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:_) Abstract

Given two trees, a guest tree G and a host tree H, the subtree isomorphism problem is to
determine whether there is a subgraph of H that is isomorphic to G. We present a randomized
parallel algorithm for finding such an isomorphism, if it exists. The algorithm runs in time
O(log n) on a CREW PRAM, where n is the number of nodes in H. The number of processors
required by the algorithm is polynomial in n. Randomization is used (solely) to solve each of a
series of bipartite matching problems during the course of the algorithm. We demonstrate the
close connection between the two problems by presenting a log-space reduction from bipartite
perfect matching to subtree isomorphism. Finally, we present some techniques to reduce the
number of processors used by the algorithm.
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1 Introduction

A subtree of a tree T is any subgraph of T that is a trec. Given two (unrooted) trees. a

guest tree G and a host tree H. the subtree isomorphisin problem is to determine whethier

there is a subtree of A that is isomorplic to G. Tn Fig. 1. G is isomorphic to a subrree of
H, but G, is not. The subtree isomorphism problem has applications in the area of pattern
recognition.

Subtree isomorphism is interesting theoretically since it is in P (the fastest sequential
algorithm, due to Matula[16], runs in O(n?3) time, where n is the number of nodes in H).
yet most natural generalizations are NP-complete. Examples include the case where G is a
forest and H is a tree (subforest isomorphism) and the case where G is a directed tree and
H is a directed acyclic graph[8]. Given thai subtree isomorphism has an efficient sequential
algorithmn, it is natural to ask whether the problem has a fast parallel algorithm. i.c. is in
NC. (A problem is in NC if it can be computed by a log-space uniform faily of boolean
circuits of polynomial size and polylog depth[12][20]). Miller and Reit[17] showed thar the
tree isomorphism problem, which can be viewed as the subtree isomorphism problem re-
stricted to the case where G and H have the same munber of nodes, 1s in NC. This paper
presents two results on the parallel complexity of snbtree isomorphism: (1) we present an
O{log3 n) time randomized parallel algorithm for the problem. and (2) we show that the
parallel complexity of subtree isomorphism is closely relared o the bipartite perfect mateh-
ing problem by presenting a log-space reduction from bipartite perfect matching ro subtree
isomorphism. Independently. Karpinski and Lingas[14] developed an RNC? algorithun for
subtree isomorphism and an NC! reduction of hipartite perfect matching to subtree iso-
morphism. These results show that finding an NC algorithm for subtree isomorplism is
equivalent to finding an NC algorithm for bipartite perfect matching. The latter is a well
known open problem [13][18].

Our parallel model of computation is the CREW PR AML For a description of the PRAM
model, and its relationship to the class NC. see [12]. We assume the word size of the PRAM
is clogn for some constant ¢. Our algorithin exhibits rhe mapping between G and #.if
such a mapping exists. With a few techuiques ro reduce rhe processor conut. the algorirhin
uses o n>1) processors. the number of processors needed for one bipartite matching problem
on n nodes using the fastest algorithm for bipartite matching to date[18]. More precisely.
let M{(n) be the number of bit operations required by a CREW PRAM to mulriply rwo
n X n boolean matrices in O(logn) time. Then our algorithm uses n? M (n)loglog n/log i
Processors.

Our parallel .algorithm is based on Matnla’s sequential algorithum. The main obsracle

to developing a fast parallel algorithin from rhis seqnential algorithin is thar its running
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Figure 1: (a) A host tree H. (b) A guest tree G, which is isomorphic to a subtree of H.
(c) A tree isomorphic to Gy, which is orviented to demonstrate that Gy is indeed isomorplic

to a subtree of H. (d) A guest tree G that is not isomorphic to a subtree of H.

time is proportional to the height of the guest tree. But by adapting the dynamic tree
contraction technique of Miller and Reif[17], we show that subtree isomorphism is in random-
NC (RNC). Dynamic tree contraction is one of two classic methods for achieving NC and
RNC algorithms for problems involving potentially unbalanced trees: the other is recnrsively
finding a vertex =1/3 — 2/3" separator for the tree[2]. The subtree isomorplism algorithn
of Karpinski and Lingas is based on the latter method. In both algorithms. randomization
is needed (solely) to perform the bipartite nratching computations.

Miller and Reif[]?]ilse dynamic tree contraction to develop an NC algorithmn for rhe
related problem of finding canonical labels for all subtrees (mazimal subtree isommorphisi),
A subtree rooted at node u in a rooted tree T is maritnal if it contaius all descendants of
win T. The problem is to assign labels to all nodes in a rooted tree such thar rwo nodes
u and v have the same label if and only if the maximal subtree rooted at u is isoworphic
to the mazimal subtree rooted at ¢. This problem differs from the subtree 1soworphisi
problem, in which the subtrees of H are not necessarily maxinal.

In section 2, we describe an algorithm for solving a rooted version of subtree isomor-
phism. In section 3, our algorithm is extended to the general (unrooted) case. We preseut
pseudo-code for the algorithm, as well as details on how to implement the »leorithin o a
CREW PRAM. Section 4 describes how to reduce the unmber of processors nsed. and sec-
tion 5 presents a log-space reduction of bipartite matching to subtree isomorphism. Fiually.
in section 6, we present extensions of our results to orhier wodels of compuration and ro

special cases of the subtree 1somorphism problem.
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Figure 2: (a) Rooted tree with unary chain (ey,€z,e3). (b) Limb L(x). (c) Limb L(y). a
child limb of L(z).

2 Rooted Subtree Isomorphism

We first present some definitions. Let ¢ = (u,v) be a (directed) edge in a rooted tree T.
where v is the parent of u. We will consider such an edge to be directed out of u and into
v. For each edge f directed into u, f is a child edge or child of ¢ and ¢ is a parent edge or
parent of ¥. An edge with no children is called a leaf edge: an edge with one child is called
a unary e{,eﬁ A unary chain in T is a maximal sequence of unary edges ¢y.65..... ¢ where
€11 is thé child edge of ¢; for 1 < i < k. and ¢ has exactly one child edge and that child
is not a leaf edge. Edge ¢;. for ¢ odd (even). is said to he of odd {evewn) parity oun its unary
chain. In Fig. 2. the sequence (¢, ¢,,¢3) constitures a nnary chain.

The limb L(¢) associated with the directed edge ¢ = (w.e) is the (rooted) subtree
of T whose node set V= {u. v} U {i | iis a descendant of v in T}. and whose edge set
E={(z,y)| (z,y)is an edge in T and = € V, y € V"}. Each parent (child) edge of ¢ defines
a parent limb (child limb) of L{e). Each leaf edge defines a leaf limb. The height of a liwb
is the number of edges in its longest root-to-leaf path. The level of a limb L(¢) in a limbh
L{f) is the number of edges in the path from ¢ to f. inclusive. In Fig. 2, for example.
L(y) 1s a child limb of L{x) of height two and L(z) is o leaf linb in L) of level rthree. A
limb-rooted tree is a rooted tree with exactly one edge directed into the root node, Given
two limbs L(e) and L(f), we say that L{e) is imbeddable in L({ f) (equivalently. L(f) is a
home for L(e)) if and only if there exists an isomorphic mapping from L(e¢) to a subtrec of
L( f) such that e is mapped into f.

Let y = (a.b) be an edge in a limb L(z). The partial limh L(x)— L(y) is the (roored)
subtree of L{2) obtained by deleting all of L(y). except for node b, from L{a) (see Fig. 3).

Given two partial limbs L(7) — L(j) and L{x) — L(y). woe say that L{¢) — L(j) is a home for
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Figure 3: (a) Limb L{z). (b) Partial- limb L(x) — L{y). (c) Lumb L(¢). Partial i
L(i) = L(j) 1s a home for partial limb L(xz)— L(y).

L(z) — L(y) if and only if the level of L(j) in L(i) is the same as the level of L(y)in L(.)
and there exists an isomorphic mapping from L(x) — L(y) to a subtree of L(z) — L{j) such

that z is mapped to . In Fig. 3. for example. L(/) — L() is a home for L(.c) — L{y).

2.1 Developing a fast parallel algorithm

Matula’s sequential algorithm for subtree isomorphism makes use of the following procedure:

Procedure P: Let L(g) and L(h) be a guest limb and a host limb, respectively. for which
we already know the following: for each child edge » of g and each child edge ¢ of fi. we
know whether or not L(i) is a home for L(.). Construct a bipartite graph B. in whicl the
boys are the child edges of g aud the girls are the child edges of b, and there 1s an edge 1
B between cliuld & of g and cluld ¢ of & if and only if L{i) is a home for L{.r). Determine
if there is a matching in B that matches all the bovs in B. L(#) is a home for L{g) if aud

only if there is such a matching.
Fig. 4 gives an example of procedure P being applied to two limbs,

Theorem 1 [16] Given two limbs L(g) and L(h). procedure P correctly determanes whether

or not L(h) s a home for L{g).

