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ABSTRACT

If task arrivals are not uniformly distributed over the nodes in a distributed real-time
system, some nodes may become overloaded while others are lightly-loaded or even idle.
Consequently, some tasks cannot be completed before their deadlines, even if the overall
system has the capacity to meet all deadlines. Load sharing (LS) is one way to alleviate
this difficulty.

In this paper, we propose a decentralized, dynamic LS method for a distributed real-time
system. Under this LS method, whenever the state of a node changes from lightly-loaded to
overloaded and vice versa, the node broadcasts this change to a set of nodes, called a buddy
set, in the system. An overloaded node can select, without probing other nodes, the first
available node from its preferred list, an ordered set of nodes in its buddy set. Preferred lists
are so constructed that the probability of more than one overloaded node “dumping” their
loads on a single lightly-loaded node may be made very small. Performance of the proposed
LS policy is evaluated with both analytic modeling and simulation. Analytic models are
used to derive the distribution of queue length at each node, the probability of meeting task
deadlines, and analyze the effects of buddy set size, the frequency of state change, and the
average system sojourn time of each task. On the other hand, simulation is used to verify
analytic results. The proposed LS method is shown to meet task deadlines with a very high
probability.
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1 Introduction

Failure to complete a real-time task before its deadline could cause a disaster [1,2]. Due
to their potential for high performance and reliability with the rnulfiplicity of Processors,
distributed systems are natural candidates to implement real-time applications. However,
if task arrivals are unevenly distributed over the nodes in a distributed real-time system,
some nodes may become overloaded, and thus, unable to complete all their tasks in time,
while other nodes are lightly-loaded. In such a case, even if the total processing power of the
system is sufficient to complete all incoming tasks in time, some tasks arriving at overloaded
nodes may not complete in time. One way to alleviate this problem is load sharing (LS);
some of those tasks arriving at overloaded nodes are transferred to lightly-loaded nodes for

execution.

LS in general-purpose distributed systems has been studied extensively by numerous
researchers (3,4,5,6,7,8]. Decisions on how to share loads among the nodes are either static
or dynamic. A static decision is independent of the current system state, whereas a dynamic
decision depends on the system state at the time of decision. Static LS can also be viewed
as the nondeterministic allocation of tasks in a system [8,9,10,11], where an overloaded node
i will transfer its task to node j with probability P;;, which is independent of the current
system state. Although static LS is simple and easy to analyze with queueing models, its
potential benefit is limited since it does not adapt itself to the time-varying system state [4].
For example, even when node i is overloaded, it still has to receive tasks from other nodes
with the same probability as if it were lightly-loaded. On the other hand, when dynamic LS
is used, an overloaded node can transfer its task(s) to other node(s) using the information
on the current system state [4,6,7,12,13,14]. Since any dynamic policy requires each node
to know states of the other nodes, it is inherently more complex than any static policy. The
advantage of a dynamic policy is that it adapts itself to the time-varying system state, and
thus, can ease the difficulty associated with static LS.

LS algorithms can be source-initiated or server-initiated, depending on which node
initiates the transfer of task(s). The node at which external tasks arrive is the source
(sender) node, and the node that processes these tasks is the server (receiver) [3]. In
the source-initiated approach, an overloaded source node initiates the transfer of a newly

arriving external task based on some strategies, while in the server-initiated approach, a



lightly-loaded or idle server will probe each of the potential source nodes to share its load
with. LS algorithms are further divided into several levels according to the’ amount of
information required for them. After analyzing and comparing the performance of these
algorithms, Wang and Morris [3] concluded that an algorithm that collects more information
will generally produce better results and that the server-initiated approach will usually

outperform the source-initiated approach if the task transfer cost is not significant.

As was discussed in a recent paper by Eager et. al [4], LS is composed of a transfer policy
and a location policy. The transfer policy determines when a node should transfer its task(s),
i.e., when a node becomes overloaded. The location policy determines where a source node
should send its task(s) to. Their objective was to minimize the average system response time
by moving tasks from overloaded nodes to lightly-loaded ones. A simple threshold was used
in the transfer policy; that is, whenever the queue length of a node exceeds this threshold, it
will attempt to transfer its incoming task to another node. Three different location policies
were simulated and compared: random, threshold, and shortest. Their simulation results
indicated that the random policy improves system performance significantly, as compared
to the system without LS. The threshold policy can further improve system performance,
as compared to the random policy. The improvement of the shortest policy is about the
same as that of the threshold policy, although it requires more system state information
than that of the threshold policy.

LS in distributed real-time systems is addressed far less in literature than that in
general-purpose distributed systems. Kurose et. al proposed a quasi-dynamic LS algorithm
in a soft real-time system [5]. A job is considered to be lost if its completion time exceeds
its deadline. Their primary objective was to reduce the probability of losing a job with LS.
A node will transfer some of its jobs to another node if the unfinished workload exceeds its
time constraints. The server was selected on a probabilistic basis which is independent of

the current system state.

The location policy in most early work can be viewed as sender-initiated, since an
overloaded node (sender) selects another node (a candidate receiver) and check whether or
not this node can share its load. If it can, the sender will transfer some of its tasks to that
node; otherwise, the sender will probe another node. This process will repeat until a receiver

is found or a prespecified limit is reached. There are two major drawbacks associated with



this approach. First, the sender needs to probe other nodes before transferring any of its
tasks. This will introduce an additional delay in completing the tasks to be transferred.
Second, if only a few nodes in the system are lightly-loaded, the sender may not be able
to locate a receiver by probing only a limited number of nodes. In such a case, overloaded

nodes must execute all their tasks locally, missing the deadlines of some of these tasks.

In a real-time system, the probability of missing a job must be kept as low as possible
because the loss of a job may lead to a disastrous circumstance. Note that almost all LS
methods known to date are concerned only with the average system performance, rather
than the performance of each individual task. To alleviate this weakness, we propose a new
LS method in which each node needs to maintain state information of only a small set of
nodes, called a buddy set. Whenever a node becomes overloaded (lightly-loaded) due to
the arrival and for transfer (completion) of tasks, it will broadcast its change of state to
all the other nodes in its buddy set. Every node that receives this information will update
its state information by eliminating the overloaded node from, or adding the lightly-loaded
node to, its list of available receivers. An overloaded node can select the first node in its
list of available receivers and transfer a task to that node. Notice that our LS method is
completely different from conventional receiver-initiated LS methods that are characterized
in [3]. A lightly-loaded server in the conventional receiver-initiated approach probes other
nodes to share their work with. By contrast, our method transfers tasks from overloaded
nodes to other lightly-loaded nodes using the state changes broadcast within their respective
buddy sets.

The rest of this paper is organized as follows. Section 2 discusses the problem of im-
plementing the proposed LS method. Collection of state information and construction of
preferred lists are detailed in Section 3. Section 4 presents one exact model, one approxi-
mate model, and an approximate solution to the exact model for the proposed LS method.
In Section 5, the performance of the proposed LS method is evaluated with the models
derived in Section 4 and is also simulated to verify the analytic results. Finally, the paper

concludes with Section 6.



2 Problem Statement

In the proposed LS method, each node must maintain and update the state information
of other nodes. An overloaded node can transfer a task to another node based on state
information without any probing delay. To implement this method, one must resolve the

following issues:

o Efficient means of collecting and updating state information; collection of state in-
formation must not hamper normal communications, such as task transfer or I/0

operation.

e Selection of a server node in case there are more than one lightly-loaded node.

These issues are addressed below in some detail.

2.1 State Information

To collect state information, one must decide from which nodes the information should
be collected and how often this information should be updated. One straightforward method
is for each node to collect and update state information from all other nodes in the system
at a fixed time interval. However, it is very difficult to determine an appropriate collection
and update interval which ensures the accuracy of state information while keeping below an
acceptable level the I/O overhead caused by the collection of state information. Although
a short interval (i.e., frequent state update) ensures the accuracy of state information, this
will introduce an O(n?) I/O overhead each time for Eoﬂecting state information, where n is
the number of nodes in the system. This may, in turn, severely delay normal I/O operation
and task transfer, thus degrading (rather than improving) system performance. On the
other hand, the I/O overhead decreases as the frequency of state collection and update
decreases. But, this may cause the state information recorded in a node to be obsolete. For
example, if the state of a node has changed from lightly-loaded to overloaded before the
next update, other nodes may transfer their tasks to this already overloaded node based on

the obsolete state information.

