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Abstract

We present a feasibly constructive proof that R(3,¢) > 5( %I_)EE% €
Q(t1-?%). This is, as far as we know, the first constructive superlin-
ear lower bound for R(3,t). Also, our result yields the first feasi-
ble method for constructing triangle-free k-chromatic graphs that are
polynomial-size in k.
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1 Introduction

The Ramsey number R(s,t) is the smallest integer for which every graph
on R(s,t) vertices contains either a clique of size s or an independent set
of size t. Ramsey (1930) shows that, for all s and ¢, R(s,1) is well defined.
The determination of R(s,?) has proven to be extremely difficult for all but
a few values of s and t.

Several upper and lower bounds on R(s,t) for various values of s and
t are known. Many of the lower bounds involve nonconstructive methods.
These methods (introduced by Erdds (1947)) establish the existence of a
graph of size n(s,t) with clique size s and independence number ¢ (which
implies R(s,t) > n(s,t)), but they yield no feasible method for constructing
such a graph.

The best currently known lower bound for R(3,t) uses this approach

and 1s )
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R(3.1) > = | —
(3,) 2 27 (logt)
for sufficiently large ¢ (Spencer, 1977). The best known upper bound is

2

g d) s logt
for sufficiently large ¢ (Ajtai, Komlds and Szemerédi, 1980;1981).
Constructive lower bounds for R(s,t) (that is, proofs that establish
the existence of the desired graphs by providing a feasible construction
. for them) appear to be much more difficult to obtain. Many constructive
lower bounds are known, but they are considerably weaker than their non-
constructive counterparts. As far as we know, the best previously known
constructive lower bound for R(3,t) is R(3,t) € Q(t).
We present a constructive proof that
log4
R(3,4) > 5 (%)' € Q7).
Our result is based on a method that transforms any graph into another
graph that has four times as many vertices, but whose independence number
only increases by a factor of three, It is important that this transformation
preserves the property of triangle-freeness.
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In addition to the connection with Ramsey theory, our result con-
tributes to the problem of feasibly constructing small triangle-free graphs
with large chromatic numbers. The best previous results (Mycielski, 1955;
Lovész, 1968; Nesetfil and Radl, 1979) feasibly construct a triangle-frec k-
chromatic graph of size O(2%). Our result feasibly constructs a triangle-free
k-chromatic graph of size O(R‘TI:E‘%) C O(k*8),

In Section 2, we review previously obtained bounds (both constructive
and nonconstructive) for Ramsey numbers. In Section 3, we present our
constructive lower bound.

2 Overview of Previous Results

[t is easy to show that, for all ¢, R(1,#) = 1 and R(2,%) = {. Greenwood
and Gleason (1955) show that 1(3,3) = 6, R(3,4) = 9, R(3,5) = 14 and
R(4,4) = 18, Kalbfleisch (1966) shows that R(3,6) = 18, Graver and Yackel
(1968) show that 12(3,7) = 23, and Grinstead and Roberts (1983) show that
I(3,9) = 36. It has been suggested that the determination of R(5,5) may
be intractable (Gardner, 1977; Erdds, 1985), although it is known that
38 < R(5,5) < 67.

Erdos (1947) introduces a nonconstructive method for proving lower
bounds on R(s,t) (this method has come to be known as “the probabilistic
method”). The method involves assigning a probability distribution to the
set of all graphs of size n, and proving that the probability is greater than
zero that a graph chosen according to this distribution has neither a clique
of size s nor an independent set of size 1. Although this method establishes
the existence of a graph of size n with clique size and independence num-
ber greater than s and ¢ (respectively), it provides no feasible method for
constructing such a graph.

The first result from the probabilistic method (Erdds, 1947) relates to
the so-called “diagonal” Ramsey numbers R(Z,t). The result is that

Rt ) > 1105
€

(Spencer (1975) improves this lower bound by a multiplicative factor of 2).
An upper bound of

1
R(t,1) < E\/E-:f
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is well known (Skolem, 1933; Erdés and Szekeres, 1935).
Probabilistic methods also yield some interesting lower bounds for “oft-
diagonal” Ramsey numbers. Erdos (1961) proves that

R(3,t) € Q ((lotgt)z)

and Spencer (1977) extends this to, for any fixed s,

: Yo
R(s,1) Eﬂ((logt) ) :

In particular, for s = 3, Spencer’s result is

2
1 i
R(3,4) > — [ ——
(31) 2 27 (logt)

for sufficiently large £.

Define a feastbly constructive n(s,t) lower bound for R(s,t) as an algo-
rithm that, on input s and ¢ (from some pre-specified domain), explicitly
constructs a graph of size n(s, 1), in time polynomial in n(s, 1), such that the
graph contains no clique of size s and no independent set of size t. Though
nontrivial constructive lower bounds for R(s,t) are known, they appear
much more difficult to obtain than their nonconstructive counterparts.

Abbott (1972) presents the first nontrivial constructive lower bound,
showing that

R(t,t) € Q (tITEET) C Q(£297).
This is improved by Nagy (1975) to
R(t,t) € Q%)
and Frankl (1977) constructively proves that
R(t,t) € Q(t*)
for all k. Chung (1981) constructively proves that

(log £)*/3 )

2
Bi(t,t) 2 exp (C (log logt)!/3
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for some ¢ > 0. Currently, the best constructive lower bound for the diag-
onal Ramsey numbers (due to Frankl and Wilson (1981)) is

(1- 6)(10315)2)

R(t,t) 2 exp ( 4loglogt

for all e > 0 and sufficiently large t.

