Towards a Theory of
Average Case Complexity

Shai Ben-David, Benny Chor,
Oded Goldreich® and Michael Luby?
TR-89-004
February, 1989

This paper takes the next step in developing the theory of average case complexity, a
study initiated by Levin. Previous works have focused on the existence of complete problems
[Le, Gu, VL]. We widen the scope to other basic questions in computational complexity.
For the first time in the context of average case complexity, we show the equivalence of search
and decision problems, analyze the structure of NP under P reductions, and relate the NP
versus average-P to non-deterministic versus deterministic (worst case) exponential time.
We also present definitions and basic theorems regarding other complexity classes, such as
average log-space.

!Ben-David, Chor and Goldreich are of the Department of Computer Science Technion, Haifa, Israel, supported
by grant No. 86-003-1 from the United States - Israel Binational Science Foundation (BSF), Jerusalem, Israel.

*International Computer Science Institute, Berkeley, California on leave of absence from the University of
Toronto, research partially supported by a Natural Sciences and Engineering Research Council of Canada of
Canada operating grant A8092 and by a University of Toronto Grant.



s

3 U - .'-é.!c L =) gem yT

T St oy & - A

A ¥ .'.{f!.‘i v !
b =5 4 |_'l'|"_ WM I
o
— &
L]
o
r| i £ - "
Aol T "y LA
f . ? “hit iz
4 1



1 Introduction

The average complexity of a problem is, in many cases, a more significant measure than
its worst case complexity. This has motivated the development of a rich area in algorithms
resarch — the probabilistic analysis of algorithms [J,K2]. However, this line of research has
so far been applicable only to specific algiorithms and with respect to specific, typically
uniform, probability distributions.

The general question of average case comlexity was addressed for the first time in [L84].
Levin’s work can be viewed as the basis for a theory of average NP-completeness, much
the same way as Cook [C] (and Levin [L73]) works are the basis for the theory of NP-
completeness. Subsequently Gurevich [Gur] has presented several additional complete prob-
lems and gave a partial explenation of the difficulty in finding natural complete problems.
Venkatesan and Levin [VL] showed the completeness of a graph coloring problem with
respect to randomized reductions.-

In this paper we widen the scope of investigation and consider basic computational
questions in the context of average case complexity.

An average case complexity class consists of pairs, called distributional problems. Each
such pair consists of a decision problem and a probability distribution on problem instances.
Most of our work deals with the class (NP, P-computable), which is first defined by Levin
[L84]. P-computable is the class of probability distributions u such that there exists a
polynomial time Turing machine which on input z computes u(z), the total probability of
all strings y < z. The easy distributional problems are those having an algorithm that
solves the decision problem in average polynomial time, with respect to the probability
distribution on problem instances. We denote this class by Average-P. Reductions between
distributional problems are defined in a way guaranteeing that if II; is reducible to II, and
II; is in Average-P, then so is II;.

A basic question regarding the theory of computational complexity is the relation be-
tween search and decision problems. Unfortunately, the standard Turing reduction of NP
search problems to NP decision problems is not applicable in the distributional context. In
Section 3, we present a randomized reduction of (NP, P-computable) search problems to
(NP, P-computable) decision problems. Interestingly, this reduction can be carried out in
RNC, yielding a reduction of NC search problems to NC decision problems that is different
than the one in [KUW].

If (NP, P-computable) is not a subset of Average-P, then there are complete problems
in (NP, P-computable) which are not in Average-P. A natural question is whether every
(NP, P-computable) problem is either in Average-P or complete for (NP, P-computable).
In Section 4, we resolve this question by showing that problems which are neither easy nor
complete do exist. In fact, we show that the structural results of classical complexity theory
[Lad] can be translated to the distributional context. Furthermore, we define a notion of one
distribution being “harder” than another, and demonstrate a rich structure of distributions.