Ideally, each node should keep state information as accurate and as up-to-date as possible

while keeping the associated I/O overhead as low as possible. To achieve this goal, we
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propose a state-change broadcast algorithm to collect and update the state information
at each node. Under this algorithm, each node maintains only the state information of a
small set (i.e., a buddy set) of nodes, e.g., neighbors of the node. A node is said to be
lightly-loaded if its queue length or cumulative execution time (CET) is below a threshold,
and fully-loaded if the queue length or CET is larger than another threshold. Each node will
broadcast the change of state to all the other nodes in its buddy set only if it switched from
lightly-loaded to fully-loaded, and vice versa. Since a node will receive new information
only when the state of a node in its buddy set has changed, each node will have the exact
state information of all the other nodes in its buddy set, as long as there is no significant
delay in broadcasting state changes. (See Section 5.1.7 for more on the broadcasting delay.)
Moreover, the I/O traffic for broadcasting state changes can be controlled by adjusting the
two thresholds. More on this will be discussed later.

2.2 Preferred List

In the sender-initiated location policy, an overloaded node will transfer a task to the
lightly-loaded node found first during the probing [3,4,5]. In our proposed location policy, an
overloaded node may find more than one lightly-loaded node. One must therefore establish a
rule for selecting a receiver to avoid the situation where two overloaded nodes simultaneously
transfer tasks to the same lightly-loaded node. A preferred list is proposed to counter this
situation. Since each node maintains the state information of the nodes in its buddy set,
one can order these nodes in each node’s preferred list. The first node in this list is the
most preferred and the second the second most preferred, and so on. Note that order of
preference changes with time, e.g., if the most preferred node becomes overloaded, then the
second most preferred node, if not overloaded, becomes the most preferred. An overloaded
node will transfer its task(s) to its most preferred node in the list. Based on the system
topology, the “static” order of nodes in each node’s preferred list is so permuted that a
node is the most preferred of one and only one other node in the corresponding buddy set.
(This order does not change with time, although some of nodes will drop out of the list
of available receivers when they get overloaded, and regain their spots when they heco;ne
lightly-loaded again.) Since each overloaded node is most likely to select the first node in

its preferred list, the problem of more than one overloaded node “dumping” their loads on



one node is unlikely to occur. Nevertheless, dumping could occur since, for example, the
third most preferred node, say NV, of an overloaded node NN, can become its most preferred
while NV, is also the most preferred of another overloaded node. But, the probability of this
to happen is small, since it will occur only after overloading all the nodes ahead of N in
the N,’s preferred list.

3 State Information and Preferred List

It is assumed that all nodes in the system can communicate with one another via an
arbitrary interconnection network. Also, each node is assumed to be stable, i.e., each
node’s load density is less than one. Each node has a network processor to handle the usual
communications and task transfers between nodes without burdening the node processor.
Each node has two sources of task arrivals, external tasks and transferred-in tasks, and one
server (single node processor). The tasks arriving at each node may be executed locally or

remotely at any other nodes in the system.

3.1 Collection of State Information

To determine the state of a node, three thresholds, TH;, THy, and THy, are defined.
These thresholds can be queue length or cumulative execution time (CET), depending
on task characteristics. For example, if every task has the same (identically distributed)
execution time, one can use the (average) queue length to measure the workload of each
node. However, if task execution times are neither identical nor identically distributed, one
must use the CET to measure the workload of each node. By comparing each node’s current
workload with these thresholds, the state of the node is determined to be in one of three
states: light (L), full (F), and heavy (H). Queue length (QL) will be used to measure a
node’s workload throughout this paper. (Use of CET is much more involved, as pointed out
in Section 6, and will be treated in a forthcoming paper.) A nodeisin L state if QL < TH,
and in F state if THy < QL < THy, and in H state if QL > THj,. An L-state node can
accept one or more tasks from other nodes and complete them before their deadlines. A
node in F state cannot accept tasks from any other nodes but can complete all of its own

tasks in time. A node in H state cannot complete all of its own tasks in time, and thus,



must transfer, if possible, some of its task(s) to other node(s). Since a node in L state can
share other nodes’ loads, it is said to be in share mode. A node in F state will neither accept
tasks from other nodes nor transfer tasks to others, and is said to be in independent mode.
A node in H state must transfer some of its tasks, and is said to be in transfer mode. Note
that H is usually a transient state because, if arrival of a new task at a node moves the node
to H state, the node will transfer this task to another lightly-loaded node and then move
back to F state. However, if an H-state node cannot find an L-state node from its buddy

set, it will be forced to remain in H state and may miss some of its task deadlines.

According to our state-change broadcast algorithm, each node will broadcast the change
of state to all the other nodes in its buddy set only when it moves from L to H and/or H
to L. Upon receiving a state-change broadcast, every node in the corresponding buddy set

will update its state information accordingly.

Two different thresholds, TH; and T Hy, are used in the proposed LS method for the
following reason. If only one threshold were used, a node would be in L (F) state when its
queue length is less (greater) than this threshold. In such a case an L-state node may switch
to F' state after receiving a task from another node, and an F-state node may switch back to
L state after completing a task. Since an L-state node will receive tasks from other nodes, it
is likely to move to F state. On the other hand, an F-state node only accepts its own external
tasks and is likely to switch back to L state, since every node is assumed to be stable. Thus,
every node in the system will frequently switch between L and H states, thereby increasing
the I/O traffic to broadcast state changes. Change of state occurs infrequently (frequently)
when the difference between T'H; and T Hy is large (small).

The third threshold, T Hj, is used to avoid unnecessary task transfers. If we combine
F and H states into one threshold, then acceptance of one transferred task may make a
node fully- as well as heavily- loaded. In this case, the fully- and heavily- loaded node must
transfer its own newly arriving task to another node. Had it not accepted the transferred
task, the node would not have to transfer the newly arriving tasﬁ, and thus, one of the two
task transfers would not have been needed. By introducing another threshold THy, > THy,
each node will broadcast the change of state when it moves to F state, preventing other
nodes from transferring tasks to that node. Since there is a non-zero range between TH

and THp and every node is assumed to be stable, a node is unlikely to become heavily-



loaded with its own arriving tasks. Thus, this range can be used to control unnecessary

task transfers.

The above three thresholds greatly influence system performance, such as the average
task execution time, the probability of missing task deadlines, and the overhead of broad-
casting state changes. Thus, these thresholds must be determined to meet the system
performance requirement. For example, in a real-time system, TH ;, is a critical point below
which a node processor can complete all queued tasks before their deadlines with a proba-
bility higher than a specified value. The range between TH; and TH; must be chosen to
keep the I/O overhead induced by state-change broadcasts below a specified value. These
thresholds are also sensitive to system load and have to be adjusted as system load varies.

(More on this will be discussed in Section 5.)

3.2 List of Preferred Nodes

As mentioned in Section 2, the purpose of constructing a preferred list at each node is to
avoid the probing delay and the problem of more than one overloaded node dumping tasks
on that node. The cost of task transfer is an increasing function of the physical distance
between the sender and receiver nodes. To reduce this cost, the receiver node should be
located as closely to the source node as possible. The preferred list of each node is thus
structured based on the number of hops between the source and receiver nodes. The first
entry of a node’s preferred list consists of those nodes one hop away from the node, and
the second entry consists of those nodes two hops away from the node, and so on. When
there are more than one node in each entry, these nodes must be ordered to minimize the

dumping problem.

To demonstrate the ordering of nodes in each buddy set, consider a regular? system
with n nodes, Ny, N3, ..., Ny, where the degree of N; is k& Vi. Link j of N; is assigned a
direction dj, 0 € j < k—1. The N;’s “static” 3 preferred list is then constructed as follows.
The set of N;’s immediate neighbors, denoted by Pj, is placed in the first entry of the N;’s
preferred list. The N;’s second entry, denoted by Pj, consists of the nodes in the first entry

? A system is said to be regular if all node degrees are identical.
3This list is determined by the system topology and remains unchanged. However, the availability of

each node in this list changes with time.



of every node in P{, excluding the duplicated nodes. Generally, Pt" is the set of nodes which
are listed in the first entry of every node in P}_,, excluding the duplicated nodes.

Among the nodes in P}, the node in direction dy is chosen to be the N;’s most preferred
node in this entry of N;, denoted by N{!, and the node in direction d; is the N;’s second
most preferred node in this entry list, denoted by Nj!, and so on. The nodes in P} are
ordered as follows. The nodes in the N{!’s first entry are checked according to their order
in the entry. If a node in the Nj!’s first entry did not appear at any previous entry of N;,
it will be copied into the second entry of N; in the same order as in the Nj’s first entry.
After all nodes in the first entry of N{! are checked and copied, the nodes in the first entry
of node Nj! will be checked and copied by the same procedure. This procedure will repeat
until P§ is completed. The ordering of nodes in P} V> 2 can be determined similarly.

