Real-Time Communication
in Packet-Switching
Wide-Area Networks

Domenico Ferraril
TR-89-022
May, 1989

Abstract

The increasing importance of distributed multimedia applications and the emergence
of user interfaces based on digital audio and digital video will soon require that computer
communication networks offer real-time services. This paper argues that the feasibility of
providing performance guarantees in a packet-switching wide-area network should be inves-
tigated, and describes a possible approach. We present a model of the network to be studied,
and discuss its generality, as well as the presumable limits to its validity in the future. We also
formulate the problem, give a definition of the guarantees to be provided, and describe a
correct scheme for the establishment of real-time connections with deterministic, statistical,
and best-effort delay bounds.

1 Computer Science Division, EECS Department, University of California and the International Computer Science
Institute. This research has been supported in part by the Defense Advanced Research Projects Agency (DoD),
ARPA Order No. 4871, monitored by Naval Electronic Systems Command under Contract No. N00039-84-C-0089,
the University of California with a MICRO Program grant, Cray Research, Inc., Hitachi, Ltd., IBM Corporation,
Ing. C. Olivetti & C., S.p.A., and the International Computer Science Institute. The views and conclusions
contained in this document are those of the author, and should not be interpreted as representing official policies,
either expressed or implied, of any of the sponsoring organizations or of the U.S. Government.

=

ke
aplrgmigqurg ' ¥ ary (lf st
L
s o o, lpaes alipy.
ki 1 vy r
¥ g A “Toilipn s
N R I
i
TRl .

- Clewmik oy i ué’ﬁ::;r. ARt n B VEe T ie ¢ e a0iuh gl NS A

m e iag Gun cew T b Lt her mang, L le =l N
m |T”’.Ef\" i MT ™ LI!L_;_ =ulf " Tou, ‘ld‘!‘;l'l ey 'I,:Tlil I

My 4 MUNE WS SRR e i R oftl Bllire¥ul’ wntuyg - L N VYR
e s L L T R SR = < n
bobao K S48 Stan Tolsvdh gk o L."]_—[Ul'l';l::i._ﬂw%‘n—’\ﬂ'm VI =" np
' N Ly ASTHOT »¢ Vit ¥Rl ﬁﬂg‘oﬁ roas 5B I S = =
imntitblale o HR-matsh dif e 3 ngs J;_,rsuaiﬁﬁ,;ﬂ S i ';@'_il M A ™ = N

D = W L S T

'nda_u,: g e ayarmpmy et s ey o g e = gw N _ b
e T I L L L A

A ed ETO v o welig et « B o SRR STV Y -
-ﬁ_l_.'w‘ﬂ__I‘ I_L tm i I“‘L"!pi u—"'d i, 1 = _»‘L“ m“ i -"H'"“,G."h'!‘_“ e N H . = H
sanu' s s @ nilnal et S i, Wl 4] ' 2 r . '

RHO L B g _l"ll}"""l.m.l‘-m;- olon *waly= 91 B L N
g P EnDg el pourvomeae b e DR L L e T - B =

2.

1. Introduction

The current evolutionary trends of computing and networking technologies point to a major
increase, over the next several years, in the need for real-time communication, i.e., for computer
communication with guaranteed performance. Performance guarantees are required not only in
distributed process-control and military systems, but also in supercomputer-to-supercomputer
communications and even in such business applications as stock trading. Furthermore, guarantees
will be needed by all those systems that process and transmit digital audio, digital video, or any
combinations of each with other types of information. Multimedia distributed systems are
expected to emerge in the near future, and to become predominant shortly thereafter, as the newer
audio- and video-based user interfaces are added to the traditional ones (data, text, and images).

Providing performance guarantees typically means guaranteeing that, given certain bounds
on the flow of information into the network, the delay with which each information item reaches
the destination will satisfy given bounds. For interactive audio and video, the bound will usually
be on the value of the delay of each bit, or byte, or message transmitted by a given sender to a
given receiver; for instance, it is well-known that in a phone conversation delays longer than half
a second are sufficient to make the talkers uncomfortable. In the case of non-interactive audio
and video communication (e.g., the transmission of music or a movie for immediate or deferred
consumption by the receiving user), performance indices more important than the actual delay are
its variance and, even more, its jitter. Once a network or internetwork offers real-time services,
other applications of these services are likely to emerge; for example, it may be desirable to have
some remote procedure calls and their replies, and some accesses to remote files or databases,
performed within certain maximum time intervals. The availability of real-time services, if their
prices are not prohibitive, is likely to expand the demand for them well beyond the boundaries of
those applications that are motivating their introduction.

Some of the solutions proposed for the problem of designing network protocols and
management policies to support real-time communication apply to local-area networks. They
include such media access protocols as the Fiber Distributed Data Interface (FDDI) and the Hi gh
Speed Ring Bus (HSRB); both of them provide guaranteed delay, FDDI using the timed token
scheme [Ross86], and HSRB the reservation/priority mechanism [SAE86). Circuit switching can
be used for this purpose in wide-area networks as well as in LANs: by dedicating a circuit of
fixed bandwidth to each connection for the entire duration of the connection we can bound
delays. However, circuit switching is not the most convenient technique for data communication
[Harr80]. Hence, schemes that combine packet and circuit switching features in various ways
have been proposed for integrated voice/data networks: fast circuit switching, burst switching,
hybrid switching, and fast packet switching. An overview of these schemes can be found in
[Chen88]. The most promising of them is fast packet switching, which is based on a major
simplification of the lower layers in the protocol hierarchy; this simplification yields real integra-
tion of services (at the lower layers, all packets are treated in the same way, no matter whether
they contain data or voice, or perhaps even video) as well as the possibility of protocol imple-
mentation in hardware. It is important to notice, however, that fast packet switching can provide
low but not necessarily bounded delays, and therefore does not per se offer true real-time com-
munication.