It is not clear whether (NP, P-computable) C Average-P (even if P # NP). In Section 5,
we give strong indication that (NP, P-computable) is not a subset of Average-P by relating,
for the first time, this question to a classical one in (worst case) complexity. Specifically,
we prove that if (NP, P-computable) C Average-P, then NTime(ZO(“)) = DTime(20®)),



In Section 6, we present another natural family of distributions, P-samplable, for which
random samples can be generated in time which is polynomial in the length of the sample
generated. We define the class of distribution problems (NP, P-samplable) and present a
complete problem for this class. We show that if one-way functions exist, then there are
P-samplable distributions that are “very far” from any P-computable distribution.

In Section 7 we investigate notions of Average-logspace. We define average log-space
reductions and the class (P, logspace-computable), and exhibit a complete distributional
problem for this class. We further develop the theory and relate the question “is Dspace(n)
= DTime(2°(®))?” to the distributional question “is (P, logspace-computable) C Average-
logspace?”. Structural properties of (P, logspace-computable) under logspace reductions,
as well as the equivalence of search and decision, are also shown.

2 Definitions and Notations

In this section we give definitions of various concepts that are used throughout the paper.
For sake of simplicity, we consider the lexicographic ordering of binary strings. Let z — 1
denote the string preceding z in lexicographic order.

Definition: (Probability Distribution Function:) A distribution functionp : {0,1}* — [0,1]

is a non-decreasing function from strings to the unit interval [0,1] which converges to one

(i.e., #(0) > 0, p(z) < p(y) for each z < y, and lim, . p(z) = 1). The density function

associated with the distribution function p is denoted p’ and defined by x/(0) = p(0) and
#(z) = p(z) — p(z — 1) for every z > 0. Clearly, p(z) = Ty #'(¥)-

For notational convenience, we often describe distribution functions converging to some
¢#1. In all the cases where we use this convenience it is easy to normalize the distribution,
so that it converges to one, by dividing by ec.

Definition: (A Distributional Problem): A distributional decision problem (resp. distri-
butional search problem) is a pair (D,u) (resp. (R,p)), where D : {0,1}* — {0,1} is a
Boolean predicate (resp. R C {0,1}* x {0,1}" is a relation) and g : {0,1}* — [0,1] is a
distribution function.

In the sequel we mainly consider decision problems.

Definition: (The class P-computable): A distribution p is in the class P-computable if
there is a deterministic polynomial time Turing machine that on input z outputs the binary
expansion of p(z) (the running time is polynomial in |z| and in the number of bits of u(z)
produced).

If the distribution function g is in P-computable then the density function p’, is com-
putable in time polynomial in |z|. The converse, however, is false, unless P = NP (see
[GMc, Gol]). In spite of this remark we usually present the density function and leave to
the readr the verification that the corresponding distribution function is in P-computable.

We now present the class of distributional problems which coresponds to (the usual)
NP. Most of the results in the paper apply to this class.



Definition: (The class (NP, P-computable) [L84]): A distributional problem (D, 1) belongs
to the class (NP, P-computable) if D is an NP-predicate and u is in P-computable.

The following definitions are due to Levin. As they may seem obscure at first glance, let
us point out that naive formalizations of these definitions suffer from serious problems such
as not being closed under functional composition of algorithms, being model dependent etc.
More motivating arguments can be found in [J, GMc, Gol].

Definition: (Polynomial on the Average ): A function f : {0,1}* — N is polynomial on
the average with respect to a distribution p if there exists a constant € > 0 such that

Z ,u"(w)- f(:"”)c < 0

IE{O,}.}" |z |

Definition: (The class Average-P ): A distributional problem (D, 1) is in the class Average-
P if there exists an algorithm A solving D whose running time is polynomial on the average
with respect to the distribution p.

We view the classes Average-P and (NP, P-computable) as the average - case - com-
plexity counterpart of P and NP (respectively). Another candidate, Average-NP — the class
of distributional problems which can be solved by a non-deterministic machine running in
average polynomial time with respect to P-computable, can be considered instead of (NP,
P-computable). However, we feel that (NP, P-computable) is closer to the original motiva-
tion of investigating the average case complexity of NP. All results known (e.g. [L84, Gur,
VL]) as well as the ones shown in this paper for the class (NP, P-computable) hold also for
Average-NP.