As an example, consider how the preferred list of each node in a 4-cube system (Fig. 1)
is constructed. The identity (ID) of each node is expressed by a 4-bit number, b3byb;bq.
The direction d; of node Ny is the link that connects Ni to a node whose ID differs from
the N's ID in bit position ¢, where 0 < 7 < 3. One can now apply the algorithm described

above to construct the preferred list for each node in the 4-cube system as shown in Fig. 2.

Once each node’s preferred list is constructed, a heavily-loaded node N; can select a
lightly-loaded node as follows. Check node Nj! first; if it is lightly-loaded, N; will transfer a
task to Nil, otherwise Nj! is checked, and so on. (This checking can easily be implemented
with a pointer which is made to point to the first available node in the list.) If all nodes in
P} are heavily-loaded, N; will sequentially check the nodes in Pj. H, albeit rare, a heavily-
loaded node cannot find any lightly-loaded node from its preferred list, all of its tasks will

be forced to execute locally.

The preferred list constructed above has the following advantages. First, since each
node is the most preferred node of one and only one node, the probability of a lightly-
loaded node being selected by more than one heavily-loaded node is very small. Second, the
cost of task transfer is minimal, since a receiver node is selected, with a high probability,
from the physical proximity of the source node. Moreover, the time overhead for selecting a
lightly-loaded node is negligibly small, because the time-consuming probing procedure used

in most known methods [4,5,7] is not needed.

Since the size of the preferred list (buddy set) will affect the probability of a task missing



its deadline, it must be chosen to ensure that this probability is lower than the specified
limit. However, a buddy set must not be too large because the larger the size of buddy
set, the higher I/O overhead will result. Thus, there is a trade-off between the capability
of meeting task deadlines and the I/O overhead associated with state-change broadcasts.

More on this will be discussed in Section 5.

4 Models for the Proposed LS Method

A modified embedded Markov chain is proposed to model the performance of the pro-
posed LS method.  We begin with an exact model from which an approximate solution and
an approximate model, called the upper bound model, will be derived. The real solution will
be shown to be (i) always upper bounded by the solution derived from the upper bound
model, and (ii) very close to the approximate solution. Note that the embedded Markov
chain is commonly used to analyze arbitrarily arriving tasks. Let each task take one unit
of time to complete®, k, be the number of task arrivals during the interval [t, t + 1), and
@k, be the probability of k; arrivals in [2, t + 1). For example, when the interarrival time of
external tasks is exponent.ially distributed with rate A, ax, can be calculated by [15):

A
ap, = —¢e 7, 4.1
ke (1)

Let z; and 7,44 denote the queue lengths at time ¢ and ¢ + 1, respectively. Then,

k. if 2, = 0 and k, < THx
Iyl = Ig+kg—1 if:c¢>0and I¢+kg£THh+l * (42)
TH, ifz+ k> TH.

The above relation represents the case of ideal load sharing, since overloaded nodes
(with more than TH}, tasks) can always find other nodes to transfer their “surplus”® tasks

to.

Using Eq. (4.2), one can derive the probability distribution of queue length. Two modi-

fications must be made to include the effects of transferring and receiving tasks among the

*Since (average) queue length is used to measure workloads, without loss of generality, one can assume
(average) task execution time to be one unit of time.

*Those tasks arriving after first TH) unfinished tasks.
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nodes in a buddy set. The first modification is to adjust the task arrival rate to include
transferred—in tasks when a node is in L state. As shown in Fig. 3, the total ‘arrival rate
becomes A* = A + A, where A® and A! are the arrival rates of external and transferred—in
tasks, respectively. A node’s state transition probability depends on the total task arrival
rate (A*) when the node is in L state, and thus, a’s must be recalculated accordingly. Let
a*’s represent the transition probability corresponding to A*, whereas a’s represent that
corresponding to A¢ only. The second modification is made to the maximum queue length.
Since a node will transfer tasks to other nodes when QL > T Hp, the queue length of a node
with ideal LS is bounded by T Hy.

To illustrate these modifications, consider the threshold pattern “1 2 3” (ie., TH; =
1,THy =2,THy = 3) as an example. Let g; represent the probability of QL = i. Then,

ap o + ap @1

do
q = of@taiataq

@2 = 3@+t argetang

3 = (l-og-oj-a3)p+(l-og-0f-03)q
+(1-ap—a1) g2+ (1—a0) a3
g = 0 forallk > 3. (4.3)

Note that the assumption that a task takes one unit of time to complete is used in the

above equation.

As mentioned earlier, Eq. (4.3) represents ideal load sharing, i.e., an overloaded node
can always locate L-state nodes to which tasks can be transferred. In reality however, an
overloaded node may not be able to find any lightly-loaded node from its buddy set to share
its load with. An embedded Markov chain model is developed below to handle this realistic
case. In our LS method, the tasks in a node will be transferred to other nodes if its queue
length exceeds THy+1 (T H}) upon (before) completion of a task. A node can receive tasks
from other nodes only when QL < THy. To transfer surplus tasks, the sharing capacity
of each buddy set must be greater than or equal to the total number of surplus tasks in
that buddy set. I this condition does not hold, the queue length of an overloaded node
could grow larger than T Hy. To calculate the probability of a nodle’s queue length growing
larger than T'Hj, the following parameters are introduced. Let ¢; (9;) be the probability of

11



exactly (at least) # nodes being available to share the surplus tasks within a buddy set. So,
0;=1- Z};_:ID €k, for 1 £ 1< n, and §; = ¢; = 0, for i > n, where n is the size of buddy set.
Assuming z; > 0 for the previous example with threshold pattern “1 2 3”, the number of
surplus tasks in a node is ko, = z; + k; — THy. When ko, = 1, 2,41 = THj, and the node
will not transfer any task. When ko, = 2, z;47 = T Hj, if there is at least one node available
for load sharing in its buddy set, and z,4; = TH} + 1 if none of the nodes in the buddy set
is available for load sharing. Similarly, when ko, = £ > 2, 2441 = T Hj, if there are at least
£~ 1 (< n) nodes available in its buddy set, or z;4; = T Hj + 1 if there are exactly £ — 2
nodes available, or, in general, z,4; = THj + j when there are exactly £ — (§ + 1) nodes

available. Then, the state transition relation can be rewritten as:

4

k, ifzy =0and k, < THjy
THy with prob. 0k, _7y,, or (T'Hp + 1) with prob.
—— Eky—THj,—1y+--, OF k; with prob. e ifz; =0and k; > TH;,
T+ ki —1 ifz; >0and z; + k-1 < TH;,
T Hy, with prob. 8;,4x,—7H,-1, or (THj+ 1) with prob.
| Ezetke—TH),—2y++-» O (24 + k¢ — 1) with prob. gg ifzy >0and 24+ ki =1 > TH;.
' (4.4)

Using the above relation, gi’s can be derived. For example, when the threshold pattern

“1 2 3” is chosen, one can derive:

==] 4 s
(a:’; + E b; cr?+3) (go+q)+ Z (“4-—" + Z 0; aj+4._.') gi

1=1 i=2 J=1

43

(== o0
+y ( > 8 a_-.-'_.'+4) G

1=5 \j=i—4

" k+1 [ o e =
& = Y eoh(ota)t Z (Z €; Ctj+k—-:'+l) G+ Y, (E Ej4ik-1 Otj) g

i=0 i=2 \J=0 i=k42 \Jj=0
for k=4,...00. (4.5)

Note that the gi's for ¥ < THy = 3 are the same as shown in Eq. (4.3). ¢i’s for other
threshold patterns can be derived similarly.

Although the above equations can be used to calculate the distribution of queue length,
ex’s and fi’s are in practice too complex to derive. For example, e is the probability of

having k nodes available for load sharing in an n-node buddy set, the calculation of which
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requires to consider n!/(n — k)! k! different possibilities. The total number of possibilities
that need to be considered for the caleulation of g for k = 1,...,n is 2". Our analysis
shows this number to be over 1,000 patterns when each buddy set contains 10 to 15 nodes.
Furthermore, each of these patterns needs to be analyzed separately, since the probability
of a node being in L state depends on the state of other nodes in the buddy set. Thus, it
is extremely tedious to derive these parameters. To alleviate this difficulty, we develop an
approximate model, called the upper bound model, and an approximate solution to Eq. (4.4).
The former is used to derive £;'s and a rough idea on the goodness of our LS method, while
the latter to obtain (close) approximate gx’s from Eq. (4.4) using the parameters derived
from the upper bound model. The real solution will be shown to be (i) upper bounded by

the solution to the upper bound model and (ii) very close to the approximate solution.

