Parallel Search for Maximal
Independence Given
Minimal Dependence

Paul Beame' and Michael Luby2
TR-89-003
February, 1989

We consider the problem of finding a maximal independent set fast in parallel when
the independence system is presented as an explicit list of minimal dependent sets. Karp and
Wigderson [KW] were the first the find an NC algorithm for the special case when the size
of each minimal dependent set is at most two, and subsequent work by Luby [Lu1l], by Alon,
Babai and Itai [ABI] and Goldberg and Spencer [GS] have introduced substantially better
algorithms for this case. On the other hand, no previous work on this problem extends even
to the case when the size of each minimal dependent set is at most three. We provide a
randomized NC algorithm for the case when the size of each minimal dependent set is at
most a constant, and we conjecture that this algorithm is a randomized NC algorithm for the
general case.

1Con:q:mtﬁer Science Department, FR-35, University of Washington, Seattle, Washington 98195, research sup-
ported by NSF grant CCR-8858799. - beame(@cs.washington.edu

*International Computer Science Institute, Berkeley, California on leave of absence from the Univeristy of
Toronto, research partially supported by N.S.E.R.C. of Canada operating grant A8092. - luby@icsi.berkeley.edu



Parallel Search for Maximal Independence
given Minimal Dependence

Paul Beame *
Computer Science Department, FR-35
University of Washington
Seattle, Washington 98195

beame@cs.washington.edu

Michael Luby'
International Computer Science Institute, Suite 600
1947 Center Street
Berkeley, California 94704
luby@icsi.berkeley.edu

January 27, 1989

Abstract

We consider the problem of finding a maximal independent set fast in
parallel when the independence system is presented as an explicit list of min-
imal dependent sets. Karp and Wigderson [KW] were the first to find an
NC algorithm for the special case when the size of each minimal dependent
set is at most two, and subsequent work by Luby [Lul], by Alon, Babai and
Itai [ABI| and by Goldberg and Spencer [GS] have introduced substantially
better algorithms for this case. On the other hand, no previous work on this
problem extends even to the case when the size of each minimal dependent
set is at most three. We provide a randomized NC algorithm for the case

"Research supported by NSF grant CCR-8858799.
ton leave of absence from the University of Toronto, research partially supported by N.S.E.R.C.

of Canada operating grant A8092,



when the size of each minimal dependent set is at most a constant, and we
conjecture that this algorithm is a randomized N C algorithm for the general
case.

1 Introduction

Let G = (V, E) be an undirected graph with |V| =n and |E| =m. Aset IC Vis
independent if for all e € E, the two endpoints v and w of e are not both in . An
independent set I is mazimal if for all v € V — I, I U {v} is not an independent
set, i.e. for every v € V — I there is some w € I such that (v,w) € E. The
mazimal independent set given an undirected graph problem is to find a maximal
independent set in an undirected graph G presented by an explicit list for V' and
E. Although there is a trivial greedy linear time algorithm, it required quite a bit
of effort to develop a fast parallel algorithm (an efficient NC algorithm) for the
maximal independent set given an undirected graph problem [KW, Lul, ABI, GS.
Lu2].

The work in this paper studies a natural generalization of the maximal inde-
pendent set for undirected graphs problem, the mazimal independent set given
c-size minimel dependent sets problem. The input to the problem is H = (V, E)
and the output is a maximal independent set in H. Here, F is a collection of m
subsets of V', each of size at most ¢. (The maximal independent set given an undi-
rected graph problem is the special case where ¢ = 2.) A set I C V is independent
if for all e € E there is at least one v € e such that v ¢ I. An independent set [
is mazimal if for every v € V — I, TU {v} is not an independent set, i.e. there is
some e € E such that e C I U {v}. In this paper we suggest a very simple parallel
randomized algorithm for this problem. Although we conjecture the algorithm
has expected running time polynomial in logn even for the most general case of
problem instances (when c is allowed to be n), we are able to only prove that this
is the case when the maximum edge dimension c is restricted to be a constant.