The only constructive superlinear lower bound for the off-diagonal Ram-
sey numbers known to the authors is a result of Alon (1986) that implies a
constructive proof of

R(4,1) € Q(t3) C Q(t-%).

3 New Result

In this section, we define a method that transforms a graph G to a graph
consisting of four disjoint copies of G connected by additional edges in a
particular way. We then prove that this construction preserves the triangle-
freeness property and increases the independence number, a, of the graph
by a factor of three, whereas, it increases the size of the graph by a factor
of four. We conclude that, by repeatedly applying the transfomation, a
feasible construction of triangle-free graphs with independence number 1

lo
and size Q(t“i_:‘) is obtained. This constructively proves

R(3,1) € Q (ri-) C Q).

Definition 1 Let G = (V(G), E(G)). The fibration of G is the graph
H = (V(H),E(H)) with vertex set V(H) = V(G) x {0,1,2,3} and edge
set E(H) joining (u,1), (v, ) € V(H) iff any one of the following conditions
is satisfied: (1) ¢ = j and (u,v) € E(G); (ii) ¢ =0, j = 3 and u = v; or (iii)
i€ {0,1,2},j =i+ 1 and v € N(v) where N(v) = {w : (v,w) € E(G)} is



the neighbourhood set of v.

\_ _J

H

For i € {0,1,2,3} define the subsets V; = {(u,t) € V(H)}. For any set
U € V(H), let H[U] be the subgraph of H induced by U. We define the
projection 7 : V(H) — V(G) by n(u,i) = u for all (u,i) € V(H).

Lemma 1 If H is the fibration of G aend G is triangle-free then H 13
triangle-free.

Proof Let (u,?), (v,7) and (w, k) be any three vertices in H. Clearly, if ¢, j
and k are distinct, the three vertices cannot form a triangle in H. Suppose
i = j and, with out loss of generality, assume k =1 + 1. If (u,i) and (v, 1)
are both joined to (w,i + 1) in H, by Definition 1, both (u,?) and (v,7)
are also joined to (w,i). Thus, if (u,1),(v,?), and (w,7 4+ 1) form a triangle
in H then (u,i),(v,?), and (w,z) form a triangle in the induced subgraph
H([V;]. This is a contradiction since H[V;] is isomorphic to G. O

Lemma 2 If H is the fibration of G then |H| = 4-|G| end a(H) = 3-a(G).

Proof: Obviously, |H| = 4 |G|. The interesting part is to show that
a(H) =3 a(G).

It may be helpful for the reader to make the following preliminary ob-
servation. If T is a maximal independent set of G then T x {0,1,2} is a
maximal independent set of H. This implies that a(H) > 3-a(G) and that
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one of the obvious approaches to constructing a large independent set in H
does not exceed the size of 3 - a(G).

Now, let S be an arbitrary independent set in H. We show that |S| <
3-a(G). Fori € {0,1,2,3} let S; = {(u,i) € S}

We first show that for ¢ € {0,1,2},

|Sil + [Sisa| € a(G) + |7(Si) N w(Siv). (%)
Fix ¢ € {0,1,2}. The equality
7 (Sl + [7(Siga)| = [7(Se) U n{Siga)| + |7 (Si) N #(Sisa)]

follows trivially because sct cardinality is a modular function. We prove
that w(S5;)Un(Si41) is an independent set in the G. Thus, |7(S;)Ur(Sis1)]| <
a(G). From this, (*) follows because |7(S;)| = |Si|. It is obvious that both
S; and S;4, are independent sets in H[V;] and H([V;4,] and, therefore, #(S;)
and 7w(Si41) are independent sets in G. Now assume some v € w(S5;) is
adjacent to some v € 7(Si41) in G. Then by Definition 1, there is an edge
in E(H) joining (u,?) € S; and (v,i + 1) € Siy;. This is a contradiction,
since S 1s assumed to be independent.
Summing (*) with respect to all 7 € {0,1,2}, we obtain

[Sol+2:[S1]4+2.[S2|+[Ss] < 3-0(G)+Hr(S)w(S1) |+ [ S)NF(Sa) + [ (S2) v (Sy)].

Now, since S is an independent set, by Definition 1 we require #(S3) N
7(Sp) = 0, from which one can prove the purely set theoretic result that
[7(So)Nw(S1)|+|w(S))N(S2)| + [(S2) N7 (S3)| < |7(S1)| +|w(S2)] There-
fore,

S| = |Sal + [S1| + [S2| + [Sa| < 3- a(G).

Thus a(H) £3:a(G). O

Theorem 3 There ezists e feasible method for consiructing a triangle-free
log 4
graph with independence number less than t, whose size is 5(%)557 This

log 4
constructively proves that R(3,t) > 5(-“‘71)5% € Q(11%6).

Proof Construct a sequence of graphs Gg, G, Gs, ... as follows. Let Gy be
a 5-cycle, and let G;y, be the fibration of G;. Gy is triangle-free so, by
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Lemma 1, for all ¢, G; is triangle-free. Clearly, |Go| = 5 and a(Gg) = 2. By
Lemma 2, for all i, |Gi41| = 4-|G;| and a(Gi41) = 3 - a(G;). Therefore, for
all 7, |G;| = 5-4° and a(G;) = 2- 3'. If the sequence is constructed until

i = log(t51)/log 3 then a(G:) = t — 1 and |G;| = 5(451)R63. O
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