2.1 Reducibility between Distributional Problems

We present definitions of (average polynomial time) reductions of one distributional problem
to another. Intuitively, such a reduction should be efficiently computable, yield a valid result
and “preserve” the probability distribution. The purpose of the last requirement is to ensure
that the reduction does not map very likely instances of the first problem to rare instances
of the second problem. Otherwise, having a polynomial time on the average algorithm for
the second problem does not necessarily yield such an algorithm for the first problem. For
further discussions see [J, GMc, Gol].

Definition: (Deterministic Turing Reductions): We say that the deterministic oracle Tur-
ing machine M reduces the distributional problem (D;, ;) to the distributional problem
(D2, p2) if the following three conditions hold.

1) Efficiency: Machine M is polynomial time on the average with respect to x;. More
precisely, let tps(z) be a bound on the running time of M on input z, then the
function tps is polynomial on the average with respect to p.

2) Validity: For every z € {0,1},
MDP:(z) = Dy(2)



where MP2(z) denotes the output of the oracle machine M on input = and access to
an oracle for Dj.

3) Domination: There exists a constant ¢ > 0 such that for every y € {0,1}",

1
wh(y) > — z Ask(M,z,y) - pi(z),
Wl elony-

where Ask(M,z,y)is 1if machine M asks query y on input z and is 0 otherwise.

Definition: (Randomized Turing Reductions): We say that the probabilistic oracle Tur-
ing machine M randomly reduces the distributional problem (D1, s1) to the distributional
problem (Dj, u2) if the following three conditions hold.

1) Efficiency: The same efficiency requirement as for Deterministic Turing Reductions.

2) Validity: For every z € {0,1}~,
Prob(MP2(z) = Dy(z)) > g

where MP2(z) is the random variable that is the output of the oracle machine M on
input z and access to oracle for D,, with respect to the random choices of M.

3) Domination: There exists a constant ¢ > 0 such that for every y € {0,1}",

’ 1
)2 T T Prob(Ask(i,2,0))- ()
:E{O,I}‘

where Prob(Ask(M,z,y)) is the probability that machine M asks query y on input
%

In the rest of the paper whenever we use the term reduciion we mean a reduction of
distributional problems, as defined above, and we use < (<g) to denote a deterministic
(resp. randomized) reduction. It is easy to see that if (Dy,p1) < (Da, p2) and if ( Dy, p2)
is solvable by a deterministic (resp. randomized) algorithm with running time polynomial
on the average then so is (D1,p1) (see [GMc, Gol]). Similar comments hold with respect
to <g. Definitions of deterministic and randomized many-to-one reductions (i.e. Levin’s
original definition [L84] and the one used in [VL]) can be derived from these definitions as
a special case.

3 Search versus Decision Problems

In this section we show that search and decision distributional problems are equivalent with
respect to randomized reductions.

Before presenting our reduction of distributional search problems to distributional de-
cision problems we remark that the standard reduction of a search problems to the corre-
sponding decision problem does not have the domination property. On input z, the oracle



machine tries to find a “solution” y by asking an oracle queries of the form “is y a prefix
of a solution to z”. Choosing the distribution of this decision problem to be uniform on
these prefixes violates the domination condition, since when (for example) |y’| = |y|/2 the
reduction maps an instance of the search problem to a much more rare instance of the
decision problem (the ratio of probabilities of these instances is > 2-IvI/2), It’s not clear
how to construct polynomial time computable distributions for the above decision problem
so that the reduction will satisfy the domination condition.

We reduce every distributional search problem to an appropriate (distributional) deci-
sion problem in two steps. First, we randomly reduce the (distributional) search problem
to a related (distributional) problem with a unique solution. This reduction follows the
underlying principles of the proof of Valiant and Vazirani [VV]. Next, we reduce such a
search problem to a related decision. The reader may easily verify that these reductions
can be performed in fast parallel time (RNC).