This paper addresses the problem of providing performance guarantees in a wide-area net-
work or internetwork. The solution we present applies to all current and future networks that are
adequately represented by the model in Section 2. The formulation of the problem and our
approach to its solution are discussed in Section 3. An algorithm that enables a network of the
type defined in Section 2 to offer real-time services is described in Section 4. Finally, Section 5
presents our conclusions and plans for future work.

2. The Network

In its full generality, the network we consider in this study has an arbitrary topology, and
may actually result from the interconnection of several networks of various types (LANs and
WANSs). In it, a message can go from a source host to a destination host passing through a
number of intermediate nodes, some of which may be gateways (or routers) connecting one net-
work to another. The functions of a network node may be implemented by hosts or by special
purpose communication computers or by both. A source-destination path goes through a number
of nodes where the transmitted information can be stored and then forwarded to the next node.
Some of the links between adjacent store-and-forward nodes may actually be non-store-and-
forward networks, provided their total delay can be bounded. They could be, for example, very
high-speed circuit-switched trunks, whose transmission speed is so high that there can be no stor-
ing or processing in the switches. The traffic on these trunks will generally include packets from
different sources to different destinations, but the delay of each packet will be bounded. Thus,
the only assumption we make about the links between store-and-forward nodes is that there be a
known and finite bound for the link delay of each packet. Without it, we would not be able to
offer hard real-time guarantees. It should be noted that this assumption is not exactly satisfied by
links governed by contention-based protocols (e.g., Ethernets, see [Kuro84]), but it is by other
types of LANs, such as FDDI rings (see for example [Sevc87], [Dyke88]).

We believe that the model presented above, though not absolutely general, is an adequate
characterization of many current and future wide-area networks. How long in time will its vali-
dity last is an open question: at some point in the future, store-and-forward nodes might disappear
altogether, or some of the links might exhibit unboundable delays (even now, the presence of an
Ethemet along the path of a real-time packet raises the specter of invalidity when absolute delay
bounds are desired). However, it is hard to predict when the number of networks satisfying our
model will become negligible.

A network with these properties could be based on circuit switching, or, since circuit
switching is a rather wasteful technique in data communications, on hybrid switching. In the
latter case, circuits would be allocated to real-time connections, while non-real-time communica-
tions could use the remainder of the bandwidth of each link in packet switching mode. If the
boundary between the two portions of a link’s total bandwidth is made movable as a function of
demand, this solution can exploit network resources more efficiently, but requires fairly complex
switching in each node. This in tumn increases the difficulty of designing the very-high speed
switches that the higher network bandwidths of the future will require.

A solution in which the two types of service (real-time and non-real-time) would be more
intimately integrated is one based on packet switching, for example, of the fast packet switching
variety mentioned above. But can such a network guarantee performance? This is the main ques-
tion we plan to answer in this paper, by trying to provide a constructive proof of feasibility.

The first problem to be considered is whether a real-time service can be built at the transport
or higher level in the protocol hierarchy on top of a datagram service. We believe that packet
delay is much harder to control if each packet going from a given sender to a given receiver can
in principle follow any route, and some of these routes may become congested while one or more
real-time packets are in transit. In this paper, we therefore plan to restrict our attention to the case
in which all packets belonging to a real-time channel always follow the same route. A possible
approach, based on source routing, is one in which the source selects the path to each destination
and keeps it fixed for the duration of the communication. However, the same result can be
achieved by building real-time services on top of a connection-oriented (virtual-circuit) service
offered by the network layer. The latter approach will more easily permit reservation of resources
in each node along the route, which we believe is necessary to guarantee delay bounds. Even the
flow abstraction in [Come88] uses a fixed route scheme with resources reserved in advance, in

s

spite of the authors’ declared preference for a connectionless approach.

A major drawback of connections is that they have to be established before any communi-
cation can take place; this may, on the one hand, require a time longer than the client is able to
wait in some real-time applications, and on the other hand make the shipment of a small amount
of urgent information by a real-time service slower than by normal datagrams. In the study
described here, we have tried to minimize the call setup time by designing an efficient establish-
ment scheme.

3. A Formulation of the Problem

As discussed in the previous section, we study the feasibility of supporting performance
guaraniees in a wide-area network consisting of store-and-forward nodes interconnected by
bounded-delay links. The network is assumed to offer connection-oriented service (as well as a
connectionless service for those non-real-time communications where this service is preferable)
at the network layer.

To formulate the problem in more detail, we will refer to the parametrized message channel
(or simply channel) abstraction introduced in the design of the communication system of DASH
[Ande88b]. DASH is a distributed operating system kernel being developed at the University of
California at Berkeley for the very large distributed systems of the future, in which real-time
communication requirements are expected to be important and widespread [Ande88a]. A channel
(called real-time message stream or RMS in [Ande88b]) is a simplex connection between a sender
and a receiver, which delivers messages (or packets) in sequence and is characterized by a
number of parameters. The client (i.e., the entity that requests the establishment of a channel)
specifies the values of the parameters to communicate its needs to the service provider, i.e., ulti-
mately, to the network layer.

We are concemned here only with the performance-oriented parameters of a channel:

e the channel’s capacity, defined as the maximum amount of information that may be

outstanding at any given time in the channel;

e the maximum packet size;

e the delay bound or bounds for the channel’s packets;

e the maximum packet loss rate.

