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ABSTRACT

Hidden Markov models are widely used for automatic speech recognition. They
inherently incorporate the sequential character of the speech signal and are statistically
trained. However, the a priori choice of a model topology limits the flexibility of the
HMM's. Another drawback of these models is their weak discriminating power.

Multilayer perceptrons are now promising tools in the connectionist approach for
classification problems and have already been sucessfully tested on speech recognition
problems. However, the sequential nature of the speech signal remains difficult to handle
in that kind of machine.

In this paper, a discriminant hidden Markov model is defined and it is shown how a
particular multilayer perceptron with contextual and extra feedback input units can be
considered as a general form of such Markov models. Relations with other recurrent
networks commonly used in speech recognition are also pointed out.
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1 Introduction

Hidden Markov models (HMM) [1],[3],(14] are widely used for automatic iso-
lated and connected speech recognition. Their main advantages lie in the ability
to take account of the time sequential order and variability of speech signals.
However, the a priori choice of a model topology (number of states, probabil-
ity distributions and transition rules) limits the flexibility of the HMMs, in
particular speech contextual information is difficult to incorporate. Another
drawback of these models is their weak discriminating power. This fact is
clearly illustrated in [6],[32] and several solutions have recently been proposed
in [2],14,[61,(8,[201,(21].

In Section 2, the discriminant training is placed in relation to the standard al-
gorithms as Maximum Likelihood Estimation and Viterbi . A modified HMM
which satisfies discrimination requirements, is defined as a target model in Sec-
tion 2.4.

The multilayer perceptron (MLP) is now a familiar and promising tool in
connectionist approach to classification problems [15],[16],(27] and has already
been widely tested on speech recognition problems [5],(6],[9],(32],[34]. However,
the sequential nature of the speech signal remains difficult to handle with MLP.
Section 3 shows how an MLP with extra feedback input units can be considered
as a form of discriminant HMM defined in Section 2 with particular emission and
transition probabilities. In the HMM formalism, the speech signal is supposed
to be produced by a (first order) Markov source for which the probability of
reaching a particular state depends entirely on the previous state(s) and on the
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observed acoustic vectors associated with the speech time slots. This probability
plays a role similar to the local distance (with associated weights) between
an acoustic vector of the test utterance and that of a reference template. In
the sequel, it will be occasionally referred to as local contribution in contrast
with the global probability which measures the dissimilarity between the whole
observed utterance and the model.

In Section 3.2.1, it is shown that the same local contributions could be generated
by an MLP feeding back the output values associated with the previous input
frames and thus allowing a straightforward generalization to high order Markov
models. It is also shown how a new definition of the input, as in a NETtalk
machine [28], permits an easy capture of the contextual information of speech
(Section 3.2.2). The generated local contributions can be used in a dynamic
programming algorithm to achieve discriminant recognition (Section 3.2.3).
Relations with other recurrent MLP [10],[34] are also briefly pointed out in
Section 3.3. An advantage of this MLP with output feedback, over and above
the link with HMM, is the possibility during the training to supply the feedback
input units with the correct information. It is also shown how context-sensitive
networks [32] approximate recurrent networks over a finite time interval.

2 Stochastic models

2.1 Training criteria

Stochastic speech recognition is based on the comparison of an utterance to be
recognized with a particular probabilistic finite state machine known as hidden
Markov model (HMM). This model is generally the concatenation of sub-unit
models: a sentence model is the concatenation of word models (or even of
phoneme models if the goal of the processing is phonemic labeling) and a word
model is the concatenation of phoneme models. The sub-unit models are trained
on a segmented (this is not required in case of embedded training) and labeled
speech data base. In this training phase, the probability P(W;|X) that model W;
has produced the associated utterance X must be maximized but the parameter
space which this optimization is performed over makes the difference between
independently trained models and discriminant ones.

Indeed, the probability P(W;|X) can be written as

P(X|W:).P(W;)

(v

In a recognition phase, P(X) may be considered as a constant since the model
parameters are fixed but, in a training phase, this probability depends on the
parameters of all possible models. This can be made explicit by taking into
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account the fact that the models are mutually exclusive so that

P(X) = P(X|Wy)P(W) (2)
k
where the summation extends over all models (all possible word or phoneme
sequences). Substituting (2) in (1) gives

P(X|W;)P(W;) (3)
(X|W) P(Wi) + 3y s P(X|Wi)P (W)’

P(WilX) =

Maximization of P(W;|X) as given by (3) is usually simplified by restricting it
to the subspace of the W; parameters. This restriction leads to the Maximum
Likelihood Estimators (MLE). Indeed, maximization of P(X|W;) implies that
of its bilinear map (3) since the summation term in the denominator is constant
over the parameter space of W;. A language model provides the value of P(W;)
independently of the acoustic decoding [14]. This model by model optimiza-
tion allows important simplifications in the training algorithms by avoiding the
computations of all rival sequences but at the price of a loss in discriminating
power.