3.1 Reducing a Search Problem to a Search of Unique Solution

Theorem 1: Let II; = (Rq,11) € (NP, P-computable). Then there exists a unique solution
search problem Iy = (Ry, ug) € (NP, P-computable) such that II; is randomly reducible to
II3. (Queries to R which do not have a unique solution are answered arbitrarily.)

Proof Sketch: For sake of simplicity, assume (z,y) € R, implies |z| = |y|. Consider z such
that |z| = n. Let Hyx be a set of universal hash functions (e.g. n X k& Boolean matrices)
[CW]. Define R; as follows: (z',y) € Ry if 2’ = (z,k,h,a), (z,y) € Ry, b € Hyp and
h(y) = @. The density function pf assigns (z, k, h, @) probability p}(z)-|z|~1 |Hak|"127%
if h € Hyx and a € {0,1}*, and 0 otherwise. The reduction, effected by the probabilistic
oracle M proceeds as follows. On input z € {0,1}", machine M tries the following for
every value of k € {1,2,...,n}. Selects independently at random with uniform probability
distribution an h in H,j and o € {0, 1}*, makes the oracle query (z,k, h, @) and tests the
reply. This is repeated polynomially many times. For some k (i.e. so that the number of y’s
satisfying (z,y) € R, falls in the interval [2%-1,2%)) at least one of the polynomially many
queries has a unique solution with high probability and therefore the oracle answers with
the unique solution. To conclude the proof note that the reduction satisfies the domination
condition. O

Almost the same construction will reduce any (NP, P-computable) decision problem to
an (NP, P-computable) decision problem with unique witnesses.

3.2 Reducing a Search of Unique Solution to a Decision problem

Theorem 2: Let (Ry, 41) € (NP, P-computable) be a distributional unique-search problem.
Then there exists a distributional decision problem (D3, uq) € (NP, P-computable) such that
(R1, 1) (deterministically) reducible to (D2, ).

Proof Sketch: For sake of simplicity, assume that (z,y) € R, implies |z| = |y|. When
discussing D, we write strings in the form (z, 1), where 1 < i < |z|. For all z such that there
exists a unique y such that (z,y) € Ry, (z,1) € D, if the i*h bit of y is equal to one. For all

w



other z, (z,1) is arbitrarily in D4 or not. For each (z,1), we set ub(z,i) = pi(z)- fracl|z|.
This reduction has the domination property. O

4 On the Structure of (NP, P-computable)

Ladner has demonstrated the richness of the structure of NP under polynomial reductions
[La]. The average case complexity counterpart, (NP, P-computable), is not less complex.
There are several different ways to define a (average-polynomial) 'reducability order’ on
this class and they all enjoy structure theorems analogous to those of [Lad]. As the proofs,
and even the precise statement of theorems, are quite lengthy, we present here only some
characteristic examples.

The natural way to define a complexity ordering on the class (NP, P-computable) is
through the reducibility of distributional problems. Another possibility is to fix a distri-
bution g € P-computable and consider the relation <, defined on NP by D; <, D, iff
(D1,p) £ (Dg,p). Theorem 5 implies that there is an infinite complexity hierarchy on
NP with respect to <, for each g € P-computable such that there is a D € NP where
(D, ) is not in Average-P. It follows that a similar result applies to the 'natural’ ordering
of (NP, P-computable). It should be noted that in general the orderings <, and <p are
different,i.e. Dy, D9 € NP and D; <p D7 does not imply D; <, D for a specific or for any
g € P-computable (P denotes the usual relation of many-one, (worst-case) polynomial-time

reducibility).

There is yet another natural order which emerges in the context of distributional prob-
lems: an ordering of distributions. We define g1 <pist p2 if there exists a D, € NP
such that for every D; € NP we have (Dy, 1) < (Dz,p2). Note that the partial order
induced on the equivalence classes derived from <pisT has a maximum element Max =
{p : 3D € NP s.t. (D,pu) is complete for (NP, P-computable)}. and a minimum element
Min = {u : VD € NP ((D,p) € Average-P ) }. Theorem 4 implies that there is an in-
finite complexity hierarchy on P-computable with respect to the ordering <pist if (NP,
P-computable) is not a subset of Average-P.