4.1 Upper Bound Model and Solution
4.1.1 Upper Bound Model

This model is derived under the assumption that every node can always transfer only
one surplus task to another node. (The rest of surplus tasks are forced to queue at that
node.) Since on the average a half of the computation capacity in each buddy set has
to be available for load sharing,® the real probability of a node being unable to transfer a
surplus task is always less than that derived from this model. Moreover, the state transition
relation in this model is much simpler than the exact model. If k,, = 1 at a node, then
Z4+1 = THp, and the node will not transfer any task. If ko = 2, then 2,4y = THj with
probability #; = 1 — go; otherwise, z;4; = T H}, + 1 with probability ¢q. However, when
kov = £, 2441 = THy + £ — 2 with probability 6;, or z¢41 = THp + £ — 1 with probability

®Otherwise, load sharing is usually infeasible and thus should not be considered.
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€o. Summarizing the above leads to:

f

kg 1fz;=0a.nd kgSTHh

(k¢ — 1) with prob.6;, or k,with prob.eg if z, =0 and k; > THj,
Tip1=4 zp+ k-1 ifzg>0and z;, + k; -1 < TH,,
(z¢ + k¢ — 2) with prob. 6y, _
or (z;+ k; — 1) with prob. eg ifzy>0and z; + k, — 1> TH,,.
(4.6)
The distribution of queue length can now be derived from this equation as follows:
% = og@ptogq
@1 = aigptoiatoog
@2 = aptoantagtang
g3 = [e3+(1-¢c)ajlao+[ei+(1-¢€)afla +[az+(1—¢)as]e
Har+(1—€)az)gs+ o+ (1 —€)or]ga+ (1 —€) g gs
g4 = [cai+(1-e)of](o+a)+[cas+(l—c)as]gz+[caz+(1—¢)as)g
Hear+(l-e)ag]ga+eac+(1-€)en)gs+ (1 —€) ao gs
k41
o = [eop+(1—¢)aiu](@+a)+ D [eok—ji+ (1 —€) ak_jsa] g5
=2
+(1 =€) ag gr4a forall k > 4, (4.7)

where ¢ = g9. The above equations can be rewritten in vector form: Q = A Q, where
Q = [go,--,qn}7, Ais an n x n coefficient matrix, and n is the size of buddy set. Using
the above equations and Y74 ¢; = 1, one can solve for @, which is called the upper-bound

solution.

Solutions to the upper bound model can be shown to bound the real solution as follows.
The only difference between the exact model Eq. (4.4) and the upper bound model Eq. (4.6)
is that transitions to queue lengths THy, THy+1,..., (z:+k; —2) in Eq. (4.4) are combined
into a single transition to QL = z; 4 k; — 2 in Eq. (4.6). Since z, + k; — 2 > THy, the
transition to a queue length greater than T'H, is exaggerated in Eq. (4.6). Thus, the solution
to the exact model will be bounded by that to the upper bound model when k > T H;.
Note that the upper bound model is identical to the exact model when k < TH
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4.1.2 Solving Upper Bound Model

The upper bound model is analyzed first to get a rough idea on the goodness of our
LS method. A*’s and & must be known before solving the upper bound model for g¢’s. On
the other hand, these parameters depend on g’s, and thus, the model cannot be solved for
gr's without knowing A*’s and e. A two-step approximation approach is taken to handle
the difficulty associated with this recursion problem. In the first step, ¢ is set to zero, and
the model is then solved for A and g’s. The resulting gi’s are still an upper bound for the

true solution. The second step is to compute € by using the gi’s obtained in the first step.

By setting ¢’s to zero, gi’s for £ > 3 in the upper bound model become:

3 = (e53+ai)(go+a)+(e2+a3)e+(a1+a2) a3
+(ao+ 1) g4 + o gs

g = oz(+a)+asget+oesp+arg+arg+aog
k+1
g = iy (@+a)+ ) ak-jr20i+aogrsr forall k> 4. (4.8)

j=2
The above equation can be solved by using an iterative method. Imitially, A* is set to

zero. One can compute g;'s and then A* from:

XS = Lf:(k-s)a;] (Go+a@)+). [i (k—4+f)ﬂk] q;+i lwkak] g. (4.9)
=4 g

1=2 | k=5-1 i=5

Note that AS is the rate of task transfer out of a node. If all nodes’ external task arrival
rates are identical, then A* = AS. Otherwise, A* must be calculated by Eq. (4.11). After
calculating A?, A* is obtained by adding A° to A%, and then g’s are recalculated with the
new A*, which will, in turn, change A*. This procedure will repeat until gx’s and Af converge

to fixed values. (The convergence will be proved later.)

d
Lemma 1: d_?\f‘ satisfies the following properties:
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% | 35

<1 Vk.

Proof: Since the probability of a system being idle (go) will decrease as the task arrival
rate increases, the first property holds. The second property holds because the sum of all
gk’s is equal to one, and thus, the sum of the variations of all g;’s must be equal to zero. The
last property can be proved by contradiction. Suppose | d g |> 1. Then g may become
negative or greater than one, if the variation of A* exceeds one, a possible event when an

L-state node is surrounded by more than one H-state node. Since g is the probability of

QL = k, it can be neither negative nor greater than one. Contradiction. O
d At
Lemma 2: 0<ﬁ <1l
Proof:
d M = o (G0 @ ql)
= = Lg(k 3) d/\'] (go+q)+ L;(k_:;)ak] (W'l_ﬁ
4 =] qu
+z Z (k—4+1)ox +Z Zka T
i=2 |k=5-1 i=5 =0

= (l-ap-ofj-a3)(0+a)+ Li(k-—@cﬁc] (%+§%)

=4

3 Lfﬁ (k—4+=‘)ak] 45 5 szak]

=2 =5—1 =3 =0

According to the definitions of a; and af, each summation in the above equation is equal to
or less than the average task arrival rate which is less than one in a stable system. (Recall
that each node’s service rate is assumed to be unity.) By the second and third properties of
Lemma 1, the sum of the last three terms will be less than one. Furthermore, the first term
will be much less than one, because the first three *’s usually dominate the determination

of transition probabilities. Thus, the lemma follows. o

Theorem 1: gi’s and A derived from the above iterative method converge to fixed values

in a finite number of steps.

Proof: Let ()d A* and ()d A be the variations of A* and ! at the ith iteration, respec-

tively. These parameters at the i + 1** iteration are related to those at the i*® iteration

16



(+1)gat = _d_A’ OFBY

dA*
(1) gas = @+t _ @yt = G+1) )¢,

Since |§25| < 1 by Lemma 4, d M at the (i + 1)t iteration will be smaller than d A* at the
ith iteration. Since the variation of A* at the (i + 1) iteration is equal to that of A* at the
(i 4 1)*h iteration, we get (t1)d Xt < ()4 Xt and ((+1)dA* < ()d A*. Thus, the variation
of A! will decrease to zero after a finite number of iterations, and so is A*. Substituting the
convergent A* and A* into Eq. (4.8), unique gx’s can be determined, i.e., gx’s converge, too.

O

In fact, Af and A* are shown to converge after only two to three iterations in our analysis.

This indicates that the derivatives of A* and gx with respect to A* are much smaller than 1.

4.1.3 Derivation of ¢

The main difficulty in deriving &x’s lies in the fact that the queue lengths in a buddy set
depend on one another. Thus, the dependent LS environment is converted to an independent
environment by using the Bayes theorem. To facilitate the description of our approach for

an (n + 1)-node buddy set, it is necessary to introduce the following variables.

e Ni: the j*h preferred node of N;.

e z;: the N;’s queue length.

e z;;: the queue length of N;

o zi;: the queue length of the k** preferred node of N i

o 25 the rate of task transfer out of ;.

® )\ﬂ»: the rate of task transfer out of N;

o )\f": the rate of task transfer out of IV; given that N; is not in sharing mode.
© z\;f’;?: the rate of task transfer out of N;: given that NJ‘: is not in sharing mode.

o Al the rate of task transfer into N;.
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It is easy to see that A5t > A5 since tasks are not actually transferred out of a node unless
the node is in H state and A5 is the average transfer-out rate over the entire time period

of interest.