While capacity and size are to be enforced by the client, delay bound and loss rate, whose
values are to some extent interdependent [Sumi88], are to be guaranteed by the provider.

There are various types of channels, corresponding to the different types of delay bounds.
In [Ande88b], the following bounds are considered:

e deterministic: the bound D is an absolute one; this is necessary in hard real-time

applications;

e statistical: the bound is expressed in statistical terms; for instance, the probability that

the delay of a packet is smaller than the given bound D must be greater than Z;

e best-effort. the bound D is not guaranteed by the provider, which, on the other hand,

promises to do its best to satisfy it.

Note that the delay guarantees are assumed to be valid only for those packets that reach the
destination. Delay bounds will not apply to packets that are allowed by the given maximum
packet loss rate to go undelivered due to buffer overrun or to failures affecting any part of their
channel. We also assume that the channels to be established are statistically independent of all
the channels sharing totally or partially their route. If there are dependencies between a new chan-
nel and some of the existing ones, the client requesting the creation of the new channel should
‘inform the provider. In this paper, we will not deal with the case in which there are dependencies

among channels. .

The channel abstraction will be offered in the DASH network architecture by each layer to
the layer above it, starting with the network layer. We are primarily concemned, in this paper,
with the feasibility of establishing network-level channels that are ‘‘correct’, i.e., that provide
the required guarantees. Higher-level channels will certainly be implementable if we succeed.

Two important characteristics of the network are to be discussed before describing our
approach: flow control and packet scheduling.

First of all, should flow control be window-based or rate-based? Both approaches to flow
control seem feasible, but the rate-based one (in which the sender controls its packet sending rate
on the basis of its knowledge of the characteristics of the receiver and of those of the channel’s
path) looks more attractive. Indeed, this solution does not require flow control acknowledge-
ments, which would have to use another simplex channel, and would therefore be quite expen-
sive. Alternatively, they could be sent as datagrams, in which case they may incur a rather large
and perhaps highly variable delay. This delay might be too large, especially in long-distance
transmissions, to be compatible with the frequencies and regularity of packet generation in most
video or audio communication.

Rate-based flow control is feasible because, at channel establishment time, the appropriate
resources can be committed, and, in particular, the receiver can check whether it will be able to
accept packets at the rate declared by the sender. This verification is made possible by the dead-
line scheduling policy to be used in the receiver as well as in all the nodes (see below); in fact,
the ability of the receiver to handle yet another stream of arriving packets can be verified with the
same method (described in Section 4) used to test the ability of each intermediate node.

If flow control is rate-based, it is more convenient to replace the capacity parameter with
one or more parameters describing the packet arrival (i.e., input) process. Here, we adopt for this
purpose the parameters X ., the minimum packet interarrival time on the channel, and x ,,., the
minimum value of the average packet interarrival time over an interval of duration /. In other
terms, X 4. is the average interarrival time during the channel’s busiest interval of duration /. The
ratio between these two parameters is the simplest possible measure of burstiness for the incom-
ing packet stream. The amount of information *‘stored’’ in a channel is indeed hard to control on
the part of the sender without a sliding-window mechanism, especially in a statistical channel,
and even more in a best-effort one; the sender, on the other hand, has full control over, or at least
full knowledge of, the packet generation rate, and can make sure that 1/x ., is never exceeded.

There is, however, the danger that a malicious user will circumvent any flow control
mechanism and send into the network packets at a much higher rate than the declared maximum
value, 1/X n;», OF maximum average value, 1/x ... Indeed, current (and future) distributed systems
include personal machines, whose operating system can easily be modified or even replaced by
their owner or by an occasional user. The same effect might be caused by a failure in the sending .
host, even when this is a multi-user, protected-kemel system. If we do not take appropriate coun-
termeasures, such malicious or faulty behavior can prevent the satisfaction of the delay bounds
guaranteed to other clients of the real-time service, thereby damaging the clients and destroying
the credibility of the service. Thus, a distributed flow control scheme seems absolutely neces-
sary; with the characterization of the input we have selected, the scheme will have to make sure
that neither 1/x ., NOr 1/x 5. are exceeded. One possible solution to this problem is presented in
Section 4.

Scheduling in the hosts and in the nodes will be deadline-based. More precisely, we adopt a
modification of the EDD (Earliest Due Date) policy that gives, in the case of a conflict, priority to
deterministic over statistical channels, and to statistical over best-effort channels. All of the other
tasks of a host or node, including sending, forwarding, and receiving datagrams, have an even
lower priority and are preemptable by real-time packets. Our scheduling policy is summarized in
Figure 1.

4. An Approach to the Solution

The channel establishment mechanism we propose for the type of network described in Sec-
tion 2 may be built on top of any procedure that can be used to set up connections. It is reason-
able to design the routing algorithm for channel establishment so that it will exploit any available
information about the delays along the various possible paths to the destination and about the
"real-time load" of neighboring nodes. Besides trying to establish a connection, the mechanism
will perform several tests and tentatively reserve resources in each node visited by the establish-
ment request message. In order to make channel establishment fast, we impose on our procedure
the restriction that it require only one round trip. Thus, the destination host is the last point along
the path where the acceptance/rejection decision for a channel request can be made. When a node
is revisited by an establishment message during this message’s return trip, the resources previ-
ously reserved there must be either committed or released; hence a final, irreversible decision
must have already been made.

The tests to be done in each node are concemed with the availability of sufficient bandwidth
in the links, as well as processing power and buffer space in the node; that is, with determining
whether the new channel can go through the node without jeopardizing the performance guaran-
tees given to the already established channels passing through the same node.