Theorem 3: For every distribution g1 >pisT Min there exists a distribution u2 such that
Min <pr1st M2 <DIST H1.

Proof Sketch: For simplicity, we only construct here a distribution g such that the claim
holds for a specific D’. Several other details are missing (e.g. we construct a 2 which does
not converge to 1, etc.). Consider an enumeration of all candidate average polynomial time
algorithms, {(A;,€;,¢;) : ¢ € N}, where the A;’s range over all algorithms, €;’s over the
rationals, and ¢;’s over the integers. Let {(Mj,¢;,¢;) : i € N}, be a similar enumeration,
where the M;’s are all oracle Turing machines.

In the sequel, we associate bit strings with their (integer) index in the standard lex-
icographic order. Define a function p : N — N and an algorithm for computing it
and p5, recursively. On input z, compute the sequence < p(1),u%(1), D(1),D(1) >,<
2(2), 15(2), D(2),D(2) >,... until reaching n = |z| steps. Let r be the last integer for
which (p(r), ub(r), D(r), D'(r)) is computed. If r = 0 set p(z) = 1, ph(z) = pi(z) and stop.



If p(r) is odd, let i = (p(r) + 1)/2 and consider (A;, €,¢;). Use Ay, again with time
bound n, to compute a sequence of pairs < A;(1),%:(1) >,..., < A;(s),t:i(s) >, where #;(J)
is the running time of 4; on input j. Algorithm A; is ruled out if it either runs too slow or
errs. Namely, if either 55, ¢ <, p5(y)- L :ﬁ > ¢; or Iy (< r,8) such that D(y) # Ai(y) (and
ph(y) # 0) then set p(z) = p(r)+1 else set p(z) = p(r). In the first case set p4(z) = 0 while
in the second case set u4(z) = pi(z). Eventually, for some z the value of p will increase
since no algorithm can solve D in time which is polynomial on the average with respect to
a distribution which differs from x; only on a finite portion.

If p(r) is even, let ¢ = p(r)/2 and consider (M, €, ¢;). Use M; (and the above computed
values of D’(-)) to compute a sequence t;(1),...,t;(8), where #;(j) is the running time of
M; on input j, until n steps are reached or M; asks a query ¢ the answer to which has
not been computed above (i.e. ¢ > r). The oracle machine M; is ruled out if it either
runs too slow or asks queries violating the domination condition or errs. Namely, if either

Di<y<s Ha(y)- f—‘%r—' > ¢; or Jy (< r,8) (1(y) # 0) such that either all queries have even p

value or D(y) # MP'(y) then set p(z) = p(r) + 1 else set p(z) = p(r). In the first case set
p5(z) = pi(z) while in the second case set u5(z) = 0. Eventually, for some z the value of p
will increase since no machine having access to a finite oracle can solve D’ in time which is
polynomial on the average with respect to pg. It should be noticed that p, is polynomial
time computable. O

Corollary: If (NP, P-computable) is not a subset of Average-P then there exists a dis-
tributional problem in (NP, P-computable) that is not in Average-P and not complete for
(NP, P-computable).

Theorem 4: For every problem (Dq,p) in (NP, P-computable) but not in Average-P
there exists a problem (D, p) such that (D,, i) € (NP, P-computable) but not in Average-
P, (D1, p) is not (Turing) reducible to (D, p), and (D, ¢) is (many-to-one) reducible to
(Dlu :U')-

Proof Idea: Similar in its underlying principles to the proof of Theorem 4, except that we
use the value of p(z) to modify D instead of . O

5 Relations to Worst-Case Complexity

In this section we present theorems which relate questions about worst-case complexity
classes to questions about average-case complexity classes, For lack of space, we omit all
proofs. The first question we address is how likely is it that every NP problem has an easy
on the average solution with respect to every P-computable distribution.

Theorem 5: If NTime(2°() £ DTime(2°(™) then (NP, P-computable) is not a subset of
Average-P.

