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Abstract

Explanation is an important function in symbolic artificial intelligence (AI). For example,
explanation is used in machine learning and for the interpretation of prediction failures in
case-based reasoning. Furthermore, the explanation of results of a reasoning process to a user
who is not a domain expert must be a component of any inference system. Experience with expert
systems has shown that the ability to generate explanations is absolutely crucial for the user-ac-
ceptance of Al systems (Davis, Buchanan & Shortliffe 1977). In contrast to symbolic systems,
neural networks have no explicit, declarative knowledge representation and therefore have
considerable difficulties in generating explanation structures. In neural networks, knowledge is
encoded in numeric parameters (weights) and distributed all over the system.

It is the intention of this paper to discuss the ability of connectionist systems to generate
explanations. It will be shown that connectionist systems benefit from the explicit encoding of
relations and the use of highly structured networks in order to realize explanation and explanation
components. Furthermore, structured connectionist systems using spreading activation have the
advantage that any intermediate state in processing is semantically meaningful and can be used
for explanation. The paper describes several successful applications of explanation components
in connectionist systems which use highly structured networks, and discusses possible future
realizations of explanation in neural networks.
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Abstract

Explanation is an important function in symbolic artificial intelligence (Al). For
example, explanaticn is used in machine learning and for the interpretation of
prediction failures in case-based reasoning. Furthermore, the explanation of
results of a reasoning process to a user who is not a domain expert must be a
component of any inference system. Experience with expert systems has shown
that the ability to generate explanations is absolutely crucial for the user-ac-
ceptance of Al systems (Davis, Buchanan & Shortliffe 1977). In contrast to
symbolic systems, neural networks have no explicit, declarative knowledge
representation and therefore have considerable difficulties in generating expla-
nation structures. In neural networks, knowledge is encoded in numeric param-
eters (weights) and distributed all over the system.

It is the intention of this paper to discuss the ability of connectionist systems
to generate explanations. It will be shown that connecticnist systems benefit
from the explicit encoding of relations and the use of highly structured net-
works in order to realize explanation and explanation components. Fur-
thermore, structured connectionist systems using spreading activation have
the advantage that any intermediate state in processing is semantically mean-
ingful and can be used for explanation. The paper describes several successful
applications of explanation components in connectionist systems which use
highly structured networks, and discusses possible future realizations of ex-
planation in neural networks.

1. Introduction.

Explanation is a key function in artificial intelligence systems. Explanation is used to
update knowledge structures in case-based reasoning when a prediction fails, i.e. for
failure-driven learning. Explanation is also used to clarify the results of a reasoning
process to a user. This user is not a domain expert in many cases but has the responsi-

bility of accepting or rejecting a solution produced by an Al system. Furthermore, ex-



planation can be used for knowledge-intensive learning whenever a complete and con-
sistent domain theory is given.

Explanation is also a function which is difficult to realize in unstructured connectionist
systems. Neural networks have no explicit, declarative knowledge structure which al-
lows the representation of explanation structures such as reasoning paths, explanation
of expectation failures etc. However, several proposals have been made for explanation

components in feedforward perceptrons and relaxation-type neural networks.

This paper is organized as follows. First, a brief overview of explanation in conventional
artificial intelligence is given. Next, various proposals for explanation in feedforward
perceptrons and relaxation-type neural networks are discussed, and finally several
successful realizations of explanation components in connectionist systems are de-
scribed. It is shown that the introduction of structure to a network, e.g. the explicit
representation of relations and modular network architectures, significantly facilitates

the use of explanation in connectionist networks.
2. Explanation in symbolic artificial intelligence - a brief overview.

In conventional Al, the term explanation refers to an explicit structure which can in-
ternally be used for reasoning and learning, and externally for the explanation of results
to a user. In rule-based systems, for example, explanation includes’ intermediate steps
of the reasoning process, i.e. a trace of rule firings, a proof structure etc. This struc-
ture can be used to answer "Why" questions. For example, why was solution w produced
by an inference system? Because conditions x and y where satisfied after the first data
entry and have led to the conclusions w and z which satisfied the condition k, and so on.