If any test fails at a node, the channel cannot be established along that route; the message
will be sent back, either to the sender (which may then decide to wait or try another output link)
or to an intermediate node that can try sending the message towards the destination along another
path. When an unsuccessful establishment request message revisits a node on its way back to the
source, it frees all the resources that were tentatively reserved there during its forward trip.

If all the tests succeed at all nodes and at the destination host, this host subdivides the delay
bound D (and the probability Z of not exceeding the bound if the channel being established is sta-
tistical) among the nodes traversed by the channel, after subtracting the total delays in the links
along the route. Let 4 be the maximum delay bound assigned to the channel in a node, and z the
minimum probability that d will not be exceeded in that node. A packet traveling on that channel
and arriving at that node at time ¢ will usually be assigned a node deadline equal to t+d. To
satisfy the overall delay bound D, it is sufficient (though not necessary) to satisfy the bound d (or
d, z) in each node along the route. For simplicity, we assume that satisfying this sufficient condi-
tion is the goal to be met by the establishment scheme in each node.

If all tests succeed, a reply message is sent back to the source host along the channel’s
route; this message notifies each node about the delay bound that has been assigned to it for the
new channel, and commits all the reserved resources. The delay bound assigned to a node is then
used to compute the deadline in that node for each packet traveling on that channel (see the calcu-
lation of d! in Figure 2). When the reply message reaches the source host, this host learns that the
requested channel has been set up, and can start using it.

Note that, in the procedure just described, the destination host assigns delay bounds to
nodes since we assume that the source host does not know how long the path to the destination
will be. If the number of hops were known at the source beforehand, this assignment could be
done by the source host, but it would be done less effectively, due to the source’s incomplete
knowledge of each node’s loading situation.

Before discussing the tests to be performed in each node, we have to choose a suitable flow
control mechanism. One possible approach, whose execution costs are to be carefully investi-
gated, consists of increasing the deadlines of the "offending" packets, so that they will be able to
go through lightly loaded nodes fairly rapidly, but will be delayed in heavily loaded nodes, where
they would seriously interfere with the operation of other channels. When buffer space is limited,
some of them might even be dropped because of buffer overflow. Of course, at least some of the
buffers will have to be statically allocated to prevent the offending packets from flooding the

T

buffer space of a heavily loaded node and causing packets from other channels to be dropped.

One simple algorithm to increase the deadlines of packets arriving too soon after their
predecessors is shown in Figure 2. The algorithm does not need any timers, which may be expen-
sive to maintain. Note that the actual intervals between successive arrivals of a channel’s packets
at a node may be occasionally shorter than x ., and the averages of the same intervals over /
occasionally shorter than x ., either because of a sudden decrease of the load on the previous
node along their path or (if the node in question is the first on the path) because of a higher packet
rate illegitimately generated by the sending host. However, the distributed flow control algorithm
in Figure 2 acts on the packets’ deadlines so as to impose on the node the same switching and
transmission load as if the packet stream on the channel obeyed the X i, and x ,,. constraints. We
can therefore assume that each channel going through the node satisfies those constraints.

To simplify our discussion, we shall assume here that the buffer space available for real-
time connections in the network’s hosts and nodes is unlimited, and that the network’s error rate
is always lower than the acceptable loss rates. This assumption will allow us to ignore the loss
rate parameter, and to postpone the treatment of buffer space allocation and management to a
subsequent paper.

When a node receives an establishment request message, it performs two or all three of the
following tests:

(a) the deterministic test, required only when the channel to be established is determinis-

tic, and involving only the deterministic channels already existing in the node;

(b) the statistical test, required for the establishment of both statistical and deterministic
channels if at least one statistical channel is present in the node or is to be set up, and
involving all deterministic and statistical channels in the node;

(c) the delay bound test, which is needed in all cases, and, if successful, is followed by
the computation of the minimum delay bound for the channel in the node.

If the request passes the tests, then the node performs a delay bound computation, and then

sends the establishment message on to the next node.

Note that best-effort channel requests are not subjected to any tests. Hence, they are always
accepted. In the sequel, unless explicitly specified, by the term "channel” we shall refer only to
deterministic or statistical channels,

The deterministic test consists of verifying that enough processing power is available in
the node to accommodate the additional deterministic channel without impairing the guarantees
given to the others. Since we are dealing with deterministic bounds, this must be true even in the
worst possible case, i.e., even when all deterministic channels are sending packets into the node
at their maximum rates. The maximum utilization of a node by channel i, whose packets have a
maximum service time in the node equal t0 ¢, iS ; /X ;. Thus, the condition to be tested is:

;jjfx,.,w =1, 1)

where the sum extends to all deterministic channels, including the one to be established (channel
i).
The statistical test has two purposes:
(i) to determine whether for each statistical channel j in the node the probability of a
delay higher than the bound d; is below its maximum tolerable value, 1 - z;;
(ii) to provide the destination host with the information that is necessary to compute z; for
the new channel if this is statistical.
Both these purposes can be obtained by computing the probability of deadline overflow Py, .
A packet may be delayed beyond its delay bound in a node because of two reasons: a temporary
saturation of the node’s processing and switching capacity (node saturation), and impossible
scheduling constraints (scheduler saturation). The latter is avoided, as discussed below (in our
description of the delay bound test), whereas the statistical test deals with the former.

-8-

The probability that channel j is active during an interval / is
Pj =X minjlX ave j.)

Given m independent channels 1, 2, ... m passing through a node, the probability that k& of
them (say, the first k) are simultaneously active is given by

P g alle g e == i 27 B .
rob(1,2,.k ,—k+1,..—n) ,ljp";ﬂ1(l i) 3)

Let at least one of the channels be statistical. To compute Py, we start by listing all the
overflow combinations. An overflow combination is a set of channels that, when simultaneously
active for a sufficiently long time, will cause packets to miss their deadlines. In other words, an
overflow combination is one for which inequality (1) above, with the sum extended to all active
channels of both types, is not satisfied.