Let Ny be the node under consideration, then

™
|

P(zoy > THy,...,%0, 2 THy) (4.10)
Ao = Ay P(zo < TH)+ A3, P(zo < TH;, 23, > THy)
+A53 P(z0 < THy 23y > THy, a9y > THy) + -+
+M0n P(zo < THy 29, > THy, 2% > THy,...,2%, > THy).  (411)

Note that A§ derived from Eq. (4.11) is equivalent to that derived from Eq. (4.9) if all nodes

have the same external task arrival rate. Using Eq. (4.9) in such a case, forj =1,...,n

M=% L)of (k_4+£)ak] Pi-"h T i L}:k ak] P—ﬂg (4.12)

=2 =5=i =5 =0

where P™*h = 1 - g5 — ;. Using the Bayes formula, the probability of both N 2 and N? not
being in sharing mode can be calculated by

P(Igl >TH¢,zo3 2 THf) — P(TOI > T.Hf) P(mog >TH; | o1 > T.Hf) (4.13)

Since the dependence between queue lengths is included in A*, its effect can be reflected
by adjusting the rate of task transfer into N given that NJ is not in sharing mode. So,
the conditional probability P(zoy > THy | z0y > THy) can be equated to P(zq; > THy),
while A* of N must be adjusted to reflect the effect of N¥’s unavailability. As shown in
Eq. (4.12), such an adjustment will increase the rate of task transfer out of N ¢ given that it
is not in sharing mode, which will, in turn, increase N$’s task transfer—in rate. Moreover,
No will select NJ as the most preferred node given that N 0 is not in sharing mode, and thus,
the task transfer-in rate of N should be recalculated. For convenience, let N, represent

the node NP under consideration, then

Ay = A5 P(zo < THI)+ A3, P(zo < THY) + 335 Pz, < TH,32, > THy, 22, > THy)
+-+ 4 A3, P(z2 < THy 22, > THy, 22, > THy,... 2%, > THy). (4.14)

The first two terms of Eq. (4.14) represent the transferred-in tasks from the Nj’s most

preferred node and Ny (= N2). Since N? is unavailable, N, becomes the most preferred
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node of both N? and Np. Clearly, N,’s A* will be larger than those of Ng and NP. Hence,
it is likely to switch to no-sharing mode when N is in no-sharing mode. Similarly, the
probability of all N2, N2, and NJ not being in sharing mode can be calculated as:

P(zo1 2 THy,z02 2 THy, 703 2 THy)

P(zo1 > THy, 202 > THy) X

P(zo3 > THyf | zo1 2 THy, 202 2 THy)

= P(z03 > THy) P(z07 > THy, 202 > THy)

= P(zo3 > THy) P(z01 > THy) P(zoz > THy).

A* of N2 and N must be recalculated as described above. The correctness of Eq. (4.11)
can be verified as follows. When all nodes in the system have the same distribution of queue

length and the same A5, Eq. (4.11) can be simplified as:

X, = A5 P(zo < TH)+ X5, P(zo < TH)) P(z% > THy) +---
+ Aow P(zo < THi) P(a3, > THy) P(z0, > THy)--- P(z5, 2 THy)
AS P(zo < TH) [1+ P(z%y > THy) + P(s3, > THy) + -+ + P(a3; > THy)"|

1-— P(In 2 T.Hf)n'l'l . 1
l—P(’J:g] ?_THf) l—P(Igl ZTHj)
1
P(zy1 < TH))

= A P(ﬂ':o < TH;) ~ A5 P(xo <TH;)

= M P(z0 <TH) ~ A%,

Consider a 4-cube system as an example, in which, without loss of generality, Ny can
be viewed as the center node for the derivation of €. From Fig. 2, the Ng’s preferred
list is NyNoNyNgNgN1oN1o N3 NsNgN14N13N11 N7. The first 4 nodes are Ny’s immediate
neighbors. Since the nodes near the end of the list are unlikely to be selected for load
sharing, the adjusted task transfer-in rate of these four nodes can be approximated by
adding A3 P(zo < T H;) to the A? of these nodes. Since increasing task transfer-in rate will

change queue length, the gi’s of these nodes need to be recalculated for

P(z, > THyf,zo > THy 24 2 THf,IB > T.H_f) = P(zy2TH;)P(z; 2 THy) X
P(z4 2 THy) P(zs 2 THy)
= ), (4.15)

Note that the states of these four nodes are different from that of Ng, because their task

" transfer—in rates are higher than that of Ny. Thus, these nodes are more likely to be in
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H-state than Np. Similarly, one can calculate the adjusted task transfer—in rates for N5 —
Nig. As shown in Fig. 2, each of these nodes has two of the previous four nodes in its entry-1
list. Furthermore, as the number of H-state nodes increases, tasks will be transferred to a

less preferred node of Ny. The adjusted task transfer-in rates of these nodes are:

A6 = M43 P(zg < TH;) P(zr > THy) + A P(zs < TH) P(zr > THy)
+ )5 P(z¢ < THy)

pLE A4 AZ P(z0 € TH;) P(z1; > THy) + A3 P(z10 £ TH))
+ A3® P(z10 < TH) P(z11 > THy) P(z14 > THy)
+ At P(z10 < TH) P(z11 2 THy) P(212 > THy) P(z14 > TH;)

Mg = M43 P(z1a < TH) P(z13 > THy) P(z14 2 THy) + 0§ P(z12 < TH)
+ (AP + 23 +A3) P(er < TH) P(ass > THy) P(ayg > THy)

Moo= X+ AP P(zz S TH)+ A P(es < TH) + XS P(zs < TH)
+ (AP +25%) P(zs < TH) P(e7 > THy) P(ay, > THy)
+ (A +A3%) P(zs < TH) P(zr > THy) P(zyy > THy) P(ays > THy)

M = XN+ P(zs < TH) + A P(zs < TH) P(z7 > THy) + A§ P(zs < TH))

I

+ A3* P(zs < TH) P(z7 > THy) P(z13 > THy)

+ (A +A}) P(zs < TH) P(sr > THy) P(xe > THy) P21 > THy) P(z15 > TH;)
M = A+ )3 P(ze < TH)+ A P(zg < TH)) P(z11 > THy) P(z13 > THy) + A5 P(zo < TH)

+ (A + 28 + 25 +2%) Plzo < TH) P(ay > THy) P(ass > THy) Psxs > THy).

Once the task transfer-in rates of entry-2 nodes are adjusted, the probability of having all

entry-1 and entry-2 nodes in no-sharing mode can be calculated as:

P(£1ETH‘f,a':zzTHf,...,$92THf) = P(ElzTHf)X
P{Eg Z T.Hf)--'P(mg 2 TH}) (4.16)

= (10,

Similarly, one can calculate the proability of all other nodes in a 4-cube system being

unavailable as £(15) = ¢,
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4.2 Approximate Solution

Although gx’s and € (= &p) can be derived from the upper bound model, it is still very
tedious to calculate ez Yk > 0, because there are too many possibilities to be considered
and each of them is difficult to analyze due to the mutual dependence of each node’s load
sharing in a buddy set. Moreover, the solution to the upper bound model fails to include
the effects of buddy set size and threshold patterns on the capability of meeting tasks’
deadlines, while the simulation results in Section 5 did show significant differences when
these parameters were changed. So, it is necessary to derive a solution which is simple
but closer to the real solution to Eq. (4.4) than the upper bound solution. Since there are
n!/(n — k)!k! possibilities in calculating e in an n-node buddy set, these possibilities can
be approximated by only one possibility in which a node is in no-sharing mode with the
largest probability. This possibility occurs when all other nodes in the buddy set are in

no-sharing mode.

Consider the Ng’s preferred list in Fig. 2 again. The probabilities of N5 to Ng being in
no-sharing mode are different from one another due to the adjustment of task transfer-in
rates given that more preferred nodes are in no-sharing mode. As the number of no-sharing
nodes increases, the adjusted task transfer—in rate of the next preferred node increases.
Eventually, N7, the least preferred node of Ny, will receive the largest number of transfer-in
tasks, thus moving it in no-sharing mode with the highest probability within Ng’s buddy
set. For convenience, let P2% and P"* denote the probabilities of N7 being in sharing and

no-sharing mode, respectively. Then, ;s can be approximated by:

g = G-_% (Prahyn—k ( pahyk (4.17)

Substituting €x’s derived from Eq. (4.17) into Eq. (4.5) and applying the iterative method
discussed in the previous subsection, we can easily obtain an approximate solution. The
calculated results are listed in Tables 1 and 3 in comparison with the results derived from

the upper bound model and simulations (to be discussed in the next section).