On the other hand, maximization of P(W;|X) with respect to the whole pa-
rameter space (i.e. the parameters of all models Wy, W, ...) leads to discrimi-
native models since it implies that the contribution of P(X|W;) P(W;) should be
enhanced while that of the rival models, represented by Lokzi P(X|Wi)P(Wy),
should be reduced. This maximization with respect to the whole parameter
space has been shown equivalent to the maximization of Mutual Information
(MMI) between a model and a vector sequence [2],[8],[21]. This justification still
holds in case of embedded training (compulsory for the t raining of phonemic
models) where discrimination is increased between the various word or sentence
models W} (and no longer between sub-unit models) by adjusting the parame-
ters of the constituting sub-unit models which may appear several times and in
several different W,

2.2 Training algorithms

Two different algorithms are used for the training of HMM’s [1],[3]: the Baum-
Welch or the Viterbi algorithms. In the first one, the total probability to produce
an acoustic vector sequence X = {z,...,zx5} on a given model is maximized
while the Viterbi criterion focuses only on the best path through the model.

The Baum-Welch algorithm which iteratively provides parameter estimators
based on partial path probabilities computed by forward and backward recur-
rences, is used to maximize the MLE algorithm. Convergence (at least to local
optima) is then guaranteed.

This advantage is unfortunately lost if the MMI criterion is used [2] and a
gradient method is generally preferred for the optimization; the forward and
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backward recurrences can still be used to compute the gradient [8]. If phoneme
models are trained, a looped phonetic model (as already described in [35] for a
recognition task) may generate all possible phoneme sequences and provides thus
the value of the probability of producing all rival sequences while the numerator
of (3) is obtained in a second step via a serial model [21]. This method could
in principle also apply to word model training but would require an excessive
computation time for a large lexicon due to the size of the looped word model.
The MMI criterion is thus particularly unsuitable for embedded training of word
models and severe hypotheses must be accepted to cope with the complexity
8]

The Viterbi algorithm, which is the main tool for the recognition task, is
also often used in the training phase. The parameters are updated so as to
increase the probability of the most probable path and P(X|W) is thus not
actually maximized. It is much faster than the Baum-Welch algorithm and
convergence (at least to local optima) is also guaranteed. It is well adapted to
a simplified form of MLE optimization (considering the best path only) but not
at all to MMI maximization. Indeed, this criterion requires to take account of
all paths (not only the best one) between phonemes to generate all possible rival
sequences.

2.3 Standard hidden Markov models

In the classical (i.e. non diseriminant) discrete HMM, the acoustic vectors are
quantized in a front-end processor and each one is replaced by the closest (ac-
cording to an Euclidean norm) prototype vector y; selected in a predetermined
finite set Y of cardinality I. Let Q be a set of K different states q(k) with
k=1,...,K. Sub-unit models are constituted by the association of some states
and speech utterances are synchronized with paths from state to state in the
model by using local properties as transition or emission probabilities defined
hereunder. Models must be optimized with respect to these local parameters
according to a Viterbi or MLE criterion which basically relies on the maximiza-
tion of P(X|W) where X is a training sequence of quantized acoustic vectors
z, € Y,withn=1,...,N and W is its associated Markov model (concatena-
tion of sub-unit models) made up of L states ¢, € Q with ¢ = 1,...,L. The
same state may occur several times and with different indices £, so that L # K.
Let us denote the presence on state ¢ at a given time n € [1, V] by ¢7. Since
events g7 are mutually exclusive, probability P(X|W) can be written for any

arbitrary n:
L

P(X|W)=>" P(qf, X|W). (4)

=1
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In (4), P(q}, X) denotes the probability that X is produced by W while visiting
state g, at time n and can also be written as:

P(q7, X|W) = P(¢}, XP|W).P(XY, |}, X2, W),

where X} denotes the vector sequence z,, 41, -y ZTpn. Trivial manipulations
show that recurrence (5) holds:

L

P(q2, XTIW) =" P(qe~", X0 W).p(ef, zalgp ™1, X3~ W) (5)
k=1

which is the forward recurrence of the Baum-Welch algorithm. The conditional
probability p(q7,znlgf =, X7, W) in (5) is the local contribution. The role
of the conditional events are usually limited by some relaxing hypotheses. For
example, the dependence is restricted to the last emitted vector; this could be
achieved by concatenating two successive vectors in [12] and in [18],[19], while an
explicit formulation is given in [36]. In classical HMM [3],[14], the local contri-
bution is assumed independent of the whole previously emitted vector sequence
X7?~! and reduces thus to p(q}, zalgl =", W). It represents the probability to
make a transition from state g to g, while emitting the vector z,. The set of
all sub-unit Markov models are thus characterized by I x K? parameters

pla(®), yila =) (k), W],

for i = 1,..,1 and k,£ = 1,..., K. Notations ¢(~)(k) and g(£) denote states
€ Q observed at two consecutive instants.

The update formulas for the Baum-Welch algorithm have been described
elsewhere [3],(14] a.0. and are thus not recalled here.

The Viterbi criterion can be viewed as a simplified version of the MLE
criterion where, instead of taking account of all possible state sequences in W
capable of producing X, one merely considers the most probable one. To make
apparent all possible paths, (4) can also be rewritten as

L

L
P(X|W) = o 3 Plghseen Gl X|WY.
En=1

£1=1

An explicit formulation of the Viterbi criterion is obtained by replacing all
summations by a “ max ” operator. Probability (4) is then approximated by:

P(X|W) = max P(q},...,q0, X|W). (6)

Liyerdpy

The same modification in (5) provides the basic formula of the dynamic time
warping (DTW) process [3]:

P(qz, XT|W) = max[P(q;~", X7 W).p(a7, zalep = XP7H W) . (7)
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The global probability P(g)¥, X|W) for all £ is computed by using (7) recursively.
Then, the optimal final state is pointed out by that particular £ which maximizes
the global probability (also referred to as matching score) and the associated best
path can be recovered by classical backtracking. Each training vector is then
unequivocally associated with only one particular transition. Let nz; denote the
number of times each prototype vector 1 has been associated with a transition
{q(k) — ¢(£)} between two states € Q during the training sequence X; clearly,
with this definition, n;gs sums up all transitions wherever they appear in the
model of X. The estimators of the probabilities p[g(£), y:|g{=)(k), W] effectively
used in the classical HMM and which guarantee the convergence of the Viterbi
training are simply given by:

ﬁ[q(f),y,-mf—’(k),m:Z;ﬂz"g; — Ve[l Vhee[ K], @

and thus:
I K
YD la(@), wile k), W]=1, Vkel[1,K]
i=1{=1

The local probability (8) is often split into a product of a transition probability
and an emission probability (transition emitting models) [14] of which estimators

are: Zf nis
Bla()g k), W] = == ; (9)
,-:;Z =1 Mjkm
and ;
Pluila(e), a (k) W) = =K (10)

j=1 ke
A further and usual simplification is to assume that the emission probabilities

only depend on the current state q(£) (state emitting models). Its estimator is
then

K
lula(e), W) = —imsilimt (1)
2_}':1 Zm:l Njme
and the product of (9) by (11) is different from (8) due to the additional as-
sumption on the emission probability.

If the models are trained by using this formulation of the Viterbi algorithm,
no discrimination is taken into account. For instance, it is interesting to observe
that the local probability (8) is not the suitable measure to obtain a correct
labeling of a prototype vector y; or, in other words, to find the most probable
associated state given a specified previous state. Indeed, the decision must
ideally be based on the Bayes rule [11] or more explicitly, the correct state will
be g(£op;) such that

Eopi = arg?la-x p[Q(‘g)lyisq[_)(k)}r (12)
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and not
‘eopt = argrz}lax p[Q(E)y y.Eq[")(k)] .

In particular, it is thus necessary that Ele pla(®)lyi, ¢ (k)] = 1. As in
classical HMM, these probabilities are related to local contributions. Indeed,
this discriminant local probability can be written

_ Plyi a(9)lg ) (k)]

pla(®)lyi, ¢ (k)] = Tl (13)

Summing (8) on ¢ yields an estimator of p[y; |g(=)(k)]

K -
PluilgCI(k)] = —ms=y Mibm (14)

I K
ijl Zm:l Njkm

By (8),(13) and (14), an estimator of the discriminant local probability is :

la(®)lyi, ¢ (k)] = il (15)

m=1 Mikm

and sums up to unity as required. This probability was already used in the
ERIS system described in [18],[19] and it will be shown in Section 3.2.1, that
the optimal output values of a Multilayer Perceptron (MLP) are the estimates
of these discriminant local probabilities.