Let H be the set of overflow combinations in the node, » be a member of H, and P (k) be
the probability of occurrence of combination 4 computed as in (3) above. Then,

Py, = ; P(h). @
We can then check whether the following inequalities are satisfied:
Py <1-:2 4 3)

for all statistical channels j existing in the node. To see whether (5) is satisfied, it is sufficient to
verify that

Pa £ min(1-z;), or 1-P4, > max z;. (6)

If test (6) is successful, then the value of P, is sent to the destination host for the purpose
referred to in (ii) above. The destination host will try to assign to channel i in the node a value of
z; that satisfies inequality (6).

Figure 3 shows two examples of statistical test. The node being considered has four chan-
nels (numbered 1 through 4) already established when it receives a message requesting the estab-
lishment of channel 5. This is a deterministic channel whose addition would cause node satura-
tion whenever all channels have maximum rate traffic on them (see Figure 3(a)). Since, as shown
in Figure 3(b), the probability of deadline overflow is 0.000161, and its complement to 1
(0.999839) is greater than the z’s of the two statistical channels (channels 2 and 3), the node
passes the statistical test. The value of P, is not transmitted to the destination host in this case, as
channel 5 is deterministic.

The same figure also shows in (a) the characteristics of another new channel, called channel
6, and in (b) the calculation of P, according to equations (3) and (4), under the assumption that
channel 5 has been established. The node passes the statistical test also for channel 6, and
transmits the value of P4, (0.000943) to the destination host, since channel 6 is statistical.

The delay bound test determines whether scheduler saturation can be avoided in the node,
and, if so, the minimum delay bound to be assigned there to the channel being established so that
this goal will be achieved. We try to eliminate this type of saturation primarily because of the
complexity of dealing with it in the general case. A simple example of scheduler saturation is
that of two channels with respective node service times 3 and 4 units, and respective node delay
bounds 5 and 6 units; if two packets from the two channels arrive simultaneously at the node, the
scheduler will in no way be able to schedule them so that their deadlines are met.

To determine whether scheduler saturation is possible in a node, we divide the m (deter-
ministic or statistical) channels passing through the node into two sets: we call A the set of those
channels whose delay bound in the node is lower than the sum of all channel service times, and B
the set of those channels whose delay bound in the node is greater than or equal to that sum:

A

. A={i | i=l,.a; d; <;q}. (7

B=({l | I=a+l,.m;d) 2 f;:,-}, ®)
)=

With no loss of generality, we number the a channels in A according to the order in which
they would be scheduled by the algorithm in Figure 1 if they arrived all at the same instant: 1 will
be the channel that would be shipped first, a the one that would be shipped last.

Let us assume that the node is not saturated: we have already taken into account node
saturation, which delays packets beyond their bounds whether or not scheduler saturation is
present, in the statistical test; also, let us assume that

X minJ +d,zi:j+r, ()]
J=

for /=1,..m. This assumption is equivalent to postulating that no subsequent arrivals of packets at
the node will interfere with the transmission of those (one per active channel) we are considering.
A discussion of how to proceed when the assumption is not satisfied can be found in the Appen-
dix. The following theorem, on which we will base the delay bound test, holds.

Theorem 1: Scheduler saturation is impossible if and only if

@2 3+ mpxte, i=l..a). (10)

Proof: Sketched in the Appendix.
The following corollaries can be easily derived from Theorem 1:

Corollary 1: If B is empty (a=m) and A is non-empty (a > 0), there is at least one packet arrival
pattern that causes scheduler saturation.

Proof: d, > f‘q contradicts (7).
Jj=

Corollary 2: If B has only one member (a=m-1) and A is non-empty (a > 0), there is at least one
packet arrival pattern that causes scheduler saturation.
=1
P td, 2 i+ Im=Y 1 tradi :
roof: d, :Z" 4+ ;:1‘*’ contradicts (7) .
Corollary 3: If A is empty (a=0), scheduler saturation is impossible.
Proof: Inequalities (10) are trivially satisfied in all cases for a <i<m.

The table in Figure 4(a) lists the four channels 1, 2, 3, and 4 in Figure 3(a), ordered by
increasing delay bound. The fourth column (r;) displays the value of the right-hand side of condi-
tion (10) for those channels that are members of A. Since d; >r; for all i, there is no scheduler
saturation. The addition of channel 5 causes node saturation whenever packets from all channels
are simultaneously present in the node. To avoid scheduler saturation in all cases in which there
is no node saturation, we have to apply the delay bound test to the worst non-saturated-node case.
The worst case with respect to scheduler saturation is obtained by deleting channel 2 (the one
with the smallest ¢) from the table in Figure 4(a). Figure 4(b) shows that channel 5 cannot be
assigned a delay bound smaller than 11 time units, otherwise by Corollary 2 there would be
scheduler saturation. Thus, the value of min ds to be transmitted to the destination host is 11.

The arrival of the request for the establishment of channel 6 forces us to drop another chan-
nel from the table in Figure 4(b), since 1, 3, 4, 5, 6 is one of the overflow combinations (see Fig-
ure 3(b)): assuming that channel 5 has been assigned a delay bound of 16 units in the node, we
drop channel 1, so that channel 6 will be forced to join set B, and to have a larger value of mind.
The resulting table is presented in Figure 4(c). Channel 6 can be assigned a minimum delay
bound of 10 units, equal to the threshold that divides sets A and B in this case.