We can get an if and only if’ result by extending the class of distributions allowed from
P-computable to exponential-time-computable.

Theorem 6: NTime(2°(®)) # DTime(2°() if and only if there exists a unary language
L such that there is no algorithm which decides membership in L and has running time
polynomial on the average with respect to the distribution on unary strings p/(17) = n=2.



The following theorem provides a connection between a tighter bound on the running
time for NP problems and distributional complexity.

Definition: A probability distribution u is ezponentially linear vanishing if there exists
constants ¢,d > 0 such that for every z € {0,1}*, p/(z) < c-2-(1+9kzl. (Recall that NP
C DTime(22°M)).

Theorem 7: NP C DTime(20(%)) if and only if every problem in (NP, P-computable) with
an exponentially linear vanishing distribution is in Average-P.

Corollary: If NP is not a subset of DTime(2°(®)) then there are problems in (NP, P-
computable) with exponentially linear vanishing distributions that are neither in Average-P
nor complete for (NP, P-computable) with respect to deterministic reductions.

6 A Wider Class of Distributions

In this section we consider a natural extension of the class of P-computable disributions -
— the class of P-samplable distributions. Distributions in this class arise in polynomial
time probabilistic computations. We show that under “modest” cryptographic assumptions,
there are P-samplable distributions that are “very far” from any P-computable distribution.
We proceed to present a complete distributional problem in (NP, P-samplable). The proof
of completness here is very different then for the (NP, P-computable) case.

Definition: (The class P-samplable): A distribution g is in the class P-samplable if

1. The weight of £®, p, & p(1™) — p(1™-1) is polynomial time (in n) computable.

2. There is an efficient sampling algorithm for ™ under p,. That is, a probabilistic
polynomial time Turing machine M that on input n (in unary) outputs a string
z € " with probability u'(z)/tn.

Theorem 8:

1. Every P-computable distribution is also in P-samplable.

2. If one-way permutation exists, then there is a P-samplable distribution g such that
for any distribution 7, if 5’ is polynomial time computable, then 7 does not dominate

73

Proof Sketch: 1. Given n, M picks at random with uniform distribution a truncated
rational p in [p(1"~1),2(1")) (the length of expansion depends on ). It then finds, via
binary search and queries to p, the unique string z € " satisfying p(z — 1) < p < p(z).

2. Let f be a one-way permutation of {0,1}". Define the distribution x on {0,1,2}" by

iflyl=z|=n,3zy= f(z),z=52...2, s prefixof z
otherwise

1
#ly,2)= { "3[']2'1



It is easy to see that p is P-samplable. Suppose i dominates g. For most ¥’s of length
n, there could be only polynomially many w’s such that n'(y, w) > 5= (otherwise n would
sum up to more than 1). We say that such w is heavy for y, and we call y with only
polynomially many heavy w’s “common”. Given a common y, an oracle for 5’ can be used
to find f~!(y) in polynomial time: The search focuses on heavy nodes, of which there
are only polynomially many, and ignores extensions in “light” directions. Because of the
domination condition, all nodes on the branch with prefixes of f~1(y) are heavy. O

The above Theorem leads to the definition of the following class of distribution problems.

Definition: (The class (NP, P-samplable)): A problem (D, ) belongs to the class (NP,
P-samplable) if D is an NP-predicate and p is in P-samplable.

Intuitively, the question of whether there exists a problem in (NP, P-samplable) which
is not in Average-P can be interpreted as asking whether one party can efficiently find
instances of an NP problem which will be hard to solve for another party. This should
be contrasted with the question of whether there exists a problem in (NP, P-computable)
which is not in Average-P, which can be interpreted as asking whether one can efficiently
find instances of an NP problem which will be hard to solve, even for the person who has
constructed them! For further discussion see [Gol].

Theorem 9: There exist problems which are complete in (NP, P-samplable).

Proof Sketch: It is possible to effectively enumerate all polynomial time sampling Turing
machines, and hence all P-samplable distributions pq, g2, .... (Such effective enumeration
is apparently not possible for P-computable distributions.) Define a universal distribution

oo
2 def Bz
ey ).
i=1
Then u is in P-samplable, and for any NP complete problem L, (L,u) is complete in P-
samplable. (A similar idea is used in [L86].)