The maximal independent set given minimal dependent sets problem can be
thought of in two ways. The first is to view H is a hypergraph, where E is the set
of hyperedges and ¢ 1s the maximum dimension of any hyperedge in E. This is the
terminology that we use in the remainder of the paper. The second is to view H
as an independence system, where V is the ground set and F is an explicit list of
the minimal dependent sets. IXarp, Upfal and Wigderson [KUW] investigate the
complexity of a related problem. They consider the parallel complexity of finding
maximal independent sets in an independence system on a ground set of size n but



where the only way to gain information about the independence system is via calls
to an oracle that accepts as input a subset of V' and answers whether or not it is
independent. Besides the obvious difference in the input specifications, the main
difference between our problem and their problem is how the time for finding the
maximal independent set is expressed. [KUW] express the time simply in terms
of the number of elements in the ground set, whereas we express time in terms of
the size of the ground set plus a measure of the complexity of the independence
system, i.e. in terms of the size of the description of all the minimal dependent
sets. [KUW] prove that any deterministic parallel algorithm with p processors

and access to the oracle takes time {2 (log?ﬂp ) On the other hand, they show that
there is a randomized parallel algorithm with n processors and access to the oracle
that takes time O(y/n). In contrast, we make a conjecture on the time to find
a maximal independent set expressed in terms of our measure of the complexity
of the independence system: we conjecture that there is a randomized parallel
algorithm using O(n + m) processors with running time polynomial in log(n + m),
where n is the size of the ground set and m is the number of minimal dependent
sets. (Our main result is that this conjecture is true with a polynomial number of
processors if the size of each minimal dependent set is restricted to be a constant.)
In light of these results, it would be interesting to consider proving lower bounds
on the time complexity of finding a maximal independent set in the oracle model
introduced in [KUW] expressed in terms of a natural measure of the complexity of
the independence system (e.g. in terms of the number of minimal dependent sets
in the independence system) instead of simply in terms of the number of elements

in the ground set.

2 Notation

Let H = (V, E), where |V| =n and |E| = m. E is a collection of m subsets of V,
each such subset is called a hyperedge, or more simply an edge. The dimension of
an edge e € E, dim(e), is |e|. Forall s C V, forall j =1,...,n, let

Nis)={tCV:tuse EandtnNs=0and |{|=j},
and let 1
dj(s) = |Nj(s)|7
be the normalized degree of s with respect to dimension |s|+ j edges. For example,

Ni({v}) is the set of {w} such that {v,w} is a dimension two edge and d;({v})
is the number of dimension two edges that include v, N;({v,w}) is the set of



{z} such that {v,w,z} is a dimension three edge and d,({v,w}) is the number of
dimension three edges that include both v and w, whereas No({v}) is the set of
{w,z} such that {v,w,z} is a dimension three edge and d({v}) is the square root
of the number of dimension three edges that include v. Forall j =2,...,n, let

Aj= max  {dj_p(s)}
sCV and |s|< 7

be the mazimum normalized degree with respect to dimension j edges. Finally, we
let
A = max {A;}
J

:21--”“

be the maximum normalized degree. All of these definitions are with respect to
H implicitly. When necessary, we explicitly specify the hypergraph to which the
definitions apply, e.g. A;(H) and A(H) are defined to be A; and A, respectively,
with respect to H.

3 Overall Algorithm Structure

In this section we describe the structure for all the algorithms and introduce two
randomized parallel algorithms for the maximal independent set for hypergraphs
problem. We conjecture that at least one of these two algorithms runs in expected
time polynomial in logn for the general case. In the next section we prove that
the second of these two algorithms does have this expected running time when the
maximum dimension of an edge is restricted to three.