Thus one can determine whether a litnb L(/4) is a howe for a linnb L{g) as tollows. If L{g)is
a leaf limb, then L(h) is a home for L{g). Else (1) recnrsively determine which child limbs
of h are homes for each of the child limbs of ¢, and (2) mu procedure P.

We first consider restricted versions of the subtree isomorphism pr- e, Ler lzgh-reored

subtree isomorphism be the subtree isomorphism problem restricted to the case where borh

G and H are limb-rooted trees, 1.e. G = L(g) for some edge g in G and H = L(h) for some
edge h in H. Let k be the height of L(g). Firsr. consider a further restriction that g must

map to . One approach to iuplementing the above reenrsive techinique is to process borly
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Figure 4: (a) Limb L(g) of G and limb L(h) of H. Suppose L(i) and L(k) are homes for
L(z), L(j) is a home for L(y), end L(k) and L(l) are homes for L(z). (L) The bipar-
tite graph to determine whether L(h) ts a home for Lig). L(k) is a home for Liy) since
{le i) (y.7)(2.0)} s @ matching that matches all the clildren of g.

G and H bottom-up, level by level, starting with the limbs at level &, In this approach. at
each level in turn, the algorithm determines which limbs of L(%) at level i are homes for
each of the limbs of L(g) at level ¢ by running procedure P ou each such pair. In this way.
at level one, the algorithmn determines if L(/1) is a home for L(g).

Now consider removing the restriction thar the roors mnst match. Oue E:l-])[)l‘i_lﬁlt'll is to
process L{g) level by level. starting with level /-, In this approach. ar iteration /. the algo-
rithm determines which limbs of L{h) are homes for the level ¢ limbs of L{g). Alternatively,
the limbs of L(g) can be processed from smallest to largest height, instead of level by level.
where at height i the algorithm determines which limbs of L{ /) of height at least ¢ are hoines
for each of the height i limbs of L({g). To simplify the approach, this alternative algorithiu
can try all limbs of L(h) each time, since the test in procedure P will fail if the H limD is
of insufficient height, Associated with any stage in the algorithm. we define an auxiliary
tree G, derived from G. cousisting of all edges ¢ corresponding, to lmbs L(e) that have not
vet been processed. Note that each i in G 15 processed ouly ouce. and then ouly atfter
its children have been processed. From the definition of G. we see that the algorith can
process any limb L(e) in G such that ¢ is a leaf edge in G. using procedure P. In fact. all
these limbs corresponding to leaf edges in G can be processed in parallel.

There i1s a fast, randomized parallel algorithm for bipartite matching due to Mulmuley.
Vazirani, Vazirani[18], which runs in time O(log? n). Purtting the above remarks together
leads to a parallel algorithm that runs in time O(dlog? n). where d is the height of .
tree, consisting of d iterations in whiclh we process and then delete all the leaf edges of
G in parallel. To achieve a fast parallel algoritlun for rrees with large Leighit. we make
second observation. Counsider a limb L) in G for which we know the houmes for all of irs

child limbs except for some child L(y). We can represent the howes for the partial limb



L(z) — L(y) as a set of ordered pairs as follows:
C(z,y) = {(i,j) | L(i)=L(j)is a partial limb in H and L(i)—L(j)is a home for L(x)—L(y)}

If y is a child of z, we can test whether L(z) — L(7) is a home for L(z) — L(y) using the

following procedure:

Procedure P": Let L(z)— L(y) and L(i) — L(j) be a guest partial limb and a host partial
limb, respectively, where y is a child of z and j is a child of i, for which we already know
the following: for each child z of 2 other than y and each child & of ¢ other than j, we know
whether or not L(k) is a home for L(z). Construct a bipartite graph B’, in which the boys
are the children of 2 other than y and the girls are the children of ¢ other than . and there
is an edge in B’ between child z of x and child k of i if and only if L(k} is a home for L{z).
Determine if there is a matching in B’ that matclies all the boys in B'. L{/) — L{j) 1 a

home for L{z) — L(y) if and only if there is such a matching.

Corollary 1 Given two partiel limbs L(z) — L(y) and L(i) — L(j), where y is a child of «
and j a child of i, procedure P’ correctly determines whether or not L(i) — L(j) is u home

for L(z) — L{y).

Proof: First note that the level of L{y) in L(x) and the level of L(j) in L{:) are both one.

Thus the corollary follows from theorem 1. O

Lemma 1 {a) If partial limb L(i)— L(j) s a home for partial lind L{x)— L{y) and L(j) is
a home for L{y), then L(t) is a home for L(x). (b) If partial limb L(i) — L(j) s @ home for
partial limb L(x)— L(y) and partial imb L(j)— L(k) is a home for partial limb L(y)— L(z).
then L(i) — L(k) is a home for L(x)— L(z).

Proof: Let ¢ be a mapping for imbedding L(x) — L(y) in L(7) — L(j) and p be a mapping
for imbedding L(y) in L(j). Since the level of L(j)in L(7)is the same as the level of L(y)
in L{x), then the union of © and p is a mapping for imbedding L) in L(7). For claim (b).
let & be a mapping for hubedding L(y) = L(z)in L(j) = L{&). The nuion of o awd ¢ is a

mapping for imbedding L(x)— L(z)in L(i) — L(}) since rhe levels match. O

2.2 Dynamic tree contraction technique

Our parallel algorithm differs from the sequential algorithm in two respects. First. we
process and delete many leaf edges in parallel. saving the  olts for Lawer iterations of
the algorithm and exposing new leaf edges for the next ireration. Second. we process aud
remove certain unary edges at each iteration. by applving procedure P’ aud nsing lewa
1. This will lead to a parallel algorithun with only Olog ) iterations. using the dyuamie

tree contraction technique of Miller and Reif[17]. .



In the remainder of section 2, we describe our parallel algorithm in detail. We begin by
describing the dynamic tree contraction technique. There are many variants of this tech-
nique; in what follows we present the variant most suited to onr algorithm. In secrion 2.3.
we describe how to apply the techuique to the limb-rooted subtree isomorplisin probler.

Let T be a limb-rooted tree with n edges. Miller and Reit[17] define a contraction process
on T that iteratively reduces T to one edge using a sequence of O(log n) contract plases. In
each such phase, a subset of the remaining edges of T (described below) are processed and
then deleted. Let T' be the tree remaining after i contract phases. Associated with each leaf
edge in T is a leaf mark, and associated with eacl unary edge in T is a wnary mark. As part
of processing an edge, the mark on the edge (only leaf and nnary edges are ever processed)
is used to determine the mark on its parent (which will become a leaf or unary edge). The
meaning of these marks in the specific context of the subtree isomorphisw problem will be
made clear in section 2.3.

A contract phase consists of applying two operations to T in parallel. The first operation.
rake, processes and deletes all leaf edges in T whose parent edges have at most one nonleaf

child. There are three cases to consider:

o The parent edge has more than one child in T and each child is a leat edge. In this
case, the children are deleted from T and so the parent becomes a leaf edge. The leaf

marks on the children are used to compure a leaf wark tor the pareur.

o The parent edge has more thau one child in T awd all but one is a leat edge. Iu this
case. all the children that are leaf edges are deleted from T and so the parent becoes
a unary edge. The leaf marks ou the leaf children are used to compure a nuary mark

for the parent.

e The parent edge has one child in T and it is a leaf edge. Here, the child is delered
from T so that the parent becomes a leaf edee. The unary mark ou the parenr awd

the leaf mark on the child are used to compure a leaf mark for the parent.

Fig. 5 gives an example of a rake operation being applied ro a rree.

The second operation in a contract phase is called compress. In a cowpress operation.
consecutive edges in nunary chains in 7 are paired up, with the pair being replaced by a
single edge, In this case, an edge € of even parity in its unary chain is paired with its parent
edge 6. The unary marks on the two edges are nsed to compute a new unary mark for the
single edge whicl replaces the original two.