We can modify the construction so that, if one-way functions exist, then the resulting
problem is complete in (NP, P-samplable) but is not in (NP, P-computable).

7 Average logspace

The natural adaptation of the definition of Average-P fails for Average-logspace. We present
an alternative definition of Average-logspace, which satisfies some desired properties, such
as Average-logspace C Average-P. We define the class (P, logspace-computable), and give
an appropriate version of the bounded halting problem, together with a distribution in
logspace-computable, which are shown to be complete in (P, logspace-computable) with
respect to logspace reductions.

The first attempt at the definition is the following: An algorithm A is logspace on the



average with respect to distribution pu if

> (=) el

3&{0:1}. ]'Og |3:|

where s4(z) denotes the work space used by algorithm A on input z. Unfortunately,
this definition has some serious handicaps, the most upsetting of which is that for every
0 < a < 1, algorithms that use work space n® on every input of length n, will be in average
logspace with respect to the uniform distribution. (As a consequence, average logspace will
not necessarily be contained in average-P.) Instead, we propose the following definitions.

Definition: (Logarithmic on the Average): A function f: {0,1}* — N is logarithmic on
the average with respect to a distribution g if there exists a constant € > 0 such that

Z 2 (gf(=}) <o

36{0 l}' | I

Definition: (The class Average-logspace): A distributional problem (D, ) is in the class
Average-logspace if there exists an algorithm A solving D using work space s 4, which is
logarithmic on the average with respect to the distribution y. In other words, the exponent
of the work space, 2%4(%), is polynomial on the average.

This revised definition overcomes the above mentioned difficulties. In addition, the no-
tion of domination of probability distributions will still be applicable, and Average-logspace
is closed under average logspace (many-to-one) reductions.

This approach can be generalized to the definition of the class Average-Uniform-NC. To
do this, we use the characterization of Uniform-NC by alternating logspace and poly-log
time Turing machines [R]. We will now require that both the exponent of the work space
(i.e. 2¢°4(=)) and the exponent of the time to some power § > 0 (i.e. 2¢¢4(=)*) be polynomial
on the average.

The class (P, logspace-computable) is defined analogously to the definition of (NP, P-
computable). Namely, (P, logspace-computable) consists of distributional problems, (D, u),
with D € P and the distribution function u is logspace computable. It should be noticed that
many natural distributions, including the uniform distribution, are logspace computable.

Deterministic Bounded Halting (DBH) is defined over triples (M, z,1%), where M is
a deterministic machine, z is a binary string and % is an integer (given in unary). The
problem is to determine whether M accepts z within k steps. Clearly, DBH € P, and it is
not hard to see that it is P-complete with respect to logSpace reductions. The distribution
Uo is defined in terms of its density function

,UEI(M Z, 1k) = (l -uyflg

Theorem 10: The distributional problem (DBH, p¢) is complete in (P, logspace-computable).

Proof Sketch The proof uses ideas of the (NP, P-computable)-completeness proof of Dis-
tributional Bounded Halting, as presented in [Gur,GMc,Gol]. If x is logspace computable,

10



then so is the coding function C,, which used in the reduction. The decoding algorithm C!
is not logspace computable. However, decoding can can be done in deterministic polynomial
time, which is sufficient for our purpose. O

We remark that it is possible to define a (deterministic) version of the tiling problem,
so that with the distribution pg, it is complete in (NP, P-computable).

The following theorems are analogues of these appearing in Section 3. Again, for lack of
space, we omit their proofs.

Theorem 11: If DTime(2°(®)) # DSpace(n) then there exists a problem in (P, logspace-
computable) which is not in Average-logspace.

Theorem 12: DTime(2°(®}) £ DSpace(n) if and only if there exists a unary language
L such that deciding membership in L is not logspace on the average with respect to the
uniform distribution on unary strings.