All of the algorithms share the following overall structure on input H = (V, E).
They work in stages, and at the beginning of each stage the pair (I, H'), where
is an independent set in H and H' = (V', E') is a subhypergraph of H, satisfies
the following invariant: If I’ is a maximal independent set in H’ then IU I’ is
a maximal independent set in /. DBefore the beginning of the first stage, I is
initialized to the empty set and H' is initialized to H. At the end of the algorithm
I is a maximal independent set in HJ and H'is empty. At each stage vertices are
added to I and H’ is pruned so that the invariant remains true. In particular, the
vertices added to I are removed from both V’ and from the edges in E’ in which
they are contained. As vertices are removed from an edge the dimension of the
edge 1s reduced. Thus, it is possible that some of the edge constraints become
redundant and can be removed. In particular, for all pairs of edges e, e’ € E’, if
e C € then the constraint imposed by e is strictly stronger than the constraint
imposed by e’ and e’ is removed from E’. When an edge is reduced to a dimension

4



one edge e = {v}, v is removed from V' (because the constraint imposed by e
ensures that v can never be added to I) and e is removed from E’.

The difference between the algorithms is the procedure for finding the vertices
to add to I in a stage. The permutation algorithm, which is a natural generalization
of the permutation algorithm described in [Lul], chooses these vertices as follows.
(As shown in [Lul], the expected running time of the permutation algorithm 1s
provably polynomial in logn when the maximum dimension of an edge is two.)
A random ordering (or permutation) # of V"’ is chosen such that each possible
ordering of the vertices is equally likely. This can be implemented by having each
vertex v € V' independently and randomly choose 7(v) uniformly from a suitably
large range of integers so that it is unlikely that two vertices choose the same
number (e.g. the range from 1,...,n* would guarantee that the probability there
is a pair of vertices that choose the same number is at most =) and then use
the value of 7(v) to determine the relative ordering of v with respect to the other
vertices in V'. For each v € V', let b(v) be a boolean variable that is initialized to
true. For each e € E', find v € e such that #(v) = max,ec.{7(w)} and set b(v) =
false. The vertices added to [ in the stage are those such that b(v) remains true.

The mazimum degree algorithm chooses the vertices to add to I in a stage as
follows. Let p = m. Each vertex v € V' independently and randomly chooses
b(v) to be true with probability p and b(v) to be false with probability 1 —p. For
each edge e € E', if b(v) is chosen to be true for all v € e then b(v) is reset to
false for all v € E’. The vertices added to I in the stage are those such that b{v)

remains true.

We conjecture that the expected number of stages for at least one of these
two algorithms is polynomial in logn. In fact, the two algorithms in many ways
are remarkably similar. We remark why this conjecture might be true for the
maximum degree algorithm. Let H' be the hypergraph at the beginning of a stage.
We can prove that A(H’) decreases to zero after a number of stages polynomial
in logn, if we ignore the migration of edges from one dimension to a smaller
dimension due to loss of vertices that are added to the independent set. (Our
belief is that this migration should only make the algorithm work faster, however
we do not know how to prove this.)

4 Dimension Three Hypergraphs

In this section we describe and analyze the maximum degree algorithm for finding
a maximal independent set in hypergraphs with maximum edge dimension three.

5



The following Main Algorithm gives the overall structure; the only part of this
algonthm specific to the maximum degree algorithm for hypergraphs with edges
of dimension at most three is how the procedure FindInd is implemented.

Main Algorithm
I—0
B = (V',E') — H = (V,E)
comment: A stage is an interation of the while loop

while H' #£ 0 do
call FindInd(H',I")

I—TIul
comment: Remove vertices in I’ from H’
Wi =1

for all e € E' do e «— e — I’ end for
comment: Remove redundant edges
for all e,e’ € E’' do
ifeCe then E'f — E' — ¢’ end if
end for
comment: Remove dimension one edges from H'
for all e = {v} € E' of dimension one do

E' «— E' - {e}

V' V' — {v}
end for
end while

Procedure FindInd given below is used to choose the vertices I’ that are to be
added to I during a stage of the algorithm when H is a hypergraph with all edges
of dimension at most three.