At ageneral step of the contraction process. eacli edge of T is viewed as corresponding to
some edge of the original tree T. Initially. T is T. so the correspondence is rrivial. At cacl

step. the correspondence can be chianged as a resulr of @ compress operation { rake operations
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Figure 5: (a) Limb-rooted tree T, with circles around its leaf nodes. (b) The trec resulting
from applying the roke operation to T. Ezamples of all three types of ruke operations are
shown: case 1 is applied to edges x and z, case 2 is applied to edge w, and case 3 is applied

to edge y.

do not change the correspond‘ence)‘ Consider an edee ¢ of even parity on its unary chain
and its parent edge 4, and let & correspond to edge o in T. In the tree resulting trom
applying the compress operation to ¢ and o. these two edges are replaced by a single edge
which is considered to correspoud to ¢ in T. Edge ¢ is cousidered to have been processed
and deleted.

Once T has been contracted to a single edge, a second iterative process can be nsed
to compute final (leaf) marks for all the edges of T. Aun expansion process recoustructs T
by reversing the contraction process, with each ezpand phase splicing back into the tree all
edges deleted at the corresponding contract phase. Final marks are computed for eacl edge
as it is spliced back into the tree.

For readers familiar with the many variauts of the dynamic tree contracrion reclnigue

(see [12]), we summarize the variant we use:

o We do not assume the tree is binary. In some applications of this technique {e.g. ex-
pression evaluation[17]), a noubinary trec is first converted to an equivalent binary
tree, since the technique tends to be easier to apply to binary trees. In our case. we do
not know how to convert from a general tree to a binary tree in a way that preserves

subtree 1somorplism.
o We operate on the edges of the tree. nor the nodes.

o We use rake with lazy evaluation. In [17]. all leaves in T are delered ar cach rake

operation. In onr variant, we do not delete a leat nuless its parent has ar wmost one

(o4



nonleaf child. Since this is a necessary condition for the parent to be or become a
unary or leaf edge, this particular modification does not affect the number of contract

phases required.

Lemma 2 Given a limb-rooted tree T with n edges, O(logn) contract phases are sufficient

to reduce T to one edge.

Proof: Miller and Reif[17] show that their variant of contract will reduce a rooted tree to

one node in O(logn) phases, and their proof applies to our variant as well. O

2.3 Applying the dynamic tree contraction technique

Our goal is to label each edge of G with a corresponding home edge in H such that these
labels define an isomorphic mapping from G to a subtree of H. We use the dyuauic tree
contraction technique and the ideas on processing leaf and unary edges discussed in section
2.1. We will maintain a tree G, derived from G, consisting of edges corresponding to limbs
in G that have not yet been processed. G starts as the limb-rooted G, but is contracted
during the course of the algorithm by a series of contract phases.

We will maintain the following invariants I. At the start of each contract phase, let g,

be the edge currently in G which corresponds to the b L(g;) in G.

I1. Associated with each leaf edge §; in G is a leaf mark, which is a set consisting of all

possible homes in H for L(g;).

I2. Associated with each unary edge §; in & lsl a u!ua.ry mark, which is the set C(y,. gi.) de-
fined earlier, where gy is the child of §; in G. Recall that Clgjoe) = {{hw, )| Lil,)—
L(hy) is a partial limb in H and L(h,) — L(h,) is a home for L(g;) — L{gw)}.

We now present a case-by-case description of procedure contract, a coutract phase
suitable for subtree isomorphism. In particnlar, we will show how to implewent the compress
operation and the three types of rake operations described in section 2.2 so as to preserve
the invariants I. Pseudo-code for our algorithm will he described in section 3.1.

For each nonleaf edge §; in G. at most one of the following operations is applied to g,

in a contract phase: |

R1. An R1 operation is applied to §; if and ouly if §; has 11101i‘e than one child in G and
each child is a leaf edge. Thle children are deleted from (G and so §; becomes a leaf
edge. Tor each limb L(h) in H, run procedure P (of section 2.1) on . ;) and L(/:).
In setting up the bipartite graph, use the leaf marks on the children of g, to determine
which child limbs of h are homes for each of the child limmbs of ¢,. Place L(h) in the
leaf mark for L{g;) if and only if procedure P determines that L(h) is a honwe for
L(y;).



R2. This operation is applied to j; if and only if §; has more than one child in G and all
but one child §; is a leaf edge. All the children of §; other than §; are deleted from
G and so §; becomes a unary edge with child §;. Compute a unary wmark for ¢; as
follows. For each limb L(h,) in H, and each of its child limbs L(/,). run procedure
P’ on the guest partial limb L(g;) — L(g;) and the host partial limb L(%,.) - L{},). In
setting up the bipartite graph, use the leaf marks on the children of g; to deteriiine
which child limbs of h are homes for each of the child limbs of g;. Place the ordered
pair (A, hy) in C(gi, g;) if and only if procedure P’ determines that L{h,) — L{h,)
is a home for L(g;) — L(g,).

R3. This operation is applied to §; if and only if 4; has one child g, u G and g, is a leat
edge. The child §; is deleted from G and so the parent becomes a leaf edge. Place
hy in the leaf mark for g, if and ouly if there exists a limb L/, ) in H such rhat

(hw,hz) € Clgi,g;) and Dy is in the leat mark for ;.

C. The C operation is applied to §; if and only if it is in a unary chain. it is of odd parity
on this chain, and is not the last edge on the chain. Let g; be the child of g,. and let
Gr be the child of §; (g; is not a leaf edge). Compose C(g;,g;) and C(g,. 4 ) to get a
single set C(g;,g1) as follows: place the ordered pair (A, h:) in Clg,. ) if and ouly
if there exists a limb L(h,) such that (h,.. h,) € Clgi.g;) and (h,.he) € Cly,. o).
Replace the two edges §; and §; by a single edge g; in G.

Note that only the R.lh. and R2 operations involve marchings.

|
Lemma 3 A contract phase deletes from G each leaf edge whose parent has at most one

nonleaf child and each unary edge of even parity on its unary chain in G.
Proof: Follows from inspection of the cases above. O

Lemma 4 Let G be a limb-rooted tree. Let L(g;) be o limd o G that hwas t cheldven, Let
contract be applied to G until the trec is contracted to one cdge. Prior to cocl contract
phase, let G be the tree consisting of edges corresponding to lembs wm G that have not yet
been processed. Then (a) if §; ws a|child of g, G. then g, s a descendant of g, in G (b)
there are no bipartite matching problems solved for Lig;) of t < 1. (¢) there is ceactly one
phase in which there are bipartite 1hatching problems solved for L(g;) ift > 1. and (d) prior
to the matching problems during this phase, §; will have t chaldren in G. with each child b,

corresponding to a child L(g;) of L(g;) in G.

Proof: Claim (a) can be proved by induction on the number of ties a C operation is -
applied to g;. Inmitially. if §; is a child of g; in G. then L{g,) is a child limb ot L(g,) in G.

Assume the claim is true prior to a next C operation. and let 4, bea child of g, in G. The

10



C operation is the only one that changes a child of §; (others can only delete children ). and
this operation replaces the current child §; of §; with the current child ¢ of g;,. Thus by
the inductive assumption, g; is a descendant of g; wiicl 15 a descendant of g; iu G.

As for claim (b), §; has t children in & initially since it is a copy of G. Suppose 1 < 1.
Then only an R3 or C operation can be applied to g;, so §; will continue ro have at 1ost
one child in G. As neither R1 nor R2 operations are applied to §;, there are no bipartite
matching problems solved for L(g;). Claim (b) follows.

If ¢t > 1, then the number of children of § will remain ¢ witil the first application of an
R1 or R2 operation to §;. In both these cases, §; is left with at most one child. and will
continue to have at most one child for as long as it remains in &. Thus this one application
of an R1 or R2 operation is the ouly phase in which there are bipartite matching problewns
solved for L{g;).

Claim (d) of this lemma holds since prior to this one application of an R1 or R2 operartion.

no child of §; can be deleted. O

Lemma 5 A contract phase as defined above (e, R1. R2, R3. and C) preserves the

inwariants I above.

Proof: Assume the invariants I are true immediately before the contract phase. and coun-
sider an edge §; in G of each type. If 4; 1s a leaf edge after contract is applied to G. rhen
by lemma 3, immediately prior to this contract phase all the children of §; were leaf edges.

There are three cases:

o Edge §; was a leaf edge inmediately prior to this contract phase. Henee its leaf nark

is still valid.

e Edge §; was a unary edge with (leaf) child §;. We claim that an R3 operation yields a
valid leaf mark for §;. If there are limbs L(/,) and L(h, ) such that (i, b, ) € Clyg,)
(L(h,) will be a subtree of L(i,,)). and h, is in the leaf mnark for g,. then hy mvariants
12 and I1. L(hy) = L(h,) is a home for L{g;) — L(g;) and L{h,) is a howe for Liy,).
Thus by lemma 1. L(/,) is a howe for L{g;). Couverselv. it L{l1,.) is a howme for
L{gi). then let g, be mapped to i, in an imbedding of L{g;) in L/t ). Then partial
limb L(h,)— L(h,) is a home for L{g;) — L(g;). and thus by invarianes I2 awd T1.