-10-

Figure 5 illustrates the establishment of channel 6 on a 3-node connection. The characteris-
tics of node 1 (with channels 1 through 5, and ds = 16) are displayed in Figure 3(a); those of
nodes 2 and 3 in Figure 5(a) and (b), respectively. Figures 5(c) and 5(d) show the tables built by
the delay bound computations performed in node 2 and 3, respectively. Note that channel 6
saturates node 3, and therefore channel 10 is eliminated from the table in Fi gure 5(d).

The destination host, if and when it receives the establishment request message, is to deter-
mine whether the total value of Z can be factored into node contributions k=12,.n)

Z-—-l:[zk, (11

The destination host can answer the question about whether Z can be factored as in (11) by
checking whether

l:[(l—Pdo*)EZ. (12)

If (12) does not hold, then the request is rejected. Note that (11) implies the assumption
that, once a packet is delayed beyond its deadline in a node, it will not be able to satisfy the
channel’s overall delay bound. This assumption is justified by the behavior of a saturated node:
even if the delay bounds are long, but finite, packets will eventually be delayed beyond them, and
the delays will grow without bounds while the node is saturated. If, however, the saturation con-
dition is short, some or all of the deadlines might still be met. This, and the assumption also
implied by (11) that each node will delay, if any, only previously undelayed packets, are certainly
pessimistic assumptions. Rejecting a request if (12) does not hold is a policy based on worst-case
considerations, which guarantee that the desired results will be achieved in all possible cir-
cumstances. Of course, there is a cost associated with worst-case design: these and other conser-
vative decisions reduce the maximum number of channels that can be established in a given net-
work with respect to that which the same network could support if the design of the real-time ser-
vice were less conservative. The two im portant questions this observation raises are (i) how large
this reduction is going to be in practice, and (i) whether a less conservative approach could offer
similar performance guarantees. Question (i) will be answered by the ongoing simulation effort;
question (ii) will be the subject of a future investigation.

In the example illustrated in Figures 3(a), 4(c), 4(d), and 5, the destination host receives the
information summarized in Figure 6. Two very simple algorithms to compute the bounds for
channel 6 packets in each node and their results are shown in the same fi gure. Channel 6’s delay
bound requirements were D = 30 and Z = 0.98. (Note that D is assumed to be completely assign-
able; that is, such fixed and known delays as the propagation time are not included in the value of
D; this means that the actual delay bound specified by the client for channel 6 is hi gher than D,
unless propagation delays are negligible.) Since it is possible to satisfy the requirements, the
channel establishment request is accepted.

This concludes the description of our establishment algorithm. The algorithm can be
improved in several ways: for example, a method, even an approximate one, which made the cal-
culation of P, faster while retaining the correctness of the whole approach would make channel
establishment faster even in those cases where performing the statistical test requires the
enumeration of overflow combinations.

5. Conclusion

The goal of this study was to determine the feasibility of offering real-time services in
packet-switching wide-area networks. We have defined the problem and the type of network to be
studied, adopted the parametrized message channel abstraction, selected several types of

Al

performance guarantees such a service could provide, specified the meaning and extent of these
guarantees, and selected a simple characterization of a channel’s input packet stream. We have
argued for connection-oriented packet switching as the basis of a real-time service, as it seems
very difficult or impossible to build channels on top of a connectionless service. We have also
claimed that connections (and performance guarantees) must be provided at the lowest level in
the protocol hierarchy (i.e., at the network layer) in order to make those guarantees available at
the higher levels.

A single-round-trip procedure for establishing channels has been devised. The procedure
entails several tests and tentative reservations of resources to be performed in each node along the
channel’s path. A channel that passes these tests can be guaranteed the type and value of delay
bound requested by the client; these guarantees become effective as soon as the channel is esta-
blished and remain in effect until it is disconnected. Performance can be guaranteed because of
the scheduling and distributed flow control policies adopted as well as because of the worst-case
bounding arguments our establishment scheme is based on.

Many problems remain to be explored in the area of wide-area real-time communication:

e buffer allocation and management policies suitable for the type of real-time service
described in this paper;

e the best ways to guarantee a given bound on delay variance or jitter;

e the possibility of devising correct algorithms for the establishment of channels whose traffic
is described by parameters different from X i, and x gy, Or is not independent of the traffic
on other channels; '

e the introduction of security, fault tolerance, accounting, and charging capabilities into the
design of a real-time service;

e a procedure to be used for fast channel establishment, i.e., for setting up a channel while
delivering the first packet on that (not yet existing) channel to the destination;

® the alternative ways of providing performance guarantees in a wide-area network, and their
advantages and disadvantages with respect to the approach discussed in this paper;

e the feasibility of implementing real-time services on an Ethernet, or in a virtual-circuit net-
work consisting of Datakitt [Fras83] or Datakit-like nodes;

e the implementability in hardware of the node functions required for real-time services.

Acknowledgements

A large number of individuals have contributed to the ideas introduced in this paper and to
their presentation. David Anderson proposed the channel abstraction, which is the basis of the
approach to real-time communication described above. Many of the issues and solutions dis- -
cussed in the paper resulted from conversations with Dinesh Verma and Kang Shin. Dinesh
Verma revealed by his simulation experiments a number of interesting and unexpected
phenomena that had to be taken into account in the design of the scheme. Parts of the manuscript
were read by Ramon Caceres, Caryl Carr, Sandy Fraser, Riccardo Gusella, Sam Morgan, Dave
Presotto, Keshav Srinivasan, Kang Shin, and Dinesh Verma, who provided very helpful com-
ments. Peter Danzig’s many constructive suggestions improved very substantially the presenta-
tion. The members of the DASH Project contributed feedback and support throughout the effort.
The errors and omissions that, in spite of all the help he received, can still be found in the paper
are an exclusive intellectual property of the author.