Procedure FindInd(H',I")

comment: The nezt two loops are to compuie A
for all v € V' do

&((v)) = M)
da({v}) — [Na({v})]2
end for
for all v,w € V',v # w do

di({v,w}) = [N ({v,w})|
end for
A maxv.wGV'{dl({v})! dﬁ({v})! dl({v: w})}
By
comment: Choice Step
for all v € V' do independently choose
b(v) = {true with probability p
false with probability 1 —p
end for
comment: Elimination Step
for all e € E' do

if b(v) = true for all v € e then do
for all v € e do b(v) « false end for
end if

end for
I' —{veV'|bv)=true}

In the following all quantities are defined with respect to H’ during an execution
of procedure FindInd. For all v € V' we say v 1s chosen if b(v) is set to true in
the Choice Step of FindInd, and in this case we say that event C, occurs. We say
v 18 eliminated if b(v) is reset to false in the Elimination Siep of FindInd, and in
this case we say that event E, occurs. Let A, be the event that v is chosen but

not eliminated, i.e. A, = C, A 0 E,.

Lemma 1

(a) For any vertez v, Pr[E,|C,] <

1
e

(b) For any pair of distinct vertices v and w such that {v,w} ¢ E',

1
Pi[E.V E,|Co A Cu] £ =.
2



Proof:

(a)

If vertex v is chosen, then it is eliminated if there is some edge e such that
v € e and all members of e are chosen. The probability that there is such a
two dimensional edge is

di({v})

Pr{3{z} € N1({v}) such that C,] < |N,({v})|p < e

=

| =

The probability that there is such a three dimensional edge is

Pr{3{z,y} € Ny({v}) such that Cy A C,] < [Na({o})|p < % x

i o 3
Thus for any vertex v, Pr[E,|C,] < g + 5 < 1.
Suppose both v and w are chosen. Vertex v or vertex w is eliminated if there
1s some edge e such that all members of e are chosen and either v € e or

w € e. There are five cases to consider:

(1) eis a two dimensional edge containing » but not w,

(2) eis a two dimensional edge containing w but not v,

(3) eis a three dimensional edge containing v but not w,

(4) e is a three dimensional edge containing w but not v and
(5) eis a three dimensional edge containing both v and w.

We upper bound the sum of the probability of these five events. By the

proof of part (a), an upper bound on (1) is g, an upper bound on (2) i é, an
1

upper bound on (3) is g; and an upper bound on (4) is . The probability
of (5) is

Pr(3{z} € Ni({v,w}) such that C,] < |N;({v,w})|p < %:L})- < %

Thus, the sum of the five probabilities is at most 3.



Lemma 2
(a) For any vertez v such that di({v}) > €A,

Pr(3{z} € Ni({v}) such that A;] > %

(b) For any vertex v such that dy({v}) > €A,

2
Pr{A{z,y} € Nao({v}) such that A, A A,] > —
(¢) For any pair of distinct vertices v and w such that dy({v,

Pr[3{z} € Ni({v,w}) such that A;] > liﬁ
Proof:

(a) By the principle of inclusion-exclusion,

Pr{3{z} € N,({v}) such that A;] >
S Pr{d.] - S Pr[A. A 4,).
{z}eM({r}) {=}{v}eM({vDhr{=}#{v}
By Lemma 1 part (a), for each {z} € N;({v}),

32A°
For each pair of distinct {z} and {y} in N,({v}),

Pr[A.] = Pr[C,| Pr[~E.|Cs] > —

Pr{A; A A, =Pr[C. A=E. AC,A-E,] L Pr[C.AC,] £ =

Thus,

: |Ni({v})] i INi({v})|
Pr[3{z} € Ni({v}) such that 4,] > —x (32 R ) ;

Because €A < |Ni({v})| < A, this last quantity is at least .