Theorem 13: P C DSpace(n) if and only if every problem in (P, logspace-computable)
having an exponentially-vanishing distribution is in Average-logspace.

All the theorems in Section 5, dealing with the structure of (NP, P-computable), can be
modified to the context of (P, logspace-computable). In particular, we have the following.

Theorem 14: If (P, logspace-computable) # Average-logspace then there exists a distri-
butional problem in (P, logspace-computable) - Average-logspace which is not (P, logspace-
computable)-complete.

As the reduction presented in Section 5 can be carried out in RNC, it follows that
(NP, P-computable) search problems are RNC-reducible to (NP, P-computable) decision
problems.

Acknowledgements

We would like to thank Shimon Even, Mauricio Karchmer, Hugo Krawczyk, Ronnie
Roth, and Avi Wigderson for helpful discussions. We are grateful to Leonid Levin for very
interesting discussions.

References

[CW] Carter, J., and M. Wegman, “Universal Classes of Hash Functions”, JCSS, 1979,
Vol. 18, pp. 143-154.

[C] Cook, S.A., “The Complexity of Theorem Proving Procedures”, Proc. 3rd ACM Symp.
on Theory of Computing, pp. 151-158, 1971.

[GJ] Garey, M.R., and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman and Company, New York, 1979.

11



[Gol] Goldreich, O., “Towards a Theory of Average Case Complexity (a survey)”, TR-507,
Computer Science Department, Technion, Haifa, Israel, March 1988.

[Gur] Gurevich, Y. “Complete and Incomplete Randomized NP Problems”, Proc. of the
28th IEEE Symp. on Foundation of Computer Science, 1987, pp. 111-117.

[GMc] Gurevich, Y., and D. McCauley, “Average Case Complete Problems”, preprint,
1987.

[J] Johnson, D.S., “The NP-Complete Column—an ongoing guide”, Jour. of Algorithms,
1984, Vol. 4, pp. 284-299,

[K] Karp, R.M., “Reducibility among Combinatorial Problems”, Complezity of Computer
Computations, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, pp. 85-103, 1972,

[K2] Karp, R.M., “Probabilistic Analysis of Algorithms”, manuscript.

[KUW] Karp, R.M., E. Upfal, and A. Wigderson, “Are Search and Decision Problems
Computationally Equivalent?”, Proc. 17th ACM Symp. on Theory of Computing,
1985, pp. 464-475.

[Lad] Ladner, R.E., “On the Structure of Polynomial Time Reducibility”, Jour. of the
ACM, 22, 1975, pp. 155-171.

[L73] Levin, L.A., “Universal Search Problems”, Problemy Peredaci Informacii 9, pp. 115—
116, 1973. Translated in problems of Information Transmission 9, pp. 265-266.

[L84] Levin, L.A., “Average Case Complete Problems”, SIAM Jour. of Computing, 1986,
Vol. 15, pp. 285-286. Extended abstract appeared in Proc. 16th ACM Symp. on
Theory of Computing, 1984, p. 465.

[L85] Levin, L.A., “One-Way Function and Pseudorandom Generators”, Proc. 17th ACM
Symp. on Theory of Computing, 1985, pp. 363-365.

[R] Ruzzo, W.L., “On Uniform Circuit Complexity”, JCSS, 22, 1981, pp. 365-385.

[Sip] Sipser, M., “A Complexity Theoretic Approach to Randomness”, Proc. 15th ACM
Symp. on Theory of Computing, 1983, pp. 330-335.

[Sto] Stockmeyer, L.J., “The Complexity of Approximate Counting”, Proc. 15th ACM
Symp. on Theory of Computing, 1983, pp. 118-126.

[VV] Valiant, L.G., and V.V. Vazirani, “NP is as Easy as Detecting Unique Solutions”,
Proc. 17th ACM Symp. on Theory of Computing, 1985, pp. 458—463.

[VL] Venkatesan, R., and L.A. Levin, “Random Instances of a Graph Coloring Problem
are Hard”, to appear in Proc. 20th ACM Symp. on Theory of Computing, 1988.