2.4 Discriminant HMM

For vector quantized speech inputs and Viterbi criterion, an alternative HMM
using discriminating local probabilities can also be described on the basis of the
arguments described here above. Indeed, the actual objective in recognition is
to find the model W; which maximizes the probability (1) when observing X.
Comparing with (6), the “Viterbi formulation” of this probability is

P(WilX) = max P(g,,...,q5,, WilX) . (16)

LyeenrdN

Expression (16) clearly puts the best path into evidence. The right hand side
factorizes into

P(gl,....al Wi X) = P(q}l,...,qﬁ\LIX).P(W,-LY‘q_,}I,...,qé‘:v).

and suggests two separate steps for the recognition. The first factor represents
the acoustic decoding in which the acoustic vector sequence is converted into a
sequence of states. Then, the second factor represents a phonological and lexical
step: once the sequence of states is known, the model W; associated with X can
be found from the state sequence without an explicit dependence on X so that

P(Wi|X,q},,....a0%,) = P(Wila},,....qal").
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For example, if the states represent phonemes, this probability must be esti-
mated from phonological knowledge of the vocabulary once for all in a separate
process without any reference to the input vector sequence. On the contrary,
P(q},y.--,44%,|X) is immediately related to the discriminant local probabilities
and may be factorized in

P(g},- 100 1X) = p(a,1X)-p(e},1X,a2,) - .- p(abl, | X, ats - amt). (A7)

Now, each factor of (17) may be simplified by relaxing the conditional con-
straints; specifically, the factors of (17) are assumed dependent on the previous
state only and on a signal window of length 2p + 1. The current expression of
these local contributions becomes

p(QHXg ‘Iéls .. '!‘Ii,-—_ll) = P(‘I:JX;:I:: QE,.‘_ll) 3 (18)

where input contextual information is taken into account. In Section 3.2.1,
a parallelism between these local contributions and the optimal outputs of a
multilayer perceptron with contextual input and output feedback will be pointed
out.

If input contextual information is neglected (p = 0), equation (18) repre-
sents nothing else but the discriminant local probability (15) and is the base of
a discriminant discrete HMM. Each observed acoustic vector is in relation with
a transition so that no separate emission and transition probabilities as (9) and
(10) or (11) are defined. Moreover, when comparing with the classical transi-
tion emitting HMM, the main difference lies in the normalization of the local
contribution which is performed on the set of states and not on the prototype
vector space as done for (10) and (11).

A phoneme or a word model built up from several states must have a final
state deprived of selfloops as already pointed out by [14]; assuming this to be
done, any concatenation of models is possible by assimilating this final state
with the initial state of the next model. In that case, the one stage dynamic
programming [7],[22] applies exactly as in the classical case except that dis-
criminant local probabilities are used. Inside a sub-unit model, the following
dynamic programming recurrence holds

P(q/|XT) = mflx(P(QHXf_l)-P(fRIIka)) § (19)

where parameter &£ runs over all possible states preceding g and P(q/|X7) de-
notes the cumulated best path probability of reaching state g, and having emit-
ted the partial sequence X7 .

Besides the advantage of forcing discrimination, numerical problems which
plague the classical HMM are avoided when using discriminant models: namely,
the lack of balance between the transition probability values (9) which only de-
pend on the topology of the model and the emission probability values which
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decrease with the number of prototype vectors I. This effect worsens if con-
text dependence is introduced by using 2p + 1 appended consecutive vectors as
features. Indeed, the number of possible prototype combinations (and thus the
number of discrete emission probabilities for each state) grows as 1?7+ thereby
decreasing the values of the emission probabilities.
Unfortunately, even with discriminant models, the exponential increase of the
number of parameters with the width 2p + 1 of the window is not avoided,
resulting in a need of huge storage capacity and requiring an excessive size of
training data to obtain statistically significant parameters. Moreover, transi-
tions unobserved in the training set will yield zero probabilities despite the fact
that they may actually occur in a recognition phase. To cope with insufficiently
large data sets, interpolation techniques can be used [1] and a lower bound can
be imposed to the local probabilities. Anyway, a waste of required memory still
occurs since a lot of explicitly stored discriminant local probabilities reach the
lower bound. Indeed, the likelihood of actually observing most of the 72P+1
possible input vectors is extremely weak.

In Section 3, it is shown how all of these drawbacks are circumvented or
attenuated by taking advantage of the generalization properties of the multilayer
perceptron (MLP) when used as a discriminant local probability generator.

3 MLP and discriminant local probabilities

In this section, links are set up between the discriminant discrete HMM de-
fined in Section 2.4 and the MLP approach. To this aim, a MLP with output
feedback is described in Section 3.2. Moreover, the easy extension of the MLP
input makes possible the use of contextual information what is a supplementary
advantage of MLP versus that kind of HMM.