+ Datakit is a trademark of AT&T Bell Laboratories.

£

References

[Ande88a] D. P. Anderson and D. Ferrari, "An Overview of the DASH Project, Rept. No.
UCB/CSD 88/406, University of California, Berkeley , February 1988.

[Ande88b] D. P. Anderson, "A Software Architecture for Network Communication", Proc. 8th
International Conf. on Distributed Computing Systems, San Jose, CA (June 1988), 376-383.

[Chen88] T. M. Chen and D. G. Messerschmitt, "Integrated Voice/Data Switching", IEEE Com-
munications Magazine 26, 6 (June 1988), 16-26.

[Come88] D. E. Comer and R. Yavatkar, "FLOWS: Performance Guarantées in Best Effort
Delivery Systems", Rept. No. CSD-TR-791, Computer Science Department, Purdue University,
July 1988.

[Dyke88] D. Dykeman and W. Bux, "Analysis and Tuning of the FDDI Media Access Control
Protocol", IEEE J. on Selected Areas in Communications SAC-6, 6 (July 1988), 997-1010.

(Fras83] A. G. Fraser, "Towards a Universal Data Trasport System", IEEE J. on Selected Areas
in Communications SAC-1,5 (Nov.1983), 803-816.

[Harr80] E. Harrington, "Voice/Data Integration Using Circuit-Switched Networks", IEEE
Trans. on Comm. COM-28, 6 (June 1980), 781-793.

[Kuro84] J. F. Kurose, M. Schwartz and Y. Yemini, "Multiple-Access Protocols and Time-
Constrained Communication”, ACM Comp. Surveys 16, 1 (March 1984), 43-70.

[Ross86] F. E. Ross, "FDDI — A Tutorial", JEEE Communications Magazine 24, 5 (May 1986),
10-17.

[SAE86] "SAE Draft High Speed Ring Bus (HSRB) Standard", October 27, 1986.

[Sevc87] K. C. Sevcik and M. J. Johnson, "Cycle Time Properties of the FDDI Token Ring Proto-
col", IEEE Trans. on Software Engineering SE-13, 3 (March 1987), 376-385.

[Sumi88] S. Sumita and T. Ozawa, "Achievability of Performance Objectives in ATM Switching
Nodes", Proc. Int’l Seminar on Performance of Distributed and Parallel Systems, T. Hasegawa,
H. Takagi, and Y. Takahashi, Eds., Kyoto, Japan, December 7-9, 1988, 45-56.

5

Appendix
Theorem 1: In a non-saturated node with
X ming + d 2 2!} +14, (l=l,...m), (Al)
Jj=
scheduler saturation is impossible if and only if
di 2 ,);'f + maxty, (i=1,..a). (A2)

Proof: Since we have excluded the possibility of node saturation even in the worst case (i.e.,
when all channels are carrying packets at their maximum rates 1/x), there cannot be any
buildup of queues in time; we can therefore assume that the node is empty when we start examin-
ing arrival patterns, and call time O the instant at which the first packet arrives at the node.
Arrival times can be assumed to be arbitrary, since channels are supposed to be independent of
each other; the dependencies that may result from the sharing of an input link by two or more
channels can only improve the situation, as this sharing serializes arrivals on those channels at the
node. Packets arriving on a given channel after the first we consider are not independent of that
first: the second packet on channel j will in the wOrst case arrive x ., ; time units after the first
packet on the same channel. Because of assumptions (A.1), no deadline for a subsequent packet

will fall within the interval between time O and time ¥t = 2!}. Subsequent packets can therefore
J=
be ignored in this proof.

(i) Only if part. If condition (A.2) is not satisfied for some i, there is at least one arrival pattern
that causes scheduler saturation. Let a packet with service time /max 1, arrive at time 0, and pack-

ets from all other channels in A arrive at time O+. Then, the packet on channel i will be com-

pletely shipped only at time 3¢ + max fy, which is greater than its deadline d;.

(ii) If part. If conditions (A.2) are all satisfied, there cannot be scheduler saturation. Let the packet

on channel i arrive at time 0; in this case, its latest possible departure time is 21:,- < It
J:

arrives at 0+, the latest departure time is flr,- + max f <d;. With an arrival time between 0+ and
= 5
max ., the maximum time spent by the packet in the node is less than d;. Arriving at (max 1 }+,

this maximum time is 2:,- < d;, and later arrivals yield even smaller maximum times.
J=

QED.
If condition (A.1) is not satisfied for all channels, we apply Theorem 1 to a set of channels
that includes some subsequent packets. Since considering these packets increases ¥, we calcu-
late the new value of this sum, (3¢, from the following recursive definition:

(2[)'=ZI +kyty,
kn = 1if X minp +dp < (31, (A.3)
ky, = 0 otherwise.