Note that the e;’s derived from Eq. (4.8) are essentially the same as those derived from
Eq. (4.7) since both have the same queue state equations for QL < T Hj, which are dominant
in the probability calculation.
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5 Performance Analysis

The performance of the proposed LS policy is evaluated with the upper bound model,
the approximate solution, and simulation. The first two are used to derive the distribution
of queue length at each node, the probability of meeting task deadlines, and analyze the
effects of buddy set size, the frequency of state changes, and the average system sojourn

time of each task. On the other hand, simulation is used to verify analytic results.

5.1 Analytic Results

The proposed queueing model can be applied to any arrival process, but the transition
probability ek, must be given prior to the calculation of gi’s with Eqgs. (4.4) and (4.8). To
demonstrate the main idea of our LS method, we present some numerical results for the
case when both arrivals of external and transferred-in tasks follow exponential distribu-
tions. (Note, however, that our LS method and models are not restricted to exponential
distributions.)

5.1.1 Distribution of Queue Length

The distributions of queue length for two different external task arrival rates in a 16-
node system are calculated from the upper bound model and the approximate solution,
and compared with simulation results as well as with the case of no load sharing (Table
1). The gx’s calculated from the upper bound model and the approximate solution are very
close to each other when k& < T'Hj. This was expected because the two differ only when
k > THy. This fact also ensures the accuracy in calculating ¢, since it was computed with
the gx’s derived from the upper bound model and then used to derive approximate gi’s from
Eq. (4.4). Moreover, the distribution of queue length obtained via simulation is shown to
be very close to the approximate solution for all k¥ and is bounded by that obtained from
the upper bound model when k > THy,. Since the approximate solution is always very close

to the real solution, we will use it in all the following discussions unless stated otherwise.
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5.1.2 Probability of Meeting Deadlines

A task is said to be missed if its system sojourn time” exceeds a given deadline. Ac-
cording to our queueing model, the completion time of a newly arriving task is equal to the
current queue length plus one unit of time. Since the probability of QL > THy is quite
small, one can choose TH}, to be one less than the given deadline such that the probability
of missing deadlines, or simply called the missing probability, becomes the probability of
encountering QL > THj at the time of a task arrival. Clearly, the missing probability
depends on the given deadline and system load. However, by selecting proper threshold
pattern and buddy set size, it is possible to minimize the missing probability. Figs. 4 and 5

show plots of missing probabilities vs. task deadlines for different threshold patterns.

Generally, the missing probability increases as system load gets heavier (Fig. 6) and/or
the deadline gets shorter. By choosing an appropriate threshold pattern, e.g., “1 2 3
in Figs. 4-6, the missing probability can be reduced to a small value even when system
load changes (except when the system is heavily-loaded, e.g., A* > 0.9). The analytic
results also show that the choice of a threshold pattern is sensitive to system load. For
example, threshold pattern “0 1 1” results in a small missing probability when the system is
lightly-loaded, while resulting in a much higher missing probability as system load increases.
Threshold pattern “1 2 3” is found to yield a reasonably small missing probability for a wide
range of load density (0 < A® < 0.8). Fig. 4 shows an interesting result of the upper bound
model: missing probabilities for different threshold patterns are quite close to each other,
and thus, difficult to distinguish which pattern is better over the others. This is opposite
to what has been shown by the approximate solution in Figs. 5 and 6. That is, the upper
bound model exaggerates the probability of switching to a queue length greater than THyp,
and thus, the effect of threshold pattern becomes unimportant. Since threshold pattern “1
2 3” exhibits the best performance among the three patterns considered, the performance
with this pattern is further compared with simulation results. As shown in Figs. 7 and 8,
the missing probability obtained from the simulation is always upper bounded by those

obtained from the upper bound model and is very close to the approximate solution.

"The system sojourn time of a task is composed of its execution time, queueing time, and task transfer

time.
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5.1.3 Average System Sojourn Time vs. Missing Probability

The average system sojourn time can be obtained by dividing the sum of all tasks’ system
sojourn times by the totz;.l number of tasks processed. Mathematically, the average system
sojourn time is equal to the expected task execution time, Y §2, (kK + 1)gr. The average
system sojourn time is calculated for several different threshold patterns and buddy set sizes
as presented in Table 2. One interesting result found in this calculation is that the lower
TH; and THj, the smaller the average system sojourn time results, and that buddy set
size shows only minor effects on the average system sojourn time. This is in sharp contrast
with the results reported in [4], where the average system sojourn time under the shortest
queue policy was shown to be only slightly smaller than that under the threshold policy.
In our algorithm, the shortest queue (threshold) policy is equivalent to selecting TH; = 0
and THy = 1 (TH; > 0). As shown in Table 2, the threshold pattern with TH; = 0 and
THy = 1 always results in a substantially smaller average system sojourn time than the
pattern with TH; > 0. This is the advantage resulting from our state-change broadcast
since the I/O overhead for collecting state information in the case of TH; = 0 is essentially
the same as the case of TH; > 0. However, the I/O overhead associated with the shortest
queue policy is higher than that of the threshold policy due to its required probing of other
nodes [4], offsetting the potential gain to be made by transferring tasks to a node with the
shortest queue. Consequently, our LS algorithm outperforms sender-initiated LS algorithms

even when the average system time is used to measure their performance.

Another important result is that a threshold pattern that results in a lower average
system sojourn time does not always yield a lower missing probability. For example, consider
the buddy sets of size 10 in Tables 2 and 3. Pattern “0 1 2” results in a smaller average
task system sojourn time than “1 2 27, but a larger missing probability than “1 2 2” when
the deadline is greater than 2. Moreover, some thresholds may result in almost the same
average task system sojourn time but yield quite different missing probabilities, e.g., “0 2
3” and “1 2 3” when the deadline is greater than 3 in Table 3. Hence, those approaches
based on minimizing the average task system sojourn time alone may not be applicable to

the analysis of real-time systems.
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5.1.4 System Utilization

The system utilization is defined as the ratio of external task arrival rate (A°) to the
system service rate, which is unity in our LS model. (Thus, the system utilization is simply
A¢.) Since the missing probability depends on system workload (Fig. 8), we can solve
Eq. (4.8) to derive A® as a function of gx’s and then the maximum system utilization can
be obtained by equating grp,+1 to the specified missing probability. Some of calculated
results are plotted in Fig. 9. This is in sharp contrast to the common notion that real-time

systems have to be designed to sacrifice utilization for a lower missing probability.

5.1.5 Buddy Set Size and Preferred List

The effect of changing buddy set size on the missing probability can best be explained by
the approximate solution as shown in Fig. 10. Buddy set size affects the missing probability
significantly when it grows from 4 to 10 and A® > 0.7, but its incremental effect becomes
insignificant beyond 10. Actually, there is little notable decrease in the missing probability
when buddy set size grows beyond 15. Surprisingly, the missing probability for a 4-node
buddy set is about three orders of magnitude less than those without LS when the system is
lightly loaded (A® = 0.5), and is about the same as those for buddy sets of size larger than
10 when the system is heavily loaded (A® > 0.8). So, buddy set size can be chosen to range
from 10 to 15, regardless of the system size. The most interesting result is found to be that
the missing probability in a large system (of 64 nodes in Table 4) is much smaller than that
of a small system (of 16 nodes in Table 3). For example, consider threshold “1 2 3” with
a 10-node buddy set at A = 0.8. The missing probability of a 64-node system is about 3,
4, and 20 times smaller than that of the 16 nodes system when the deadline is 4, 5, and
6, respectively. This significant improvement was found for all other threshold patterns,
and thus, it is concluded that the larger the system size, the better the peﬁ'orma.nce of the
proposed LS method will result. Note that the I/O overhead for broadcasting state changes
remains unchanged and independent of system size because buddy set size is fixed (to 10-
15). Furthermore, the incremental decrease in missing probability becomes insignificant

when buddy set size is over 15 (Table 4).

Use of buddy sets and preferred lists in our LS algorithm plays a major role in lowering



the missing probability in a large system. As discussed in Section 3, the buddy set of a
node consists of the nodes in its physical proximity, and each node in the b;lddy set is
selected according to the order of its preference. Moreover, preferred lists are constructed
in such a way that each node is the i** (i = 1...n) preferred node of only one other node
and the preferred lists of the nodes in the same buddy set are completely different from
each other. As a result, the surplus tasks within each buddy set v;rﬂl be evenly shared by
all lightly-loaded nodes in the system, rather then overloading a few lightly-loaded nodes
within the buddy set. As the system size increases, the percentage of common nodes in
the preferred lists of a buddy set gets smaller, and thus, the surplus tasks are more evenly

distributed in the system, resulting in a better performance.

