously schedulable modules.

Although more computational experience with the proposed algorithm needs to be gained,
we believe that both the dominance properties and the lower-bound costs present in this paper can
ease the computational difficulty significantly. This fact has been justified in [PeS88] and by the

demonstrative example in this paper to some extent.

Because of the enumeration nature of the proposed B&B algorithms, it is also possible to
extend the proposed approach to deal with task allocation problems with other resource (e.g.
memory and communication bandwidth) constraints. To ease computation requirements further,
a tighter and easily obtainable lower-bound cost estimate needs to be derived for each non-

terminal vertex in the search tree. Altematively, an approximate algorithm which efficiendy finds

27 October 21, 1988

a suboptimal assignment with known performance should be practically valuable. This is a

matter of our future inquiry.

[Bak74]

[BEN382]

[BLLS3)

[ChA83]

(CHL30]

[ChL87]

[Chu69]

[Cof76]

(DaF84]

(DhL78]

(Efe82]

[E1HB0]

REFERENCES

K. R. Baker, /ntroduction to Sequencing and Scheduling, Wiley & Sons, 1974.

R. Bellman, A. O. Esogbue and I. Nabeshima, Mathemarical Aspects of Scheduling
and Applications, Pergamon Press, 1982, pp. 281-321.

K. R. Baker, et al., ‘‘Preemptive Scheduling of A Single Machine to Minimize
Maximum Cost Subject to Release Dates and Precedence Constraints’’, Operations
Research, Vol. 31, No. 2, Mar-Apr. 1983, pp. 381-386.

T. C. K. Chow and J. A. Abraham, ‘‘Load Redistribution Under Failure in
Distributed Systems’’, /EEE Trans. on Computers, Vol C-32, No. 9, Sep. 1933, pp.
799-808.

W. W. Chu, et al, “Task Allocation in Distributed Data Processing’’, /EEE
Computer, Vol. 13, Nov. 1980, pp. 57-69.

W. W. Chu and L. M. Lan, *‘Task Allocaton and Precedence Relatons for
Distributed Real-Time Systems’’, IEEE Trans. on Computers, Yol. C-36, No. 6, Jun.
1987, pp. 667-679.

W. W. Chu, “*Optimal File Allocation in a Multiple Computing System’', /EEE
Trans. on Computers, Vol. C-18, Oct. 1969, pp. 885-889.

E. G. Coffman, Computer and Job-Shop Scheduling Theory, New York, Wiley and
Sons, 1976.

B. Dasarathy and M. Feridun, ‘‘Task Allocation Problems in the Synthesis of
Distributed Real-Time Systems'', Proc. 5th IEEE Real-Time System Symposium,
Dec. 1984, pp. 135-144,

S. K. Dhall and C. L. Liu, ‘‘On a Real-Time Scheduling Problem’’, Opns Res, Vol.
26, No. 1, 1978, pp. 127-140.

K. Efe, “‘Herstic Models of Task Assignment Scheduling Distributed Systems’’,
IEEE Computer, Vol. 15, No. 6, Jun. 1982, pp. 50-36.

O. L. El-Dessouki and W. H. Huan, “‘Distributed Enumeration on Network
Computers”’, /EEE Trans. on Computers, Vol. C-29, Sep. 1980, pp. 818-825.

28 QOctober 21, 1938

(Fres2]

(Gal79]

(Gon77]

[GoS78]

[KaN8g4]

[KoS76]

(LeK78]

[LiL73]

[LLK82]

[LRB77]

(MLT82]

[PeS87]

[PeS88]

(PrKg4]

S. French, Sequencing and Scheduling, Halsted Press, 1982.

M. R. Garey and D. S. Johnson, Computers and Intractability - A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, N.Y., 1979.

M. 1. Gonzalez, ‘‘Deterministic Processor Scheduling’’, ACM Computing Surveys,
Vol. 9, No. 3, Sep. 1977, pp. 173-204.

T. Gonzalez and S. Sahni, ‘‘Flowshop and Jobshop Schedules : Complexity and
Approximaton’*, Operations Research, Vol. 26, No. 1, Jan-Feb. 1978, pp. 36-32.

H. Kasahara and S. Narita, ‘‘Practical Multiprocessor Scheduling Algorithms for
Efficient Parallel Processing’’, [EEE Trans. on Computers, Yol. C-33, No. 11, Nov.
1984, pp. 1023-1029.

W. H. Kohler and K. Steiglitz, "*Enumerative and Iterative Computational
Approach’” in Computer and Job-Shop Scheduling Theory, Coffman eds., Wiley and
Sons, 1976, pp. 229-287.

J. K. Lenstra and A. H. G. R. Kan, *‘Complexity of Scheduling under Precedence
Constraints'’, Operations Research, Vol. 26, No. 1, Jan-Feb. 1978, pp. 23-35.

C. L. Liu and J. W. Layland, ‘*Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment’’, J. of ACM, Vol. 20, No. 1, 1973, pp. 46-61.

E. L. Lawler, er al, ‘‘Recent Developments in Deterministic Sequencing and
Scheduling: A Survey'’, in Deterministic and Stochastic Scheduling, Dempster, et al.
(eds), Reidel, Dordrecht, The Netherlands, 1982, pp. 35-74.