In the sequel, the concept of states is replaced by that of classes.

3.1 Sequential processing architectures with context-sensitive
inputs

Let g(k), with k = 1,..., K, be the output units of an MLP associated with
different classes (each of them corresponding to a particular word, phoneme or
HMM state) and v; be a binary representation of the index i of prototype vec-
tor y; with i = 1,...,I. In the sequel, the representation v; of a prototype ¥;
is assumed to be an index I-vector with all zero components but the i-th one
equal to 1. In the case of contextual input, vector v; can also be obtained by
concatenating several representations of prototype vectors belonging to a given
contextual window centered on a current 1. Contextual inputs were already
used in the ERIS system [18],[19] where the classification of acoustic vectors
was based on discriminant principles (responsible “demons” for the recognition
of one particular class and the rejection of all other stimuli as “non-words™)



HMM aend MLP 11

applied on “state-pair vectors™. For larger contexts, a NETtalk-like MLP, ini-
tially described in [28] for mapping written texts to phoneme strings, has also
be proved successful in performing the classification of 10 ms acoustic vector
strings into phoneme strings, where each current vector was classified by taking
account of its surrounding vectors [6]. Figure 1 shows the schematic arrange-
ment of that system which is characterized by two layers of perceptrons (hidden
and output layers) computing the classification of the input field. The input
field (input units) is constituted by several groups (5 in Fig.1) of units, each
group representing a prototype vector. Thus, if 2p + 1 is the width of the con-
textual window, there are 2p-+1 groups of I units in the input layer. During the
training, the desired output of the network is the correct phoneme associated
with the center or “current” prototype vector in a particular left and right con-
text. The prototype vectors are stepped through the contextual window time
slot by time slot and, at each step, the matrix parameters Wig and Wyq (in-
cluding weights and biases) are adjusted by the classical error back-propagation
(EBP) algorithm [15],[27].

The use of contextual information may be generalized to several hidden layers
as described in [32].

However, since each acoustic vector is classified independently of the pre-
ceding classifications in such feedforward architectures, there is no representa-
tion of the sequential character of the speech signal. The system has thus no
short-term memory from one classification to the next one and successive clas-
sifications can be contradictory. This phenomenon does not appear in HMM
since the preceding classifications are effectively used and since only some state
sequences are permitted; HMM lead to a “global” classification of the vector
string. Section 3.2 shows how to circumvent this problem by supplying to the
input field some information about the preceding classification. This leads to
a particular case of the recurrent networks used in speech recognition and for
which several other alternative structures are known in the literature; these are
described and compared in Section 3.3. Relations between recurrent networks
and context-sensitive networks are also discussed there.

3.2 A recurrent context-sensitive MLP

In this section, a modified MLP able to modelize the sequence of decisions is
described. A second improvement is to make the input field context-sensitive
(Section 3.2.2). Finally, in Section 3.2.3, the use of this machine as a local

probability generator is described for a connected speech application based on
the DTW algorithm.

3.2.1 MLP with output feedback

Sequential classification must rely on the previous decisions but the final goal
remains the association of the current input vectors with their own classes.
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A MLP achieving this task will generate, for each current input vector v;, X
output values g(i, k, £) with £ € [1,..., K] depending on the class g(£) it belongs
to and on the class g(k) in which the precedmg input vector has been classified.
In order to focus on the recurrent structure, the input of the MLP is assumed
context independent (p = 0) in this section; simultaneous context dependency
and recurrence will be considered in Section 3.2.2.

Supervised training is performed on a sequence of N quantized vector represen-
tations {v;,,...,v;y} where iy is the index of the prototype vector at time n.
Supervision comes from the a priori knowledge of the classification of each v;_.
Classically, the training of the MLP parameters is based on the minimization
of a mean square criterion (LMSE) [27] which, with our requirements, takes the

form:
N K K

Z Y3 lalin k&) — d(in, 0] (20)
2021 k=1 =
where d(i, £) represents the target value of the Z-th output associated with the
input vector v;. Since the purpose is to associate each input vector with a single

class, the target outputs, for a vector v; € g(£), are:

di,8) = 1,
dii,m) = 0, Vm#¢,

which can also be expressed, for each particular v; € g(£) as: d(i,m) = éme.
The target outputs d(i,£) only depend on the current input vector % and the
considered output unit, and not on the classification of the previous one. The
difference between criterion (20) and that of a memoryless machine is the addi-
tional summation in k which takes account of the previous decision. Collecting
all terms depending on the same prototypes, (20) can thus be rewritten as:

I
E=3) > miee. ~ d(i, m))" (21)

where n;z, represents the number of times % must be classified in q(£) while the
previous vector was known to belong to class g(k). Thus, whatever the MLP
topology, i.e. the number of its hidden layers and of units per layer, the optimal
output values gop¢(7, k, m) are obtained by canceling the partial derivative of E
versus g(i, k, m):

OF - . .
m = Z n,-u.[g(t, k, m)—d(z,m]] = 0.