Another possible form of explanation is to search for a similar case and to present it to
the user. If a user does not accept or understand a solution, the system can select a simi-
lar case which generated the same or a similar response in the past. In contrast to the
first form of explanation, providing a complete inference path, the second is not com-
plete, i.e. the user must use his background knowledge to understand the similarity be-

tween the actual solution and the analogous case.

Explanation also plays an important role in text and story understanding and defines a

method to "assign a motivation to a character based on his or her actions" {Charniak



1987). This form of explanation has been realized by spreading activation and marker
propagation methods, i.e. a breadth first search in a semantic network to find connec-
tions among concepts, plus a component to evaluate relations among concepts. In marker
propagation systems, objects in an "is-a" hierarchy are indexed by a spreading activa-
tion process and are used to build explanations. Charniak (1987) gives the following
example:

"So, upon seeing a sentence like "Jack got some milk" we might suggest explanations like "He
will eat cereal” "He will drink the milk" etc. Presumably we know that milk is put over cereal,
and that milk is a beverage, and beverages are typically used for drinking. Thus it seems rea-
sonable to index activities by the objects that get used in them ... and then, given an action like
Jack's getting milk, look at milk, and the things above milk in the is-a hierarchy for actions
which are indexed there."

Explanation also plays a key role in machine learning. For example, it is a key function
in case-based reasoning to explain failure of expectations. This is always the case when a
situation does not conform to a prior case. The new situation has to be classified, and the
discrepancy between the predictions and the actual event triggers learning (also see
Slade 1988). Learning means updating one or more knowledge structures and requires
explanation which itself is an explicit structure.

The term explanation-based generalization (EBG) is used by Mitchell et al. (1986) and
refers in symbolic artificial intelligence to knowledge-intensive learning methods
which require only a single example and use domain knowledge to constrain search for a
possible generalization. This involves generating a new chunk of knowledge which de-
scribes a set of features including the properties of the training example. EBG is a two-
step learning method: First, construct an explanation of why an example fits a particular
goal concept and find those features of the training example which are relevant to satisfy
this goal concept. Second, search for sufficient features of the example to build the gen-
eral concept definition, the goal of the method. EBG, however, requires a correct, com-
plete and consistent domain theory, a pre-condition which is unrealistic for real-world
applications. Consequently, efforts were made to use weaker domain models (see Lewis
1988 for a discussion).

In addition, explanation is absolutely crucial for the user acceptance of an inference
system. Experience with expert systems has shown that most users demand an explana-
tion of a result produced by an expert system and do not accept a solution without expla-
nation (Davis, Buchanan & Shortliffe 1977). Consequently, efforts were made in the



expert systems area to allow explanations which are meaningful to a user who is not a

domain expert in many cases.
3. Proposals for explanation components in neural networks.

First of all, is explanation really necessary in connectionist systems? An extreme posi-
tion is to have full confidence in training, i.e. the learning process of the neural net-
work, in particular when a huge set of training examples is available (a few hundred
thousand instances for example) and the network is allowed to learn a "complete" domain
theory. In this particular case, a very powerful learning technique would be sufficient
and there would be no need for explanation at all. The network could easily recognize
previously-seen patterns and generalization should be reliable, too. However, these as-
sumptions are certainly unrealistic for real-world applications. Natural environments
are continuously changing; the reasoner has to deal with incomplete and inconsistent in-
formation; learning may be interrupted; and training has to be finished in a reasonable
period of time. Even a perfect training procedure does not affect the need for user ex-
planation, which remains a key function for any inference system.