5.1.6 Frequency of State Change

In our LS method, each node needs to broadcast change of state to all the other nodes
in its buddy set. Since a state change occurs when a node switches from L-state to H-state

and vice versa, the probability of a state change becomes:

P(zk41 S THi|zk, 2 THy) + P(zk1 2 THylok, < TH).

The computation results of Table 5 showed that the frequency of state change can be
reduced to 10 - 15% of the total number of arrived tasks by setting TH ; — TH; = 2. Note
that this frequency becomes about 100% of the number of external task arrivals when the
threshold pattern is set to TH; = 0 and THy = 1. The resulting high frequency of state
change should rule out this type of threshold patterns.

The I/O overhead for collecting state information in our LS method is determined by
the frequency of state change and buddy set size, while it was determined by the number
of task transfers and probing in [4]. Since the frequency of state change can be controlled
- by adjusting the difference between T'H; and T'Hy, this frequency with threshold “1 3 3"
and A° > 0.7 is found to be about the same as the percentage of external arrivals that are
transferred out. Moreover, transferring one task may require to probe 5 to 6 other nodes
[4] and each probe generates two I/O messages (one for request and one for response) in
sender-initiated methods, whereas each state-change broadcast in our LS method generates

n messages, where n is the buddy set size. The I/O overhead for broadcasting state changes
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for threshold “1 3 3” and a 10-node buddy set is about the same as that in a sender-initiated
approach. However, the time for selecting a destination node in our method is much shorter
than that in any sender-initiated approach, because, in our approach, transfer of a task can
be made upon its arrival without probing any other nodes. Besides, each task transfer in
our LS method will take less time than other LS methods, because use of a preferred list

will usually locate a receiver in the sender’s physical proximity.

5.1.7 Task Transfer and Broadcasting Delays

When a node selects, and transfers a task to, an L-state node, the L-state node may
receive an external task and move to H-state before receiving the transferred task. In this
case, the transferred task will actually arrive at a node in H-state. Thus, the transition
probability with non-zero task arrivals (ay for k > 0) to H-state is larger than that used in
Eq. (4.5), where transferred tasks are assumed to be accepted only when a receiving node
is in L-state. One can estimate this probability and adjust the corresponding aj’s. The
broadcasting delay has the same effect as task transfer delay.

Although these delays may affect the queue distribution, the missing probability can
be made insensitive to them by properly choosing a threshold pattern. For example, a
task which arrives when QL = TH; will not be transferred again if TH, > THy, eg.,
threshold “1 2 3”, but it will be retransferred if THy = THy, e.g., threshold “1 2 2”.
Since retransferring tasks induces higher I/O overheads without improving the capability
of meeting the deadline, the threshold patterns that are semsitive to these delays may result
in a higher missing probability than those that are not. The effect of these delays on the

missing probability is investigated further in our simulation.

5.2 Simulation Results

For our simulation the average load density is changed from 0.5 to 0.9, and buddy sets
of size 4, 10, and 15 are considered. Ten threshold patterns are chosen out of all possible
combinations for the simulation of a 4-cube system and the results are given in all tables
except for Table 2. A few selected thresholds for a 6-cube system are also simulated and

listed in Table 4. The time for transferring a task between two nodes within a buddy set is
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assumed to be 10% of the task execution time and the time for broadcasting a state change

to one of the nodes in a buddy set is assumed to be 1% of the task execution time.

In most cases, simulation results are consistent with, and close to, the approximate’
solution. However, the analytically derived gx’s for k > T H}, are always less than those
obtained from simulation when the system is lightly-loaded (A® < 0.5) or heavily-loaded
(A® > 0.9), especially in the threshold patterns with TH; > 0. This discrepancy may have
been caused by the delays of transferring a task and broadcasting state changes. The effect of
setting T'H to be larger than T H is also observed in the simulation. The percentage of task
retransfers is higher when TH; = T Hj, but lower when TH; < T Hy,. Since retransferring
tasks will not improve performance but increase I/0 overheads, the threshold pattern with
THy < THy is a better choice than the pattern with TH ¢ = THy. This observation also
explains why the missing probability associated with threshold “1 2 3” is smaller than that
of “122” when A® > 0.7, deadline > 3, and buddy set size > 10.

To study the effect of changing task transfer costs, we ran simulations with task transfer
costs 5, 10, 20, and 30% of the task execution time. As shown in Table 6, the missing
probability of threshold “1 2 3” remains almost unchanged. Summing up all previous
-results, threshold “1 2 3” appears to be suitable for a wide range of system load. Note that,
although the missing probability of threshold “1 2 2” is usually close to that of threshold
“12 37, the task transfer rate associated with “1 2 2” is much higher than that with “1 2
3”. Thus, considering cost-performance efficiency, threshold “1 2 3” is a better choice than
“122%

5.3 Remarks

There are several advantages of using the upper bound model and the approximate solu-
tion, as compared to simulations. First, the results derived from the upper bound model can
be used to guarantee the specified system reliability, because the actual missing probability
is always less than that derived from the upper bound model. Second, system utilization can
be analyzed by using the analytic models. Third, our analytic models provide, at almost no
cost, many pieces of useful information with high accuracy. For example, any meaningful
simulation of our LS method requires hundreds of CPU hours (in a computer as powerful as

VAX-11/780) to get an accuracy of 10-€ in the calculation of gk’s for a system of moderate
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size. Moreover, simulation may be able to provide information only for a particular system

workload; it is too costly to generate gi’s with simulation as a function of system workload.

6 Conclusions

We have proposed and analyzed a new LS method based on the broadcast of state
changes. By selecting an appropriate threshold pattern and buddy set, one can reduce the
missing probability to a small number, and thus, the proposed LS method has high potential
use for various real-time applications. The I/O overhead for broadcasting state changes can
be controlled to an acceptable level by selecting an appropriate threshold pattern, thereby
making the proposed LS method be cost-effective.

There are several issues worth further investigation. First, it is necessary, but difficult,
to derive an exact analytic formula for the probability of a task missing its deadline. Second,
if each task has a different execution time, queue length is not sufficient to determine the
workload at each node. In such a case, one must consider the actual task execution times
and use the cumulative execution time to determine the load of each node. Furthermore,
if a node thinks itself to be lightly-loaded and broadcasts its availability to other nodes, it
may receive a task whose computation is too involved for the node to complete in time.
Thus, the state of a node must contain a sufficient amount of information to ensure that the
lightly-loaded node can process all transferred tasks in time. Third, if the task execution
time is a random variable, a continuous-time Markov model must be used to simulate and

analyze system performance,

Optimization of the tradeoffs existing in the proposed LS method is an interesting
design problem of its own. For example, there is a tradeoff between the buddy set size and
load sharing capability. The I/O overhead associated with state-change broadcasts can be
reduced by shrinking the buddy set size, but this will limit the load sharing capability. All

of these issues are matters of our future inquiry.
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(A¢ =0.5) Model | Simulation | Approximation | Upper bound | no load sharing
Queue Length

0 0.5037 0.4987 0.4992 0.5000

1 0.3316 0.3317 0.3321 0.3244

2 0.1254 0.1289 0.1278 0.1226

3 0.0387 0.0406 0.0398 0.0377

4 3.13x10-7 | 1.43x 10-8 9.66 x 10—* 0.0109

5 — 1.21 x 10-° 1.24 x 10— 0.0031

6 — 9.09 x 10— 1.3 x 10-5 8.84 x 10~

7 — 5.96 x 10—12 1.4 x 10-8 2.52 x 104

8 — 3.35 x 10-13 1.33 x10-7 7.16 x 10~5

9 _ 1.46 x 10-14 1.28 x10-8 2.04 x 10-5
(A*=0.8) Model | Simulation | Approximation | Upper bound | no load sharing
Queue Length

0 0.2213 0.2264 0.2185 0.2004

1 0.3317 0.3194 0.3136 0.2456

2 0.2656 0.2675 0.2651 0.1898

3 0.1810 0.1862 0.1853 0.1278

4 1.69 x 10~* | 3.34 x 10~4 0.0135 0.0834

5 201x10% [ 5.94x10°3 0.0032 0.0542

6 8.98 x 10~ | 8.99 x 10-5 0.0007 0.0353

7 3.21x10-% | 1.18x 10-¢ 0.0001 0.0229

5 9.76 x 10~7 | 1.36 x 107 1.36 x10-6 0.0149

9 6.83 x 10-7 | 1.41x 10-8 1.38 x10-7 0.0097

Table 1. Comparison of distributions of queue length derived from the upper bound
model, the approximate solution, and simulation with threshold pattern ““1 2

3" and a buddy set of size 10.