=1

The optimal values of the outputs are then

K ; K
i .d A . i'-ém
Gopilis bym) = otmt iredEm) 3y mikebim

Yre, Mike Y7 Mike
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and, finally:
. n;
Gopt(i, kym) = _f(‘s'kl"‘ - (22)
Lot=1 ikt

Thus, the optimal g(i, k, m)’s obtained from the minimization of the MLP crite-
rion are in fact the estimates of the Bayes probabilities [11] or, equivalently, the
discriminant local probabilities defined by (15). It is easily verified that they
sum up to unity:

K
> Goptliykym) =1.
m=1

It is important to keep in mind that the optimal values can be reached only
provided the MLP contains enough parameters.

A convenient way to generate the g(i, k,£) is to modify its input as follows.
For each v;,, an extended vector Vi, = (vi,v;,) is formed where v is an
extra input vector containing the information on the decision taken at time
n — 1. Since output information is fed back in the input field, such an MLP has
a recurrent topology. However, as shown in Section 3.3, the main advantage of
this topology, when compared with other recurrent models proposed in speech
processing, over and above the possible interpretation in terms of HMM, is
the control of the information fed back during the training. Indeed, since the
training data consists of consecutive labeled speech frames, the correct sequence
of output states is knownand the training is supervised by providing the correct
information.

Replacing in (21) d(7, m) by the optimal values (22) provides a new criterion
where the target outputs depend now on the current vector, the considered
output and the classification of the previous vector:

1 1 K K K ik
E*:EZZZ Z kL« g(i,k,m)—L— 1 (23)

i=1 k=1 ¢=1 m=1 ¢=1 THEL

and it is clear (by canceling the partial derivative of E* versus g(i, k,m)) that
the lower bound for E* is reached for the same optimal outputs as (22) and is
now equal to zero, thus providing a very useful control parameter during the
training phase. Moreover, it was suggested earlier that “training of an adaptive
machine is best done not with the correct output (1 or 0) being supplied, but
with an expert’s estimate of the probabilities of the possible output states” [17].

It is evident that these results directly follow from the minimized criterion
and not from the topology of the model. In that way, it is interesting to note
that the same optimal values (22) may result from other criteria, for instance
the entropy [13] or relative entropy [29] of the targets with respect to outputs.
Indeed, in the case of relative entropy, e.g., criterion criterion (20) is changed
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in:

N K K d(in, £ ) 1 —d(iy, €
B=32 323 [din 0+ (a0 ()]

n=1 k=1 {=1
(24)

and canceling its partial derivative versus g(i, k,m) yields the optimal values
(22). In that case, the optimal outputs effectively correspond now to E, i, = 0.

Of course, since these results are independent of the topology of the models,
they remain also valid for linear discriminant functions [4] but, in that case, it is
not guaranteed that the optimal values (22) can be reached. However, it has to
be noted that in some particular cases, even for not linearly separable classes,
these optimal values are already obtained with linear discriminant functions
(and thus with a one layered perceptron trained according to an LMS criterion).
For instance, if n; is the number of input units and if the training vectors are
only constituted by repetitions of n; linearly independent vectors, it can easily
be proved that the Bayes probabilities can be generated by linear functions.

Since it is now proved that the considered MLP is able to estimate the local
probabilities used in the discriminant HMM defined in Section 2.4, it is clear that
if the training acoustic vectors are not labeled (no explicit segmentation), the
training of the MLP can be embedded in a DTW process using the output values
g(i, k, £) as local probabilities and iteratively improving an initial segmentation.
The convergence of this process, proved for Markov models, remains thus valid
for particular HMM’s where the local emission probabilities are generated by
MLP. Proof of this assertion was already presented in [4],[6].

It is also important to point out that a same kind of recurrent MLP could also
be used to estimate local probabilities of higher order Markov models where the
local contribution in (17) are no longer assumed dependent on the previous state
only but also on several preceding ones. This is easily implemented by extending
the input field to the information related to these preceding classifications.