(b) By the principle of inclusion-exclusion,
Pr[3{z,y} € No({v}) such that 4, A A,] >

> PilA:AA)] - > Pr{A, A A, A A, A AL
{zw}eN2({v}) {zw}{w,z}eN2({vP)A{z .y} #{w,=}
By Lemma 1 part (b), for each {z,y} € N2({v}),

PI'[A;- AN Ay] = PI‘[CI A Cy] PI‘[‘!(E: Vv Ey)lcx A C&‘] Z 198A2°

For each pair of distinct {z,y} and {w,z} in N,({v}),
PriA. AA A Ay A A S Pr{C, AC,AC, AC,).
The quantity

Y. Pellh €8 € N0
{zyh{wz}eNo({oDA{z,0}#{w,2}

can be partitioned into the following quantities:

(1) All four vertices z,y, w, and = are distinct. There are at most |N2({v})]?

- 1
such terms, and each term is at most —=.

(2) Among the four vertices there are three distinct vertices, renamed to be
z, y and z. We can enumerate all possible triples as follows. For each
{z,y} € No({v}), we can choose {z} € Ni({v,z}) or {z} € Mi({v,¥y}).
With these choices there are exactly two ways that the same triple can
be chosen and, for each possible {v,z}, |[N,({v,2})| < A. Consequently
the number of terms is at most |N3({v})|A. Each term is at most — .

Thus,
Pr[3{z,y} € No({v}) such that A, A 4,]
1s at least
IN({wP)l (1 [Na({v})] 1
A? 128 4096 A2 512/
Because e2A? < |Ny({v})| < A?, this quantity is at least -2’323

(c) Exactly the same argument as for proof of part (a), replacing N,({v}) by
Ni({v,w}).

O

10



Lemma 3 Let H' be the input to FindInd.

(a) For any vertez v with di({v}) > €A,

" ; . €
Pr( all edges containing v are removed during this stage | > e

(b) For any vertez v such that dy({v}) > €A,

2

- : . €
Pr[ all edges containing v are removed during this stage | > 255"

(c) For any pair of distinct vertices v and w such that di({v,w}) > €A,

- ; . €
Pr| all edges containing both v and w are removed during this stage | > T

Proof:

(a) All edges containing v are removed during this stage if there is some two
dimensional edge e = {v,2} such that 4,.. By Lemma 2 part (a), this
happens with probability at least .

(b) All edges containing v are removed during this stage if there is some three
dimensional edge e = {v, z,y} such that A, AA,. By Lemma 2 part (b), this

happens with probability at least -25:%.

(c) All edges containing v and w are removed during this stage if there is some
three dimensional edge e = {v,w,z} such that 4,. By Lemma 2 part (c),
this happens with probability at least .

O

The rest of the analysis would be straightforward except for the fact that
dimension two edges can be created during the execution of the algorithm. We now
outline this straightforward analysis, assuming that no new dimension two edges
are ever created. (The actual analysis is similar in spirit but more complicated
due to the creation of dimension two edges.) Let X be the set of all vertices and
all pairs of verticesin V. The cardinality of X is O(n?). Foreach s € X, we define
the degree of s with respect to H' as follows:

(a) For all {z} € X, the degree of {z} is the maximum of d({z}) and do({z}).

11



(b) For all {z,y} € X, the degree of {z,y} is di({z,¥})-

Since A(H) < n, for all s € X and during all stages the degree of s is at most
n. We divide the execution of the algorithm into epochs. The stages belonging
to the ith epoch (for i = 1,..., [logn] + 1) are those such that at the beginning
of the stage 57+ > A(H') > &. (Some epochs may contain no stages, and when
A(H') < 1 then the current stage is the final stage). Fix an epoch i. Let A’ be the
value of A at the beginning of the first stage in epoch ¢. Forall j > 1, let H’ be
H' at the beginning of the j* stage after the start of epoch i and let AT = A(HY).