J. K. Lenstra, A. H. G. Rinnooy Kan and P. Brucker, *'Complexity of Machine
Scheduling Problems’’, Ann. Discrete Math., Vol. 1, 1977, pp. 343-362.

P. Y.R. Mg, et al. **A Task Allocation Model for Distibuted Computing Systems'’,
[EEE Trans. on Computers, Vol. C-31, No. |, Jan. 1982, pp. 41-47.

D. Peng and K. G. Shin, ‘*“Modeling of Concurrent Task Execution in a Distributed
System for Real-Time Control’’, [EEE Trans. on Computers, Yol. C-36, No. 4, Apr.
1987, pp. 500-516.

D. Peng and K. G. Shin, ‘‘Multiproject Scheduling Using an Enumeration Method™’,
submitted for publication.

C. C. Price and S. Krishnaprasad, ‘‘Software Allocation Models for Distributed
Computing Systems'', Proc. [EEE, 4th [nf'l Conf. on Distributed Compuring
Systems, May 1984, pp. 40-48.

29 October 21, 1988

(Ser72]

[ShT85]

(StB78]

[Sto77]

[Sto78]

[Tah76]

[Vir84]

[WoS74]

O. Serlin, ‘‘Scheduling of Time Critical Processes’’, Proc. of AFIPS 1972 Spring
Joint Computer Conf., AFTPS Press, Montvale, N. 1., 1972, pp. 925-932.

C. C. Shen and W. H. Tsai, ‘A Graph Matching Approach to Optimal Task
Assignment in Distributed Computing Systems Using a Minimax Criterion’’, /[EEE
Trans. on Computers, Yol. C-34, No. 3, Mar. 1985, pp. 197-203.

H. S. Stone and S. H. Bokhari, **Control of Distributed Processes’’, [EEE Computer,
Vol. 11, Jul. 1978, pp. 97-106.

H. S. Stone, ‘*Multiprocessor Scheduling with the Aid of Network Flow Algorithm"’,
IEEE Trans. on Software Engineering, Vol. SE-3, No. 1, Jan. 1977, pp. 85-93.

H. S. Stone, **Critical Load Factors in Distributed Computer Systems’’, I[EEE Trans.
on Software Engineering, Vol. SE-4, No. 5, May 1978, pp. 254-258.

H. A. Taha, Operations Research: An Introduction, Macmillan Publishing Co. NY,
1976, pp. 357-366.

M. L. Virginia, ‘‘Heuristic Algorithms for Task Assignment in Distributed
Systems’’, Proc. IEEE, 4th Int'l Conf. on Distributed Computing Systems, May
1984, pp. 30-39.

R. E. D. Woolsey and H. S. Swanson, Operarions Research for Immediate
Applications: A Quick and Dirty Manual, Harper and Row, 1974.

30 Octaober 21, 1983

Xy =ld =

%120 (0)/ %, (D

bo T Lg Ty 5,=T
_— — =20
p =40 B, 40 p3
1=40

Figure 1. An Example TG

=40

40

40

The TG for

Figure 2.

(+T) N,

T,) N,

5 10 15 20 25 30 35 40
q.__._.__.__.-___ __ﬁ_____q.__q._ﬂ-___
,_.:na_:ﬁ_m_ma ._;M_ completed
Y %
777777777777,
X M M M M, X, 4 M5 K M, | X M & N, idle \
&._ u.u.m#u; 22 Nuu.u 29 XNu.M_ i1 2 21 13 21,1 4 32,2 25 \\\\\\\‘\ k
Hun MMu .m.uw MMu
[[/ P
|77 W B
L 213129 sy sl k L LS P95 NI \\k
F H
Ty completed A.um completed
]
0 3_ 24 32, _32 i
7 max a.m—.q lM:CI t
o
010
20
03_ 10 32y_32
& = max 30 30 0
Figure 3. An Optimal Schedule for the Assignment by m.w

Ol
Qg=(1,)
Q=
024
Qg=(J)
Qs

Figure 4. Q, () and Q (9 of An Operation

2
X =1

Figure 5. TG1(x) for x={T,, N,), (T,, N)}

T
2
! X =l &=l
- 1
7 32,3
- ; ATy
T, is ignored : e
. P e
b < i A3a”
% : Ty
; Wl A=t
. 2
] : @ 1
: 2
: U
\Y
6
2
L =
L 233

AR N - —

Figure 6. TG1x) for x={(T, N)), (T;, N,)}

(T, N (TN) (TN, BN (M), (TN o

23.5

28 iy
40

40

((C.N), (G, (BN (TN, (T (T.N)

Figure 7. Search Tree Generated for the Numeric Example

) N,

(T+T,+T,) N,

e

J 19 27.5
% \\\\\\\\\\
7 N, Idle 7
; GIP PP PIPIY, 7
T3y completed T;completed T, compleied .ﬁumnoﬁﬁmﬁa
_ _ _ _ _ _ _ _
5 10 15 20 25 30 35 40

Figure 8. An Optimal Schedule for x = {(T,, N), (5, N), (L, N)}

0 L Mg To

Figure 9. TG1(x) forx={T;, N), (T, N,)}