(hw,he) € Clyi.gj) and hy is in the leaf mark for g,.

e Edge ¢; had more than one child. By lemma 4. the children ~t 4; correspond ro rhe
child limbs of L(g;). By theorem 1, an R1 operation vields a valid leat mark for g,.
Thus invariant I1 holds after the contract plase.
If §; is a unary edge with child g after contract is applied to G. then there are two cases

to consider:
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o Edge §; was a unary edge immediately prior to this contract phase. Then by lenna
3, §; was of odd parity in its unary chain since even parity edges are deleted. It g,
was the last edge in its unary chain, then its child was §; immediately prior to this
contract phase, and so its unary mark is still valid. Else some edge §; was the child
edge of §; and the parent edge of g;. Thus by lemma 4, g is a descendaut of y; which
is a descendant of g; in G. Thus partial limb L(g;)— L(g) is the union of L(g,) - L(yg,)
and L(g;)— L(gi). Suppose partial limb L(h,)— L"( h-)in H is a howme for Lig;)—Lig)
with a corresponding mapping ¢ from L(g;) — L(g() into L(h) = L(fi-). Thew o maps
g; to some edge hy in L(hy), and using ¢, we get that L(hy) - L(f,) is a howe for
L(g:)—L(g;) and L(hy,)—L(h-)is a homefor L(g;)—L(g). Thus, by invariant [2. there
exists a limb L(h,) such that (h,.h.) € Clgi,g;) and (hy, h:) € Clg;. ). Conversely.
if there is a limb L{h;) such that (h,.h,) € Clg,.g;) and (b h-) € Cly,.g). then
by invariant I2 and lemma 1. L(h,) — L(h.) is a home for L{g,) — L{y). Thus a €

operation yields a valid unary midrk for ¢;.

e Edge ¢ had more than one child, which were all leaf edges except tor g;. By lewnna
4, the children of §; correspond to the child limbs of L{g,). so the possible Lowes for
L(gi) — L(g;) are restricted to partial limbs L(l,,) — L(f,) such that L/, ) is in H
and h, is a child edge of h, in L(h,). By corollary 1. we can determine whhther
L(hy) — L(hy) is a home for L(g;) — L(g;) by applying procedure P’. Thus (Ju R2

operation yields a valid unary mark for g;.

Thus invariant I2 holds after the contract phase. and the lemma follows. O

3 The subtree isomorphism algorithm

In this paper, we presented the limb-rooted version of our algorithm first siuce it seems
easier to picture what is happening as the algorithm progresses. This algoritlun can be
extended trivially to solve the (nurooted) subtree isomorphism problem. For an unroored
tree, each undirected edge contributes two limbs. one for cach way of directing the edge.
Each leaf edge in an unrooted tree T defines two limbs: a leaf limb cousisting of a single
edge, and a root limb consisting of all of T. In the unrooted case. without loss of generaliry.
we first root G at a root limb. The host tree H is unrooted. but this poses no problew
to the parallel algorithm described in the previons sect’ e the only difference hetween rhe
rooted and unrooted cases is that in the nnrooted case. there are twice as mauy H limbs
to consider wlhen considering all H limbs, In fact. the definition of contract is nnchanged.
so the lemmas of the previous section hold as stated for the unrooted case. Fig. 6 gives an

example of contract being applied in the nnrooted case.
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(1) 4, nnary with child g, {Ug D). o)
it nnary with child g $ldnailrg)as g
(2) i nunary with child g, el des o0
i, nuary with child g, Ellgaltg oo
g; nuary with child gy {lhiglidin ol
i unary with child g {lhwid)aon)
(3) i1 unary with child g, {0 Ry oot
7 unary with child g {thy-hy).. ..}
I leaf L TR
(4) 72 unary with child g; LA dig). s o)
0, leaf Ll o
(5) lea (...}

{
Figure 6: Given two unrooted trees G oand H, G is rovted at edge gy wnd thon contractod
using contract. By convention. we have labeled the edyes of H with a seogle label us of
H were rooted at node v, If L(h,,,) s the lond when an edge s divected towards v then ot
L) denote the lisnd when the sarme edge is diveeted away frone v A civele arownd o loaf
node indicates that o leaf mark has been computed for the edge directed out of the vode For
cach phase. for a few of the G limbs, we show its status and one wember of its wack, A ftor

r

phuse 5. we conclude that L(,) is o home for the rooted G In addition. contract would

determine that L(h,, ) and L(1!)) are also homes for the rooted G.
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3.1 Pseudo-code for the algorithm

To summarize our subtree isomorphism algorithm, we present pseudo-code for the algo-
rithm. Let ng be the number of nodes in G and n = ny be the number of nodes in H.
where ng < ny. Let G be rooted so that G = L(g;) for some ¢, in G. Then there are
mg = ng — 1 limbs in the limb-rooted G and my = 2(ny — 1) lmbs in H. Our algorithm
uses the following two data structures. Let Imbed[—. =] be an m¢g X mpy boolean matrix.
used to hold leaf marks. Let Unary[—, —, =] be an m¢g X mpy X my boolean matrix. nsed
to hold unary marks.

Algorithm A4 gives a pseudo-code description of our subtree isomorphisi algorithun (see

Fig. 7, pp. 15-16).

Theorem 2 Given two trees G and H, algorithin A correctly determines of there is a subtree

of H isomorphic to G.

Proof: We will sketch a proof based on induction on the number of contract phases.
Initially, each leaf edge §; in G corresponds to a leaf limb L(g;) in G, and thus any H
limb is a home for L{g;). Likewise, each nnary edge §; with child g, in G corresponds to a
unary limb L(g;) in G. Partial imb L(g;) — L(g;) is a single edge g;. so any partial b
Lih,) - L(h.y} where L(h,) is a child limb of L(h,) is a howe for L(g;) — L(y,). Tl the
invariants I hold after step A2. By lemma 5 cacl iteration of the WHILE loop {steps A3-
A18) preserves the invariants I. By lemma 3 and lemuna 2, the WHILE loop will succeed
in reducing G to one edge §;. By invariant I1, the leaf mark on 4, is the set of all possible
Liomes for L(g;). Therefore, there exists a subtree of H isomorphic to G if and ouly if there

exists a limb L(h,) such that Imbed[g./,.] = 1. O

3.2 Implementation details and analysis

In this section we describe how to implement algorithmn A on a CREW PRAM and how ro
extend the algorithm to «xhibit au isomorphism berween G and a subtree of H. For each
step which finds a marching in a bipartite graph (i.c. step A23 and step A28). we will use
a randomized algorithm due to Mulmuley, Vazirani. Vazirani[18]. We present a detailed
analysis of the running time, processor count. and error probability for our (randowmized)
algorithm. We begin with a discussion of the matching algorithm used, then present a
step-by-step analysis of algorithm A. and final'v deseribe a procedure for coustructing au

isomorphic mapping of G to a subtree of H.
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Algorithm A: Given two trees, a guest tree G and a host tree H, this algoritlun dereruines

if there is a subtree of H isomorphic to G.