Let e
X7 ={se X: degreeof sin H > =

Because for now we are making the (false) assumption that no new edges are ever
created during the running of the algorithm, A' > A? > ... For every s € X/,
it is easy to see (using Lemma 3 and the fact that the degree of s is at least
%' = ‘3‘71 > %) that the probability the degree of s decreases to at most one
during stage j in epoch 7 is a constant. Thus on average some constant fraction of
the L are not members of L7t!. Because |L!| < |X | and | X|is O(n?), the expected
number of stages before a stage j is reached in epoch i such that L7 is empty is
O(log n). The smallest j such that L7 is empty initiates a new epoch. Thus, the
expected number of stages in each epoch is O(logn) and there are O(log n) epochs

for a total expected number of stages during the entire algorithm of C{log®n).

The analysis just given is correct except for the fact that it ignores the creation
of new dimension two edges as follows: When exactly one vertex of the three
vertices of a dimension three edge is added to the independent set then a new
dimension two edge is created. Thus the number of dimension two edges can
actually increase during the execution of the algorithm. The real problem is that
these additional dimension two edges might actually cause the value of A(H') to
increase from one stage to the next. Lemma 4 given below is used to prove that
this behavior is limited.

We now briefly outline the proof that the algorithm has expected running time
polynomial in log n. Recall that Ay(H') and Az(H') are the maximum normalized
degree with respect to dimension two edges and dimension three edges, respec-
tively, in H' (see the Notation section). All of the statements in this paragraph
hold with suitably high probability (e.g. O(1/r?)). Lemma 4 can be used to show
that as long as Ay(H') is bigger than Ag(H') then Ay(H’) does not grow too
rapidly, and furthermore that if A,(H') is more than a polynomial in logn factor
bigger than Az(H') then (using also Lemma 3) A,(H') decreases in a polynomial
in logn number of stages until it is within a polynomial in log n factor of As(H').

12



Finally, using Lemma 3, it is possible to show that after polynomial in logn stages
where A,(H') is at most a polynomial in logn factor larger than A,(H') the value
of Ay(H') decreases to zero. Putting all of this together we get that after a polyno-
mial in log n number of stages A3(H') is zero. Once Az(H') is zero, after another
log® n stages the algorithm has found a maximal independent set in H. We give
these details in the final version of the paper.

Lemma 4 Fiz H' at the beginning of a stage. For any ¢ > 0, for any v € V7,
if a2tz Ic:gi‘"'n and t > max{dy({v}), maxyev{di({v,w})}} then the probability
is at most 52 that during the stage more than (5c 4+ 10.5)tlogn additional two
dimensional edges are produced at v.

Proof: Fixanv € V'. Let X = UNy({v}), i.e. X istheset ofall z € I
such that z is in some dimension three edge that also includes v. For each 2 € X
we let a; be the maximum number of dimension two edges that could be created
at v if z were added to the independent set. This number a, is just d;({v,z})
and by assumption this is at most t. Also, Y .cx a; < 2t because each dimension
three edge containing v is accounted for twice in the sum on the left. We over-
estimate the number of dimension two edges produced at v by viewing the total
number of edges produced as being the sum of |X| independent random variables
{Y; : = € X} such that Y, = a, with probability W and Y, = 0 otherwise.

We break-up the range of possible values of a into log  groups, [1, 2],(2,4],...,(t/2,1].
Since ¥ ,ex ar < 2t? there are at most %"-2- vertices z with a, in the range (2¢,21].
Thus the distribution of ¥ ,cx Y. is bounded above by

Y =

L2

1 1 1
B2, —)4-4B(t?, —) 4 - tB (4, —
( 8/_\)+ ( ’SA)+ B 'aa)

where B(m, p) is binomial distribution which is the sum of m independent variables
42 log ¢

with individual probability p. The expected value of this distribution is =43
itlogn.
2

A group corresponding to the range (m /2, m] contributes ii—zB(m, ax) < tB(m, %)

to the total. We now consider the distribution B(m, zx). Now

vt 1215 () (&) < (23 < (25"

We break up consideration of the tail probabilities into 3 cases.