(A% = 0.5) Buddy set | 4 10 15
Threshold
0 1 1 1.414 | 1.394 | 1.401
0 1 2 1.609 | 1.602 | 1.605
0 2 2 1.608 | 1.608 | 1.622
0o 2 3 1.686 | 1.695 | 1.700
1 2 2 1.618 | 1.618 | 1.625
1 2 3 1.698 | 1.698 | 1.701
1 3 3 1.700 | 1.700 | 1.703
2 3 3 1.701 | 1.701 | 1.703
No sharing 1.750 | 1.750 | 1.750

(A¢=0.8) Buddy set | 4 10 15
Threshold
0 1 1 1.918 | 1.692 | 1.651
01 2 2.236 | 2.065 | 1.033
0 2 2 2.120 | 2.075 | 2.071
0 2 3 2.426 | 2.382 | 2.380
1 2 2 2.123 | 2.109 | 2.110
1 2 3 2.423 | 2.407 | 2.405
1 3 3 2.427 | 2.422 | 2421
2 3 3 2.475 | 2.472 | 2.473
No sharing 3.370 | 3.370 | 3.370

Table 2. Average task system time when A® = 0.5 and A* =0.8.



Threshold
(A¢ = 0.5) 011 012 122 123 233 No Sharing
Deadline
2 0.0007 0.1296 0.1339 0.1642 0.1661 —
3 4.81 x 10~ | 8.82x 10~* | 1.73x 10~* 0.0388 0.0392 —
simulation 4 3.10 % 107% | 5.32x107% [ 1.45x 1077 | 8.13x 1077 | 6.59 x 1077 =
5 2.85 x 10~7 <10°7 <10°7 <1077 <1077 —
6 <1077 <1077 <1077 <1077 <1077 —
2 0.0004 0.1370 0.1446 0.1681 0.1691 0.1756
3 510 % 10™° | 8.41x10~° | 7.46 x 10~7 0.0398 0.0406 0.0530
analytic 4 6.25x107% [ 9.73x10% | 7.11x10™® | 1.46x 10~® | 1.87 x10~° 0.0152
(approximation) 5 6.81 x10~7 | 9.51 x10~7 | 6.01x10™° | 1.31 x10™® | 1.44x 107*° 0.0043
6 7.61x10% [ 8.8x10~* | 9.11x10-** | 1.31 x 10~** | 1.01 x 10~"* 0.0012
Threshold
(A* =0.8) 011 | 012 023 1232 123 233 No Sharing
Deadline
2 0.0745 | 0.3258 0.4414 0.3461 0.4468 0.4858 —
3 0.0176 | 0.0305 0.1805 0.0019 0.1812 0.2007 —_
simulation 4 0.0045 | 0.0067 0.012 0.0003 0.0002 0.0002 -
5 0.0014 | 0.0015 0.0003 8.37 x10™° | 2.11 x 10~° | 2.28 x 10~* —_
6 0.0006 | 0.0004 0.0001 3.61x10~° | 1.11 x 10~° | 6.18 x 10~° .
2 0.0161 | 0.3315 0.4342 0.3723 0.4541 0.5151 0.5539
3 0.0043 | 0.0105 0.1772 0.0032 0.1866 0.2256 0.3641
analytic 4 0.0011 | 0.0024 0.0013 0.0007 0.0004 0.0009 0.2363
{approximation) 5 0.0004 | 0.0005 0.0003 0.0001 6.54 x 10~° 0.0002 0.1528
6 0.0002 | 0.0002 | 3.95x10~% | 2.64 x 10~ | 1.2'x 10~ | 2.58 x 10~* 0.0986
Table 3. Missing probabilities for various threshold patterns and task deadlines when

A¢ =0.5 and A* = 0.8, and buddy set size = 10.




(A® = 0.8) { Threshold
012 1249 123 133 243
Buddy set | Deaclling
2 0.3702 0.3491 0.1506 0.4555 0.4873
3 0.0950 0.0071 0.1856 0.1885 0.2018
4 4 0.0320 0.0018 0.0047 0.0041 0.0011
5 0.0107 0.0004 0.0008 0.0006 0.0002
6 0.0034 | 9.1 x 1075 | 0.0002 0.0002 |5.8x 10~"
2 0.3181 0.3:1:18 0.4:163 0.4526 0.1856
3 0.0229 0.0012 0.1806 0.1860 0.2008
10 4 0.0043 | 89x107° | 64x107%| 0.0004 0.0002
5 0.0008 |[8.1x107% [52x 107" [ 1.6 x 1075 | 6.6 x 10~
6 0.0001 | 6. x 1077 [ 4Tx 1077 | 29 x 107¢ | 5.8 x 10~7
2 0.3073 0.3:418 0.4463 0.4532 0.4856
3 0.0089 0.0012 0.1806 0.1863 0.2006
L5 4 0.0013 [ 5.7x107% [3.9%x 1075 | 0.0004 0.0002
5 0.0002 |51x107%|32x107%|1.1x10"%| 7.6 x10~°
6 20%x107% [ 24 x 1077 [ 1.6 x 1077 | 8.4 x 10~7 | 2.6 x 10~7
2 0.3026 0.3445 0.4463 0.4526 0.4856
3 0.0033 0.0012 0.1806 0.1860 0.2008
21 4 0.0004 |6.0x107% [3.7x107%| 0.0004 0.0002
5 92x 107 | 4.1x 107% [ 22%x 107% [ 1.1 x 1073 | .1.6 x 10~
6 LIX107% [ L7 1077 | <1077 [ 74x10°7[29%10°7
Table 4. Missing probabilities in a 6-cube for different thresholds and buddy set sizes.




(A*=0.5) | ©  Task Transfers Frequency of State Change
Threshold | Simulation | Approximate | Simulation | Approximate
011 0.1071 0.1300 1.0792 1.1128
012 0.0304 0.0330 1.0203 1.0266
022 0.0484 0.0501 0.1327 0.1471
122 0.0332 0.0392 0.1574 0.1754
123 0.0092 0.0098 0.1511 0.1552
133 0.0097 0.0101 0.0407 0.0370
(A*=10.8) Task Transfers Frequency of State Change
Threshold | Simulation | Approximate | Simulation | Approximate
011 0.2241 0.2230 0.6277 0.8118
012 0.1145 0.1600 0.5283 0.5984
022 0.2274 0.2015 0.1613 0.2531
122 0.1677 0.1891 0.2576 0.3316
123 0.0877 0.0811 0.2182 0.2404
133 0.1064 0.0934 0.1050 0.1204

Table 5. Number of task transfers vs. frequency of state change for different thres-
holds.



(A¢ =0.8) hreshold
012 122 123 233
Transfer Cost | Deadlin

2 0.3227 0.3460 0.4473 0.4860

3 0.0307 0.0013 0.1812 0.2007
5% 4 0.0067 1.86 x 10~4 0.0047 1.04 x 10~*
5 0.0015 3.51 x 10-5 | 4.26 x 105 | 6.65 x 107°
6 251 % 10-4 | 7.43 x 10-6 | 9.11 x 10-5 | 5.98 x 10~7

2 0.3258 0.3461 0.4468 0.4858

3 0.0305 0.0019 0.1812 0.2007
10% 4 0.0067 28 x10-4 | 2.13 x 10-* | 2.07 x 10~*
5 0.0015 8.37 x 10-° | 2.11x 10-% | 2.28 x 10~°
6 0.0015 8.37 x 10-5 | 2.11 x 10-5 | 2.28 x 10~°

2 0.3300 0.3530 0.4504 0.4847

3 0.0295 0.0046 0.1918 0.2017
20% 4 0.0065 |555x10-%| 00012 |7.25x107¢
5 0.0015 8.69x 10-5 | 1.2x 10-4 | 5.31x 107°
6 350 % 10~ | 2.0 x 10~% | 1.36 x 107* | 6.03 X 106

2 0.3488 0.3817 0.4681 0.4914

3 0.0320 0.0168 0.1956 0.2177

30% 4 0.0072 0.0023 0.0016 0.0050
5 0.0016 32%x10~4 |1.93x10-% | 529x10~*
6 3.39 x 104 | 4.34 x 10-5 | 2.93 x 1075 | 4.95 X 10~°

holds.

Table 6. Missing probabilities vs. task transfer costs for different

deadlines and thres-