1. Let G be rooted so that G = L(g,) for some edge g, in G. Let G = G.
2. [Initialize the Imbed and Unary matrices to all zeroes. Then for each leat edge 4.
set Imbed[g, hy] to 1 for all directed edges h, in H. For each unary edge g, do:
for all directed edges h,, in H, set Unary|g;, hw, hz) to 1 for each child /. of 1.
3. WHILE there exists > 1 edges in G DO {
4. IN PARALLEL for each nonleaf edge g; in G DO {
5. IF 4; has > 1 child edges in G {
6. IF all the children of §; are leaf edges {
7. (R1) mark all these child edges for deletion
8. Determine_Leaf_Mark(g;)
}
9. ELSE IF § has exactly one nonleaf child g, {
10. (R2) mark all its children for deletion except g,
11. Determine_Unary_Mark(g;. g,)
}
}
ELSE { /* let g, be the unique child of g; */
12. IF §; is a leaf edge in G {
13. (R3) mark g, for deletion
14. determine the leaf mark for §; (i.e. the set of howes for Ly, )} from
the unary mark on § and the leaf mark oun g,.i.c. it Unaryly,.
hy.hy] = 1 and Imbed(g;, h,] = 1, then set Imhed[y,. ] 101
}
15 ELSE IF & is of odd parity on its unary chain §
16. (C) mark §, for deletion /* the child of ¢, will be the new cLild of g,
17. compose the nnary warks on §; and g, to get a new nnary wark
for ;. i.e. if Unary[g;, hy.h] = 1 and Unaryly,. l, 0] = L
then set (new) Unarylg:, b 2] to 1
}
}
}
18. IN PARALLEL delete all edges ¢, that are marked tor delerion
}
19. There is a subtree of H isomorplic to G if aud ounly if 34, such thar Limbed(y,. 0, | =

15
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PROCEDURE Determine_Leaf_Mark(g;):

20. IN PARALLEL for each directed edge hy,, of H DO:

21. IF h, has at least as many children as §; has in G4
22. Construct a bipartite graph B in which the boys are the children of o,

and the gitls are the children of hy,. There is an edge in B
between boy g1 and gitl h, if and only if L(A,) is @ howe tor Lot
i.e. Imbed[g. h,] = 1

23. Attempt to find a matcling in B that matches all the boys.

If one exists, set Imbed[g;, iy to 1

PROCEDURE Determine_Unary_Mark(j;. §;):

24. IN PARALLEL for each directed edge hy, of H DO:

25, IF h,, has at least as many children as ¢; has in G
26, IN PARALLEL for all children h, of i, DO {
27. Construct a bipartite graph B’ as in A22 above. excepr exchule

children ¢; aud fr, from the graph
28. Attempt to find a matching in B’ that matches all the hovs,

If one exists. set Unarylg;. he.h, ] to 1

Figure 7: (pp. 15-16) The subtree isomorphism algorithin. Given a guest trec G and w ost
tree H, G is first rooted at o voot lund. The algorithm operates on H and G where G starts
as the limb-rooted G. but is contracted wsing rake and compress operations i cacl decation
of the WHILE loop (A3-A18). Each edge in the unrooted H corresponds to fuo divectod
edges: Ny, e, by, and o above denote divected edges in H. At the start of av deration of
the WHILE loop, §;. §;. ir. and g denote edges currently in G.oand Liy,). Lig,). Ly,
and L(g;) denote their corresnonding lini - in the limb-rooted G. Each leaf cdye g, v G s
a leaf mark, represented as the row Imbed([y;, —]. Each wnary edge i, w G ies e noniryy

mark, represented as the matriz Unaryly,. —. ).
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Matching algorithm

Recall that A (n) is the number of bit operations used by a CREW PRAM to multiply rwo
nxn boolean matrices in é(_log n) time (M (n) < a*+ where € is less than 0.4{3][4]). During
the course of the algorithm, for each of a series of bipartite graphs, we fiud. if possible. a
matching that matches all the boys in the graph. In each such matching problew. we first
add extra boys to the bipartite graph, with edges to all the gitls, in order to make the
number of boys equal the number of girls. Then we can apply the Mulmuley, Vazirani.
Vazirani randomized algorithm[18] for constructing a perfect matching in a bipartite graph.
Let B be a bipartite graph with n boys, n girls, and m edges. The algorithm produces a set
of edges, which can be checked to see if they form a perfect matching in B. It B does not
have a perfect matching, then the algorithm correctly detects this fact. If B has ar least one
perfect matching, the algorithm finds a perfect matching in B with probabiliry > 1/2. The
resource requirements of the algorithm are hounded by the time and processors needed to
compute the determinant and adjoint of an nx n matrix whose entries are (2n:)-bit (random )
integers. This can be done using Pan's algorithm[7][19] which takes O{log® 1) tinie aud
nlM(n)loglog n/flogn processors to invert (with high probability) an n X n matrix whose
entries are [-bit integers. Thus the Mulmuley, Vazirani, Vazirani algoritlun takes O(log )
time and nmM (n)loglogn/logn processors. i.c. o{n>) pl'ocessdrs. since | = 2m < 207,
In order to ensure that an algorithmn that solves many bipartite matching probleins
succeeds with high probability, we increase the success probability of the biparrite mateling
algorithm by running multiple trials in parallel. In particular., we run alog o trials of
the bipartite matching algorithm in parallel. where a is a constant which depends on rhe
number of bipartite matching problems to be solved and the desired success probability
of our algorithm. If a bipartite graph B does not have a perfect watching. then noue of
the trials will find one. If B has at least one perfect matching, then. with probability
> 1 —1/20l8n = 1 _ p=9_ art least one trial will find a perfect matching. Iu this case.
select any one such perfect matching. Let algorithm MVYV be this modified version of
the Mulmuley, Vazirani, Vazirani algorithm. The MVV algorithm runs m Oflog 2 i) time

using n? M (n)loglog n processors.

Step-bhy-step implementation and analysis

In implementing algorithm A4 on a CREW PRAML it is helpful to preprocess H and the
limb-rooted G after step Al. For H, usc a my; X my boolean matrix A iuitialized to all
zeroes. For each pair of imbs h; and hjin H.set M[i. j] to one if and only if L(] ;) is a clild
limb of L{h;). Using a parallel prefix algorithm|[15]. compute the index of each child among

its siblings. This nmnbering can be used for allocating edges ro processors thronglhonr rle



algorithm. We preprocess G in the same way.

Here is a step-by-step analysis of algorithm 4. It is convenient to describe the iniple-
mentation of some steps using PRAM instructions in which multiple processors write to
the same location in the same time step (concurrent write). We will later describe how to
implement the algorithm on a CREW PRANM. i.e. without concurrent write. in the sawe

asymptotic time and processor bounds.

e Forstep Al, weroot the guest tree G. Given an ordered list of the edges of G. we cau
find a node of degree one using concurrent write in O(1) time with m¢ processors.
Having selected a root, we root G using the Euler tour technique for trees[25]. in
O(logmg) time and mg/logmg processors. The preprocessing of G and H that
follows takes O(log m g) time and mi; /log my processors. Giveu this preprocessing.

step A2 takes O(1) time and g m3; Processors. Nsing OUe Processor per marrix cutry.

e Steps A4-A18 perform one contract plase. The tests in steps A3, A4, AS. AG. AD.
A12, and A15 depend on the structure of the current tree. In each case, we wish to
determine if an edge has zero, one, or more than one child edges of a particular rype.
The most time-efficient way to perform these tests is using concurrent write. Each
edge 4; in G with parent edge §; writes j in cell i. then reads cell ¢ to see it it has
succeeded in its write attempt. If not. it complains to its parent. This takes O(1)
time and mg processors. For step Al5. cach nuary edge must determine its parity
in its unary chain (if any). This can be done in Q(log nig) time with g processors:
the index of eacli node in a chain is computed by O(log m¢) applicatious of pointer

jumping.

e Steps AT, A10, A13, and AlG, i.e. statements R1. R2, R3. and C, can be done in O(1)
time using mg processors. Likewise, step A18 takes O(1) time and m g processors.
For statements R1 and R2, all the leaf child edges read from their parent. in order fto

see which parent is ready to have all its children mark themselves for deletion.

e Using concmrent write. step Al4 rakes O(1) time and nrf, processors for each g,.
For step A17. perform a boolean matrix mnltiplication for each g, in O(log iy ) tie
and M(mp)/logmpy processors. Note that a temporary matrix is helptul here. since

Unary is updated in place.

o For step AS8,i.c . .eps A20-A23, for each edge g;. we find matchings in parallel for ar
most my bipartite grapls, cach with at most ny — 2 girls. (Note that for cacll edee
with fewer than two children in G. we will not solve any bipartite marching probleis).
In order to apply the MVYV algorithm. we first add extra boys to the graph. with

edges to all the girls. so as to have the same unmber of hoys as girls. Using the MVV



algorithm. step A23 takes O(log? ny) time and my nj; M(ny)loglog iy processors for
all matchings for each edge g;. Steps A21 and A22 use the preprocessing information
obtained for H and G, as well as the Imbed matrix. to set up the adjacency matrices

for the bipartite graphs.

o Similarly, for step All, i.e. steps A24-A28, for each edge g;. we find watchings iu
parallel for at most mg(ny — 2) bipartite graphs, each with at most ngy — 2 girls.
Thus step A28 takes O(log? ny) time and my niyM(ng)loglog ny processors for all

matchings for each edge g;.
s Step A19 can be done in O(1) time and my processors using concuirent write.