13



1. For m/A > 2logn we choose s = m/A and get Pr[B(m, %) > 8 €27 L
2-2logn — 1 /p2,

S}

For m/A < /logn choose s = E‘igl—‘l’;-‘g"—n and obtain

1 3 —(L n—logloglogn)s
Pr[B(m, a) > 5] < (10y/lognloglogn)™ < 2-(zlglogn-logloglogn)

r)—%sloglclgn

IA

2—-‘210gn s 1/,“2.

3. For /logn < m/A < 2logn choose s = 2logn and obtain Pr[B(m, &) >
S] L8 2—-2105:'1 o 1/,”2

Assume that each of the binomial distributions being summed takes on a value

no more than its corresponding s value. This happens with probability at least
— '—f]‘éi >1- }—"n‘-‘;. For each group corresponding to the first case we see that
the distribution is no more than m/A and the contribution of its group is at most
(42 /m)(m/A) = 4t*/A < 4¢. Thus the total contribution of the first case is no
more than 4tlogt < 4tlogn. Since A < tlog®n there are at most (c +.5)loglogn
groups corresponding to the second case. In each of these groups the contribution

is no more than %6 for a total contribution of at most 5(c+.5)tlog n. Finally

there are at mostlo.gfiolgo% logn groups corresponding to the third case and in each
of these the contribution is at most (4¢2/m)2log n. Now since m/A > /logn, the
contribution of each of these groups is at most (4¢2/A)\/Iogn < 4¢\/logn. Thus
the total contribution from groups corresponding to the third case is no more than
2t\/log nloglogn < tlogn for n sufficiently large. Adding up the contributions of

the three cases we get a total ¥ value of at most (3¢ + 10.5)tlogn. O

5 Constant Dimension Hypergraphs

For hypergraphs with dimension at most ¢, the algorithm is unchanged in overall
structure and all that is affected is the computation of A and p in FindInd. A
now requires O(n¢) processors and O(logn) time and the probability p is chosen
to be (2°t1A)~? instead of ﬁ. Corresponding to Lemma 3 above we have for any
set X of vertices of size up to ¢ — 1 the probability that all edges containing X' are
removed during a stage is at least 1(e/2°71)7 if d;(X) > eA. Similarly, an analog of
Lemma 4 holds but now we must consider all the possibilities of higher dimensional

14



edges being partially selected and generating new edges of lower dimension. The
overall analysis follows the same structure as the dimension 3 case. Details are
left for the full paper.

6 References

[ABI] Alon, N., L. Babai, A. Itai, “A Fast and Simple Randomized Parallel Al-
gorithm for the Maximal Independent Set Problem”, Journal of Algorithms,
7, pp. 567-583, 1986.

[GS] Goldberg, M., T. Spencer, “A New Parallel Algorithm for the Maximal In-
dependent Set Problem”, preliminary version in proceedings of 28th Annual
Symposium on Foundations of Computer Science, 1987, pp. 161-165, to
appear in STAM J. on Computing.

[KUW] Karp, R.M., Upfal, E. and Wigderson, A., “Are Search and Decision
Problems Computationally Equivalent?”, Proc. 17th ACM Symposium on
Theory of Computing, 1985, pp. 464-475.

[KW] Karp, R.M., A. Wigderson, A Fast Parallel Algorithm for the Mazimal
Independent Set Problem, Proc. 16th ACM Symposium on Theory of Com-
puting, 1984, pp. 266-272.

[Lul] Luby, M., “A Simple Parallel Algorithm for the Maximal Independent Set
Problem”, SIAM J. Comput., vol. 15, no. 4, November, 1985, pp. 1036-1053.

[Lu2] Luby, M., “Removing Randomness in Parallel Computation Without a Pro-
cessor Penalty”, preliminary version in proceedings of 29th Annual Sympo-
sium on Foundations of Computer Science, 1988, pp. 162-173, to appear in
special issue of JCSS.

15