Sets A and B are defined by the value of (3¢)". The arrival times of some of the packets to
be considered are not independent of those of the others. However, it is easy to see that the
independence assumption is, once again, worst-case (as it may declare scheduler saturation to be
possible when instead it is not). Applying Theorem 1 to this case while ignoring dependencies is
therefore safe, since it does not endanger any of the performance guarantees provided to the
clients of the service.

lourrens Fb Fc 1 Hb
G} G.l G‘
at arrival of packet A:
select appropriate Q
insert (A.0)
return

upon completing the processing of a packet:

D 1S 1B |E<—head (QD 10S |QB |QE)
if D 1S 1B=nil then
Dy 15, 1By =
D, 15; 1B, ==
if Dy 185, 1By < trumen then
Dy 154 1By ¢ leurrems
D 1S 1B, < (Dp+D;)1(Sp+S5:)1(Bs+B,)
if D, <S, then
send D
return
else if 5, <B, then
send §
return
else if B znil then
send B
relurn
else if E znil then stan E until arrival
of next real-time packet
return

insert (G,Q)
find correct place of G in Q
F « left packet
H « right packet
place G between F and H
if 020D then return
align (G.H)
align (F,G)
if F,=1then

Fae0

insert (F, QD)
return

align (8,C)

if Cg <B,<C, then
B, (—Cg
Bg {——B‘ -B;
Bpe1

else if C,<B,<C, then
C¢ (—Bb
Cs (—-C‘—C,
Cane1

return

Figure 1. Scheduling policy for hosts and nodes. The four qucucs are for deterministic (QD), stalisli.cal
(QS), and best-cffort (QB) packets, and for cverything elsc (QE). The notation statement (01§18 If-:‘).1s_a
shorthand for: statement (D); statement (S); statement (B); statement (E). F, G, H are GCICI'mII'I.ISlIC
packets; their end times F,, G, H, coincide with those called dl in Figure 2, and their node service times
arc denoted by F,, G, H,. Boolcan variable F, if 1, indicaics that F has been moved lcfiward on the time
axis.

/*packet arrives on channel at node*/
1 « clocktime
[*control average interarrival time*/
iftr-19217 then
if g=1then c 0 else g1
loe12
cec+]
if ¢ >/ /x,,, then
dll «tgt]
dd «dll-12+d
ce0
g0
/*control minimum interarrival time*/
if 191, <x pin then tye—1y+x,,, €1se 115
[*set packet deadline*/
dle—n+d
if di<dll then dl «t,+dd
dll «di
return

tp=starting time of channel’s current / interval
1,= arrival time of previous packel on channel
¢ = packet counter for channel (initially 0)
d=maximum delay for channel’s packets in node
dl = packet deadline (lime it must have left node)
X mins Xave, I = input characteristics of channel
g = lermination cause indicator (0: excess packetsin /;
1: I interval expiration); initially: g= 1.
dil = auxiliary variable; initially: dii=0.
dd=exiended deadline when excess packets in /; initially: dd=0.

Figure 2. Distributed flow control algorithm. It is executed before the ar arrival of packet A al-
gorithm in Figure 1.

Channel # Type X pmin Xeve & d 2 HXmin ~ p
1 D 10 35 3 14 . 03 0.2857
2 S 4 30 1 6 09 025 0.1333
3 S 15 0 2 8 0982 0.1333 0.1667
4 D 8 7 2 8 - 0.25 0.1143
s D 20 9 4 o . 02 02222

S 8 0 2 9 ? 025 0.1143

(@

1 2 3 4 5 6 ¥ Prob Py

+ O+ 4+ 4 4 1.1333 0.000161 0.000161

L A S U 1.3833 0.000018

@ + + 4+ 4 + L0833 0.000045

+ @ o+ o+ 4+ 4 1.1333 0.000119

+ o+ O o+ 4+ 4 1.25 0.000091

+ + + B o+ 4 1.1333 0.000142

+ o+ o+ o+ P o, 1.1833 0.0064

* o+ o+ o+ o+ @ 1.1333 0.000142

+ + @ + @ 4 1.05 0.000322 0.000943
(®)

Figure 3. Examples of statistical test in a node with channels 1, 2, 3, 4 for the establishment of channcl.s.
and in the same node with channels 1,2,3,4,5 for the establishment of channel 6: (a) channel characteris- .
tics; (b) overflow combinations and calculation of Pe.

Chaﬂ ne I # I d,' Fi

2 1 6 4
3 2 8
4 2 8
1 3 14
@

Channel# ¢ d; i
4 2 8 6
3 2 8 8
1 3 14
5 4 ?

®)

Channel # 4 d; i

4 2 8 6
3 2 8 8
5 4 16
6 2 2

©

Figure 4. Tables for the delay bound test and the delay bound computation: () all the or:iginal channels
(1 through 4 in Figure 3(a)); (b) addition of channel 5 (and deletion of channel 2); (c) addition of channel
6 (and deletion of channel 1). Note that the channel # in the tables is the same as in Figure 3(a); the chan-
nels in set A in each table are ordered as explained in the description of the delay bound test.

Channel# Type€ Xpmin Xawe t d z £1X min P
7 D 15 50 4 12 - 0.2667 03
8 S 18 8 6 15 0993 0.3333 0.22

(@
9 D 15 50 4 16 . 0.2667. 03
10 D 10 70 2 14 - 02 0.1429
11 S 10 60 3 20 0985 03 0.1667
®
Channel # & d; r;
7 4 12
8 6 15
6 2 ? 8
©
Channel # I d; Fi
9 4 16
11 3 20
6 2 ? 6
(@

Figure 5. Characteristics and delay bound tests for the two additional nodes traversed by channel 6 (see
Figure 3(a)) to reach the destination host: (a) node 2; (b) node 3; (c) table for node 2: (d) table for node 3.

Node mind max z d z

1 10 099905 12 0.9929
2 8 1 10 0.9939
3 6 099918 8 0.9931

D -3 (mind)=6; d; =(D — ¥ (min d))/n + (mind);
g =Z/T](max z) = 0.9817; z; = g* exp(1/n)(max z);

Figure 6. Information and algorithms for the destination host. The results produced by the algorithms are
displayed in the d and z columns. n is the number of nodes traversed by the channel being established

(in the example, n = 3).