By lemma 2, there will be O(log m¢) iterations of the WHILE loop. Not countiug steps
A8 and A1l1l, the algorithm runs in O(logniglogmy) time on a CRCW PRAM with
mgM(mg)flogmpy processors. The time for the steps above that have been described
using concurrent write is only O(logmg). Thus using a standard simulation of a CRCW
PRAM by a CREW PRAM (see [12]) on each of the steps involving concurrent write vields
an O(logmglog my) time algorithm with the same nmunber of processors. DBy lemna 4.
step A8 or step All will be executed at most once for each g;. It follows that algorithin
A runs in O(log ng log® ny) time on a CREW PRAM with ngugy Mgy loglog nyy pro-
cessors, i.e. o(ng uj}"‘} processors. I section 4. we show how the processor conut can be
significantly reduced. Given two trees G and H such that G is not isomorphic to a subrree
of H, algorithm A4 will correctly determine this fact. Given two trees G and H such thar G
is isomorphic to a subtree of H, algorithm A will correctly determine this tact with proba-
bility > 1 — 1/n. The algorithm solves fewer than n? bipartite matching problews. and so
this success probability can be achieved using the MVV algorithm with a = 4 (i.e. perform

each matching computation 4logn times in parallel).

Constructing an isomorphism

In order to exhibit an explicit isomorphism of G to a subtree of H. we make the following
enhancements to algorithm 4. While contracting the tree. count the nmmber of contracr
phases applied so far, in order to save the “time™ cach edge was deleted from G. Depending
on the “type” of the deletion (i.e. R1. R2, R3. or C), also save the name of its parenr when
the edge was deleted, the name of its clild when deletod, and/or the nawe of rhe nonleaf
sibling. Save all perfect matchings constructed. and for cach matrix entry whicli is ser to
one in a new unary or leat mark. save rhie nane of 4 corresponding howe for rthe delered
edge. The precise instructions added ro algorithi 4 are lisred in Fig. S (shown properly
indented to fit into algorithin 4). Savelmbed is an ¢ X gy matnx and Save_Unary
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Algorithm A (enhancements): These steps are added ro algorithin .

10a. and tor all irs children gy (except g;).

set gp.remaining sibling to g,

14a. and set Save Imbed|g;, hy] to hy

16a. and set g;.child_when_deleted to g

17a. and set Save_Unary|[g;, hw, h:] to h,

18a. and save the “time” and “type” (i.e. R1, R2, R3, or C) of deletion.

Set g;.parent_when_deleted to g;
23a. and save the matching M as follows: if gy is matclied with /i M.
set Save_Imbed|gy. 1] to by,
28a. and save the wmatching M: if §x is matched with /r,, i M.

set Save_Unary|gs, by, h,] to hy

PROCEDURE Expand_Tree: This procedure is run after G has heen contraeted to oue

edge ¢1. Let L4y ) be the home for Ligg). e let ity be g .howe.

29. Let t step by —1 from the nuber of contract phases down to 1
30, IN PARALLEL for cach edge g, in G: -
31. IF g; was deleted at time  {

/* Let h,, be (g;.parent_when_deleted).home */

32. splice §; back into G

33. IF g; was marked for deletion by statement R1 or R3
34. g;.home — Save Imbed[g;. h,]

35. ELSE IF g; was marked for deletion by statewent R2
36. g;-home — Save Unary(g;. - Ao

where £, is (g,.remaining sibling ).Lowe
ELSE /* g; was marked for deletion by statement € */
37. g, home — Save_Unaryly;. hy. hi-].

where /. is (g;.childavhen_deleted ).howwe

Figure 8: Together with algovithine A, these instructions consteuct an somoeplie g

from G to o subtrvee of H (if one exists).
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is an mg X my X my matrix.

Given the above enhancements to algorithm A, the procedure Expand_Tree showu in
Fig. 8 can be used to exhibit the mapping. After G has been contracted, we reconstruct
G by an expansion process which reverses the contraction process, with eacl expand phase
splicing back into G all edges deleted at the corresponding contract phase. At the conclusion
of each expand phase, we will have computed the home for each limb L(g;) in G correspond-
ing to an edge §; in the current G. Because they are associated with limbs in G, these home
edges typically will be scattered throughout H prior to the final expand phase. During
the expansion process, new homes are computed based on both the matchings performed
during the contraction process and the homes of existing edges in G.

Clearly the time and processor count for procedure Expand_Tree is bounded by the time

and processor count for algorithm A.

4 Processor efficiency

We have recast the subtree isomorphism problem as a problem on limbs, in order to save
having to try out all possible roots for the trees. In this section, we describe techuiques for
further reducing the number of processors used by our algorithm. First, we will show how
to use an algorithm for deciding whether a perfect matching exists while contracting G. and
an algorithm for constructing the matching while expanding G. This reduces the number ot
processors used since (1) the fastest known parallel decision algorithin for bipartite marching
uses fewer processors than the fastest known parallel search algorithm, and (2) the expansion
process needs fewer matching problems solved (in parallel) than the contraction process.
(There are, however, certain advantages to constructing the matchings as we contract G:
see section 6). Second, we will show how the solution to a single bipartite matching problem
can yield the solution to a group of related matching problems.

In analyzing the processor bounds for onr algorithm. we will often nse the following
(common) approach. First, describe the algorithin nsing a convenient (but perhaps waste-
ful) number of processors. Then determine the work of the algorithin, where rlie work of an
algorithm is defined to be the sum over all processors p; of the number of PRAN iusrrne-
tions executed by p; during the course of the algorithiu. Finally, apply Brent’s scheduling
lemma[2] to determine the actual number of processors needed. The scheduling lema
states that an algorithm running in time ¢ witl work w can achieve time O(%) using only
w/f processors, provided that there is negligible overhead in both determining the amonnt
of work to be done at each step of the original algorithm and scheduling this work among
the w/t processors. Typically, this allocation of work ro processors is predetermined and

thus creates no overheads to the algorithm.



4.1 Constructing the matchings while expanding G

We can use a decision algorithm for the matching problems in steps A23 and A28, if we male
the following modifications to Expand_Tree. We will construct any necessary matchings
while expanding the tree. As before, we will maintain the invariant that the Lowe is
kunown for every edge currently in G. At the beginning of each expand plase. if (decision)
bipartite matching problems were solved for edge §; at the corresponding contract pliase.
construct the appropriate matching (described below) and save the results in Save_Imbed
and Save_Unary. There are two cases to consider. (1) If step A8 was performed for ¢,. then
the home L(hy) of §; is known, so it suffices to solve only one (search) bipartite watching
problem for #;: the matching problem between the child edges of §; and the child edges of
he. (2) If step All was performed for j;, then both the home A, for §; aud the home h,
for the remaining child §; of ¢; are knowu. so ir suffices ro solve ouly one (search) bipartite
matching problem for §;: the matching problem between the child edges of g, other thau ¢,

and the child edges of h,, other than h,.

Lemma 6 Let L(hy) be a home for L(g,). During the ecpansion process, therce s at mnost
one bipartite matching constructed for cach edge i L(h,,) with more than one child. and

no bipartite matchings constructed for any other edge in H.

Proof: By lemma 4, for each edge g;, either step A8 is performed ouce. step All is
performed once, or neither are performed. Thus by the remarks above, there will be at
most one bipartite matching problem solved for each edge g; during the expansion process.
and Lence at most one solved for the Liome edee for g,. Furthermore, if an edge in # las
fewer than two childrewn. then it is not involved in any bipartite matching problems. O
The running time for expanding the rree as described above 15 O(log ¢ log? 1y ). nsiug,
the MVV algorithm for constructing perfect matchings. Clearly the work fo expand rhe rree
is dominated by the work to coustruct the matchings. From section 3.2, we see that the work
to construct one perfect matching in a hipartite graph with u boys and n girls nsing the MV'V
algorithm is O(n3M(n)log® nloglogn). Let {N.hy..... hi} be the edges in L{h, ). the
home for L{g; ), and let d; be the munber of child edges of i, in Ll ). By lennna 6. the work
i1s at most Zle (f?.‘.'f(dj- ) log® d,loglogd,. i.c. the work is Ofu HM(ny Ylog® nyy log los ).
Thus the work to expand the tree is. to within a constant factor. the sauwe as the work
done by the MVV algorithmn to solve ome matching problem on a bipartite grapl wirh
ny noc . on eacl:side. The algorithm solves fewer than /2 bipartite matching probleis
while expanding the tree, and so we will nse the MVV algorithin with o = 2 (recall from
section 3.2 that we perform alogn trials of the marching algorithin in parallel). Tlus
with probability > 1 — 1/2n. the algorithm will correctly construct an isoworphic mapping

between G and a subtree of H.
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4.2 Contracting G using fewer processors