3.2.2 TIncorporation of context-sensitivity

The results presented in Section 3.2.1 still hold with a modified input taking
the context into account as described in Section' 3.1. The proposed architec-
ture represented on figure 2, is then a NETtalk-like MLP as in figure 1, but
supplied with a direct feedback of the outputs associated with the previous in-
put frames. The feedback is implemented by adding extra input units which
reflect the delayed output values (or a binary representation of them). Matrices
Wi, W11, Wag are the parameters (including weights and biases) to be trained.
Since the training data consist of consecutive labeled speech frames, the correct
sequence of output states is known and training with the correct feedback values
is thus possible.

The outputs of this MLP with contextual input and output feedback are then
estimators of (18). Of course, the number of weights increases with the width of
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the contextual window and thus a huge volume of training data is again required
for significant training. However, the generalization properties of the MLP al-
ready justified in [5},[6] by the generation of crossproducts by the nonlinearities
of the hidden units play the role of the interpolation required by HMM (Section
2.4). In particular, contrary to a discrete HMM, an MLP will not generate zero
outputs when it is stimulated by an input vector never observed in the training
set.

3.2.3 Application to connected speech recognition

The outputs of the MLP (or their logarithms) can be used in a classical one-
stage DTW [7],[22] for connected speech recognition in the same way as the local
contributions (18) of the discrete discriminant HMM (Section 2.4). If the MLP
has been trained for phonemic labeling (each output of the MLP is associated
with a phoneme or a state of a phonemic HMM), “word models” can be build
along the vertical axis of a DTW table by concatenating the outputs of their
constituting phonemes, the horizontal axis corresponding to the time ordering
of the acoustic vectors. The DTW table defines thus a set of grid point (¢, £, w)
associated with time slot 7 of the speech signal (i = 1,...,N') and state q(j,(w))
with £ =1, ..., L, and where j,(w) is the index of the ¢-th state in word w.
The local contributions are computed by using the MLP described in Section
3.2.2 along two methods.
In the first one, they are explicitly associated with transitions from one grid
point of the DTW table to another. The feedback part v} of the MLP input
vector V; corresponding to time slot i is successively modified to represent the
originating state of each transition ending at g(j;(w)) while the remaining part
v;, which is the binary representation of the current vector at time i and its left
and right contexts, remains unchanged. Outputs g(i, k, j.(w)) provide the local
contributions at grid point (¢, £, w) for each transition originating from ¢;. In
this method, a forward computation of the MLP outputs is required for each
time slot and for each possible originating state. Vectors v] are index vectors
(all components are zeroes but one).
In the second method, the local contribution is associated with the grid point
itself and not with transitions. It is provided for all states by a single compu-
tation of the MLP outputs per time slot. For time ¢, the components of vector
v} are the output values of the MLP at time (i — 1) and are thus no longer
binary but real-valued in the range [0,1]. Full advantage is taken here from
the recurrent MLP for reproducing the learned sequential nature of the speech
signal; this justifies that in the DTW table the local contribution is no longer
associated with transitions but only with the ending state (or grid point).
Then, using the technique of dynamic programming, we seek, among the
paths starting from grid points (1, 1, w) and arriving at (N, L, w),Vw =1,..., 8
(§ = size of the lexicon), that path which provides the least cumulated “dis-
tance” G(N, Ly, w). That “distance”, referred to as matching score, is associ-
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ated with the best path and defines the optimal word sequence.
These cumulated distances are obtained by the following recurrences:

G(i,t,w) = I{r}ci? {G(i—1,k,w) = In[g(s, k, je(w))]} (25)
within a word model, and:

G(i,1,w) = %i;i {G(i =1, Ly, w") — In[g(i,jr,, (w),j1(w))]}  (26)

between word models, where {k} and {w'} respectively stand for the set of possi-
ble predecessor states of g;,(,) and possible predecessor words of w. Recurrence
(25) is obtained by taking minus logarithm of both sides of (19).

The best path is recovered by backtracking through the DTW table.

3.3 Comparison with existing architectures

This section gives proper credit to the pioneering work of several authors in
view to capture the sequential information of a signal in a neural net. The use
of recurrent MLP for dealing with sequential inputs was already introduced in
[27] and was shown to be useful on a simple example of sequence completion.
In that approach, recurrent MLP were approximated over a finite time period,
by the associated “unfolded” feedforward network. The EBP algorithm may
still be used but with the constraint that all unfolded versions of a synaptic link
are identically weighted. In [23],[24] the EBP algorithm used for the training
of MLP was generalized to recurrent networks and MLP’s can now be trained
with any kind of feedback.