We will now describe and analyze a method for contracting the tree G using a factor of
(n3) fewer processors than the method described in section 3. First. we will use the
following decision algorithm for bipartite matching while contracting G. Given a bipartite
graph B with » boys and » gitls, the adjacency matrix for B is an n x n wmatrix C such
that the element in row ¢, column j of C is one if there is an edge between boy ¢ and girl
7, and zero otherwise. Let C' be the matrix obtained from C by replacing each nonzero
entry of C with a unique indeterminate z;;. Then the determinant of C'' is nonzero if
and only if there is a perfect matching in B[5]. If B has a perfect matching, then the
determinant is a degree n polynomial f on up to n? variables, where f is not idenrically
0. If we plug in for each indeterminate in C’ an integer chosen unifornly at randowm
from the range (0,..., kn?). then the determinant of €’ will be nonzero with probabiliry
1 — 1/&[23]. For our purposes,-it suffices to let x be polynomial in n. Based ou this fact.
Borodin, von zur Gathen, Hoperoft[1] developed a randomized algorithm for deciding if a
bipartite graph has a perfect matching that runs in O(log? n) tine on a CREW PRAM. An
impm{'ed version of their algorithm computes determinants over Z,. the integers modulo
some suitable prime p of magnitude O(xn')[22]. This can be done with O(\/nd (1)) work
on a CREW PRAM, using the Preparata and Sarwate algorithm[21] for cowpuring the
adjoint and the determinant of a matrix. since all operatious involve O(log 1 )-hit unmbers.
(Galil and Pan[7] have an algorithin for iuverring matrices over Z,, with slightly less work).
Let algorithm S be this improved method for deciding it a bipartite grapl lias a perfecr
matching,.

Wihile contracting the tree, we can further save processors by solving groups of related
matching problems at once. In particular. we can efficiently test, by solving ouly one
matching problem, whether §; in G is imbeddable in each of the limbs associated with a node
v in H, i.e. those limbs L(h,,) where l, 1s directed out of v. (Recall that H is nurooted.)
Matula[16] showed how to perforiu such rests efficiently on a sequential machine. In what
follows, we present a parallel implementation which resnlts m additional processor savings
for our algorithin. Construct a bipartite graph B in whicl the boys arve the child edges of ¢,
lin G and the girls are the (directed) edgoes 17, in H divecred ingo . Add extra hoys in order
| to equal the number of girls. as was doue for step A23 (sce section 3.2). Run algorithm §
|0n the graph B to compute the appropriate adjoint warrix D. Each enrtry of D conrains
the determinant of some minor of D (a cofactor). In particular, the entry in row ¢ columun
j contains the determinant of the submatrix of D that results from rewoving row j aud
column ¢ from D. Thus by testing whetlier a cofactor is nouzero. we can determine if a

perfect matching exists when §; and any one edge directed into ¢ are letr our of the biparrire
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graph. Let r be an extra boy in B (there is at least one such boy since the number of edges
directed into v must be larger than the number of children of §; in order for L(g,) to be
imbeddable in a limb directed out of v). L(g;) is imbeddable in L(h,) (a limb directed out
of v) if and only if the cofactor associated with girl 2/, (an edge directed into v) and boy r
is nonzero. From Rabin and Vazirani[22]. it follows that this holds even when the adjoint
is computed over Z,.

We now analyze the work for contracting the tree using the above approach. Let
{vi,v2,...,0n,} be the nodes in H and let o; be the degree of node v;. Then for cach
edge g;, step AS contributes at most ny bipartite matching problems (one per each r; in
H). each with at most d; girls. The work for solving these matching problewms is af most
ng S 0H VA M(d;). i.e. the work is O(ng /agM(ny)). The cofactor technique can be ap-
plied to step A1l as well, wlere the parent edges §; and &, are left out of the graph eutirely
and the cofactors are used to determine if a perfect matching exists when the rewaining
child §; and any one edge directed into r are ignored. Then for each edge g;. step All
contributes my bipartite matching problems. each with fewer than ny girls. Thus the
work for solving all step A11 matching problewms is O{n gy /g M(ng)). The algorithi
solves fewer than mgmy bipartite matching problems while contracting the tree. and so we
will use algorithm S§ with x = 4n?. Thus with probability > 1 — 1/2n. the algorith will

correctly determine if G is isomorphic to a subtree of H.

4.3 Analysis of the improved version of our algorithm

From tle previous sections, we sce that the work for our algorithm is dominated by the
work for expanding the tree. which is within a constant multiple of the work for solving a
single bipartite matching problem using algorithm MV, Given this analysis of the work. we
can apply Brent’s scheduling lenuna to determine the nmmber of processors needed. Before
each phase i, the algorithm can determine the operations to be done during rhe pliase aud
allocate the processors accordingly in time O(logn gy ) using nguf; processors. Since there
are O(logng) phases, this overhead increases the ruuning time and work by less than a
factor of two. Let algorithm A4’ be the improved version of algorithn A which nses rhe
above steps to save processors and to coustruct an isoworphic mapping frour G to a subtree
of H. Then the following theorem follows frow theorewn 2. the correctness and analysis of

the matching algorithins. and inspection of the cases involved in expanding the tree.

Theorem 3 Given two trees G and H such that G is not isomorphic to a subtree of H.
algorithm A" will correctly deternine this fact. Given two trees G and H such that G is
isomorphic to a subtree of H, algorithm A" will correctly construct an caplicit isomorphisim

of G to a subtree of H with probability > 1 — 1/n. Algorithm A" runs i O(log® 1) timme on

24



a CREW PRAM with n?M(n)loglog n/logn processors, where n is the number of nodes in
H.

5 Reducing matching to subtree isomorphism

In this section we show that bipartite perfect matching is log-space reducible to subtree
isomorphism. Let B = (X,Y.E) be a bipartite graph. where X = {w . xs...... r,} and
Y = {y1.42,....yn}. We will construct trees Ty, Ty correspouding to the verrex sets X
and Y, such that every imbedding of Ty in Ty yields. in a natural way. a perfect watching
in B. It is convenient to view Ty and Ty as rooted at Ry and Ry respectively. This creates
no obstacle since our construction forces Ry to be mapped to Ry in any imbedding. The

structure of the trees is as follows:

Tx : Rx has n+ 2 children - X, X,, ..., X, V], V5. X, corresponds to vertex x; in B. 1
and ¥, have no children. For 1 </ < n., X; is the parent of ¢ children. X,,. eacl of

which is a root of a path of length n — ¢ + 1.

Ty @ Ry has n 4+ 2 children - ¥7.35... .. Y, .00 0. Y, correspouds to vertex gy, in B, U
and Us have no children. For 1 <+ < n. Y] i,.s the parent of n childreu. ¥,,. where 1),

is the root of a path of length » — j 4 1 if {{,i,-. 1} € E and length 1 — j otherwise.
An example is given in Fig. 9. Note that this reduction can clearly be performed in loga-

rithmic space.

Lemma 7 The subiree rooted at X; can be imbedded in the subtree rooted at Y, of and only

of {zivy) €E.

Proof: By construction, the trees rooted at ¥,..... Y- are paths of length at least
n— i+ 1, and the trees rooted at 1 ;4y.....Y;, are paths of length less than n — 7 4 1.
Furthermore, the tree rooted at Y, has length at least n — i+ 1 if and only it {x,.y;} € E.
Now, since the children of X; are roots of paths of length » — 7 4+ 1 and there ave J of thent.

the claim follows. O
Lemma 8 In any imbedding of Ty in Ty . Ry is mapped to Ry

Proof: The degrees of Ry and £y are o+ 2. All the othier vertices in Ty Lave smadler

degree. O

Theorem 4 Ty is imbeddable in Ty of and only if B has a perfect matehang.

(E%]
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T2 2
I3 Y3
Ty Y4
(a) (b) (¢)

Figure 9: A4 log-space reduction from bipartite perfect matching to subtree isomorphism. (a)
A bipartite graph B. (b) The tree Tx when n = 4. (c) The tree Ty derived from B. The
solid lines in Ty are present for any bipartite graph with four boys and four girls. For
each particular edge in B, a dashed line is added as shown. By construction. trec Ty is
imbeddable in tree Ty if and only if B has a perfect matching. In this evample. Ty is
imbeddable 1 tree Ty with X, 'z'?n.};edi{r:r{_?ﬁn. Yoo X i Yo Xy e Yy, and Xy in Yo, which

corresponds to a perfect matching i B
k't

Proof: Let M = {{}.1'[._:,-'(,“],}, coed®niYa(m }} e a perfect matching of B. By lemma 7.
the subtree rooted at X; is imbeddable in the subtree rooted at Yy, for all i It follows
that Ty is imbeddable in Ty.