Several recurrent networks have already been proposed for speech recognition.
In [25], a particular Boltzmann machine for dealing with sequential inputs was
defined where some of the hidden units, called “carry units”, were supplied
as extra inputs with the purpose of generating time dynamic. However, since
feedback must be applied at the “thermal equilibrium?, this architecture leads
to an excessive time consumption which is inherent to the Boltzmann machines.
In [34], sequential processing is obtained with the “temporal flow model” (figure
3). Selfloops with delay are added to each hidden unit ( a single layer of hidden
units is considered) and to each output unit of an MLP. A training procedure
based on a generalized EBP is developed [33]. No contextual information is
explicitly used at the input but of course this architecture could easily put up
with an extended input as in a NETtalk machine. It can easily be observed
that the system described in [10] (fig.4) is an alternative implementation of
this network where the output selfloops are eliminated and where the delayed
hidden unit values are fed back as supplementary input units. Feedback is indeed
easily implemented by extending the input vectors as described in Section 3.2.1
with a vector v} containing the hidden unit values generated by the preceding
input frame. Moreover, the input is also extended to incorporate contextual
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information. The associated MLP architecture is then represented in figure 4,
where W;; represents the matrix of parameters (including weights and biases)
and can be interpretated in terms of state space equations of the control theory
[26]. For linear units, this network has a rational input-output transfer function
and, in view of the analogy with digital filters, it may be called “Infinite Impulse
Response (IIR) Dynamic Net”.

Recurrent networks can also be approximated over a finite time period (say
D time slots) by a feedforward network where the loops are replaced by the
explicit use of several preceding activation values. In that case, the activations
in a particular layer are computed from the current and multiple delayed values
of the preceding layer. That approach has been used for speech recognition
in [32] and the corresponding architecture (in the particular case of only one
hidden layer) is represented in figure 5. A similar approach using delayed input
units but without hidden units has also been presented in [30],[31] in an analog
input signal application.
By analogy with filter theory, that kind of network may be called “Finite Impulse
Response (FIR) Dynamic Net”. In the linear case, IIR and FIR dynamic nets
may be compared to IIR and FIR filters where the first one (Fig.4) generates
an infinite impulse response of the form

(=]
1 ~ i—i
1—az-1— T
i=0

where a is related to the loop weight matrix Wj;; the impulse response of the
second one (Fig.5) is finite and is of the type

D
S
i=0

for an approximation over D time slots and where a; are related to Wi; and
W2, are now independent contrary to what happens with an actual loop.

As already pointed out in [17], a common disadvantage of all these ap-
proaches is the impossibility to supervise the information fed back and to insure
its usefulness. The MLP with output feedback (Section 3.2) avoids this defi-
ciency. However, when comparing with the methods proposed in [10],[34], a
drawback of the present approach is the impossibility for the system to learn to
feed back other useful information not included in our output representation.
Indeed, by (22) it is clear that, even in an MLP with a sufficiently large number
of hidden units, the error (20) can be reduced to zero only if a same extended
input V; (i.e. same vector v; appearing after the same output decision) never
appears in the training set as a member of different classes. This restriction is
eliminated with Elman’s machine where feedback is applied from hidden units
to the input (Fig.4). Let us first observe that in any MLP, if the number of
hidden units is higher than the number of output ones, different hidden vectors
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may generate the same output. Now, suppose that in the training set, the same
input vector appears several times with the same previous output decision but
associated with different current decisions. For each presentation, the previous
hidden vectors may be different although they generated the same output and
so are consequently the extended input vectors. Error (20) can thus vanish for
a sufficiently large number of hidden units. The feedback is unsupervised and
internal representation of the speech sequential information is built up by the
training.

4 Conclusions

Discrimination is an essential requirement in speech recognition and is not incor-
porated in the standard Hidden Markev Model. A discriminant HMM has been
described. Links between this new model and a recurrent Multilayer Percep-
tron are pointed out, Recurrence permits to implicitly modelize the sequential
information in the output sequence, i.e. the phonetic labeling, in our case. The
local probabilities of the discriminant HMM may be then computed by using
that MLP as a local contribution generator in a DTW process. Since the feed-
back in the MLP is applied from the output units to the input field, it is easily
supervised during the training. Moreover, input contextual information is also
easily captured by extending the input of the MLP as in a NETtalk machine.
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Figure captions

Figure 1 NETtalk architecture.
Figure 2 Recurrent and context-sensitive MLP.

Figure 3 Watrous and Shastri temporal flow model.

Figure 4 Elman MLP architecture.
Figure 5 Waibel context-sensitive model.
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