Conversely, assume there is an imbedding of Ty in Ty-. By lemma 8. Ry is mapped to
Ry . and it follows that X, is mapped to some Y, for cacli /. By lemma 7. {ai Yor} € E for
all 7, and thus the set of edges {{&1. ¥r(1)}. - - {0 Ympoy }} coustitutes a perfect wmatching

of B. O

Corollary 2 The problem of deciding if a bipartite graph has a perfect matching is log-
space reducible to the problem of deciding if a tree is isomorphic to o subtrec of another

tree.

Corollary 3 The problem of constructing a perfect matching in o bipartite graph is log-

space reducible to the problem of constructing an fnbedding of o tree anto another tree,

Theorem 5 The nuwmber of imbeddings of Ty own Ty is 20l = 1) = 200220 tines the

numnber of perfect matehings of D.

Proof: A perfect matching, M = {{&1,4o(1)}+ oo {70 Yo} of B induces a nuigue

mapping of X;’s to ¥;’s. The subtree rooted at X; can be imbedded in exactly i1 ways into
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the subtree rooted at Y, ;;. The vertices 17,13 can be mapped in two ways to U). U, The

theorem follows. O

Corollary 4 The problem of determining the number of imbeddings of a tree in another

tree is # P-complete.

6 Remarks

Applying the standard simulation of uniform PRAM programs by uniforin booleau cirenit
families[24] to our O(log? n) algorithm vields a uniform family of unbounded fan-in circuits
(with random inputs) of depth O(log®n) for subtree isomorphism, and hence a unifor
family of bounded fan-in circuits (with random inputs) of depth O(log® n) for the problen.
Since our algorithm uses a polynomial number of processors (o(n3)). the resulting circuir
family is of polynomial size (o(21%®) using the standard simulation). and hence we have
placed subtree isomorphism in RNC?. However. with appropriate implementation of our
algorithm, we can place subtree isomorphism in RNC?. To see this. first observe that with-
out the matchings, our algorithm runs in Olog* 1) time. and thus the standard simularion
yvields an RNC? circuit family. Second, the bipartite matching algorithms used are known
to be in RNC?, and we apply them in at most O(logn) phases. It follows that our algorirlun
is in (boolean) RNC3.

The case where G (or H) has bounded maximum degree d can be done deterministically
in O(dlogdlogn) time on a CRCW PRAM. Simply solve each bipartite matching problew in
our algorithm usingr d applications of a parallel augmenting path algorithm (an angmenting
path can be constructed using a breadth first search caleulation on the graph thar resules
from directing all matched edges from boys to girls and all unmatched edges from girls
to boys)., Each such application requires ouly O(logd) rime (using concurrent write) since
there are at most  boys in the graph and hence any path is at most 24 loug,.

Our algorithm uses the same number of processors as the Mulmuley. Vazirani. Vazirau
algorithm for constructing a perfect matching in a bipartite graph. A more detailed analysis
of the relationship between the processor requirements of our algorithin and that of a hipar-
tite matching algorithim is as follows. Let S be the work for an algorithm thar construcrs,
with success probability > 1 — 1/n3, a perfeer watching in a bipartite graph B. Ler D be
the work for an algorithm thar, for all edges ¢ incident to a fixed vertex in B. decides. with
success probabilily > 1 — 1/n3, whether or not there is a perfect matching containing «.
Then the work for our subtree isomorphism algorithm is O(S + n?D + nM(n)log n). and
the success probability is at least 1 — 1/n. Alternatively, there is a variant of our algoritlun
using O(nS+nM(n)logn) work and achieving the same success probability. In this varianr.

step A1l is implemented as follows. Let §; be an edge of G having exactly one child g, rlat

[£]
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is not a leaf edge. For each vertex v in H. the following calculation is done to determine
the set of ordered pairs (hy, %) in C(g;.g;) such that (directed) edge hy is directed our of
v and (directed) edge k' is directed into v. The union of these sets of pairs over all ¢ in H
will be the unary mark for ;. (1) Construct a bipartite graph B in which the bovs are the
child edges of §; in G other than ¢; and the gitls are the edges in H directed into v, There
is an edge between boy g and gitl il, if and only if L(h},) is a home for L{gi). Construct.
if possible, a matching that matches all the boys. (2) Using a single breadth-first-searcl.
determine all edges &/, for which a matching exists that matches all the boys but leaves /],
unmatched. This is equivalent to saying that there exists i/, such that L(h,)— L(/} ) is a
home for L(g;:) — L(g;). (3) For each pair g;.h,, such that there exists such an h! . perform
a single reachability calculation to determine all edges I/, by # hj,. for which a matching
exists that matches all the boys and leaves both 1/, and I/, unmatched. Place the ordered,
pair (hy, h%) in Clgi,g;) if and only if such a matching exists,

Applying the analysis of the preceding paragraph to known bipartite matching algo-
rithms yields the following results. The Galil and Pan processor-efficient version(7] of
the Karp, Upfal, Widgerson randomized algorithm([13] for constructing a perfect matching
(S = nM(n)log?® nloglogn) yields a subtree isomorphism algorithm that runs in O(log ™ i)
time and uses n?M(n)loglogn/log? n processors. The Goldberg, Plotkin. Vaidya deter-
ministic parallel algorithm[11] for constrneting a maximum matching in a bipartite graph
runs in O(n?31og® n) time on a CRCW PRAM using O(n!'/*log’ n) work. Tlis vields a
deterministic subtree isomorphism algoritlun that uses n'/log! n processors. and mus in
O(n?31og" n) time. Gabow and Tarjan developed a determiuistic parallel algoritlun(G] tor
constructing a maximum matching in a bipartire graph that ruus in O(n log? 1) time on an
EREW PRAM using O(n*’logn) work. This yields a deterministic subtree isomorphisiu
algorithm that uses 23/ log? n processors. and rnus in O(nlog® n) time. The runuing rime
for each of these algorithms represents cousiderable speed-up from the O(n?*") sequenrial
algorithm, but the processor count is too large to be practical.

Throughout this paper. we have made the reasonable assumption that the PRAM word
size is O(logn). If we consider arithmetic PRAM's. which can perform addition. sub-
traction, multiplication, and division of arbitrary length nmwbers in one step. then the
Mulmuley, Vazirani, Vazirani algorithm uses M (#) work. This yields a randomized subrree
isomorphism algorithm that uses nM(n)/log? n processors and runs in O(log? n) time.

W2 can extend our algorithm to a Las Vegas algoritlum, i.e. an algorithm that ruus in
expected time ¢ and always produces the correct answer. as follows. While contracting rhe
guest tree, we use a version of the Mulmmuley. Vazirani. Vazirani algorithi whick coustruets
a mazimum matching[18] with high probabiliry. We test whether the matching constructed

is indeed a maximmum watching by resting for au angenting, path. We repear auril rhe
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randomized algorithm yields a correct maximum matching. This Las Vegas version of our
algorithm runs in expected time O(log® n) with niM(n)loglog n/logn processors, since we
must construct the matchings while contracting the tree.

Finally, we discuss two variations on the subtree isomorphism problem that occur in
practice. In the area of pattern recognition, the two trees are often rooted and labeled
with attributes at each node. For all nodes v in a rooted tree T', other than the root,
associate the label at v with the edge directed out of v in T. The algorithm presented in
this paper can be trivially extended to this labeled problem. When computing the first
(unary or leaf) mark for a limb g in G (i.e. steps A2, A8, All, or Al7 in algorithm ).
consider the additional restriction that a limb L(h) in H can be a home for L(g) only if
g and h have compatible labels. Another version of the problem that arises in practice is
the case where the trees have a fixed planar orientation, i.e. the trees are rooted and the
children at each node v have a fixed ordering (vy, r;...., vz ). We wish to determine whether

there is a subtree of H that is isomorphic to G such that the isomorphic mappiug preserves

h € H with ordered children (hy..... hy). then each child g; is mapped to lg, where
1< o(l) < o(2)<o(3)<---< o(k) I Recently, Gibbons, Miller, Teng[10] developed a
deterministic algorithm for this oriented version of the subtree isomorphism problem. Their

algorithm runs in O(log?n) time on an EREW PRAM with n?/log? n processors.
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