Explanation of the kind described in section 2 is not easy to realize in relaxation-type
neural networks. Artificial neural systems have no explicit, symbolic and declarative
knowledge representation. Instead, in connectionist systems knowledge is captured in a
numeric weight matrix distributed over the entire system, a distribution of weights
which in most cases was learned by training procedures such as backpropagation, Boltz-

mann machine learning etc.

This limits the range of possible explanation methods in neural networks significantly,
e.g. when a solution has to be explained to a user. Even if the weight matrix is accessible
to the user, it is close to meaningless, since the user has no way to "decompile” the

weights.

Charniak (1987) has shown the lack of explanatory power in connectionist systems by
describing the so-called "infer-everything" problem. Explanation in Charniak's terms
means to generate a picture of a situation including the acting persons and their possible
motivation. In order to guarantee that such a piblure of a situation can be produced, the
connectionist system must have either nodes which represent all possible combinations

of facts (because it could be important for explanation) or the system must have the



generative power to produce explanations. If the latter is done by pattern completion in a
relaxation-type system, all features of a schema would be produced and not only those
features which make up a good explanation.

Another problem is that there is no well-known way to allow meta-reasoning in neural
networks. Meta-reasoning means inferencing about the reasoning capabilities of a sys-
tem. Meta-reasoning can be important for the ability to give explanations since a system
must know about the limits of its domain knowledge and inferencing capabilities in order
to give a meaningful explanation of results.

However, several suggestions have been made about how to allow explanation in relax-
ation-type connectionist systems despite their severe limitations. One idea is based on an
assumed analogy between the search of rule-based systems in problem-space and the
search of a relaxation-type connectionist system in state-space. Both problem-solving
processes are based on a specified starting point (the input) and an exit situation which
is the satisfaction of a goal criterion in the first case and a local or global minimum in
the second case. One of the important differences is that it is easy to keep a trace of the
path of a rule-based system through problem space, buf it is extremely difficult to keep

track of all the changes in a relaxation-type connectionist system.

The idea of an analogy between problem-space and state-space must be rejected. In gen-
eral, a connectionist system can settle in various local minima while it is unknown in
most cases how many local minima the system has. Even if the number of minima is
known, how can one explain why a particular solution was produced and not a similar
one? Furthermore, it is not guaranteed that a user can realize similarities among solu-
tions produced by a relaxation-type neural network. It might be that the user has no way
to understand the similarity based on the state of his domain and background knowledge.

Simulated annealing (for example in non-deterministic Bolizmann machines) makes
explanation even more difficult. The behavior of the systems is governed by the statis-
tical properties of the optimization method plus random factors. The system is per-
forming steepest descent including the possible crossing of energy barriers. In other
words, the system changes its states and settles into a stable solution (eventually), but
this might include movements "uphill" the energy landscape and apparently random be-
havior. Explanation must therefore be based on an “idealized" behavior of the system and

not on a particular path. This idealized behavior could be the energy landscape itself. Key



points where energy significantly changes could be used for explanation (J. Feldman
1989, personnel communication).

The situation is even worse in feedforward-perceptrons such as simple backpropagation
networks (i.e. non-recurrent networks). Classification is done in a simple forward pass
of activation, which is extremely efficient on the one side but leaves no room for expla-
nation on the other side. There are no intermediate steps in classification which can be
used for explanation. Instead, classification means to present an input-vector to the
systems (e.g. a set of features) and to get the immediate response. The user has no choice
but to trust the systems engineer and to believe that learning was done correctly with a
sufficient set of training examples and that the system is reliable.

The situation is different when relearning is done in feedforward perceptrons (G. Hinton
1988, personnel communication). Consider a multi-layer network which has learned
domain knowledge and new facts are presented for learning. According to Hinton (1988)
this will lead to major changes in weight matrix of the network where the new facts dif-
fer from the previously learned knowledge. These changes can be monitored by an outside
component and can be used for explanation. Again, this requires full confidence in train-
ing and only makes sense in those cases where the network is forced to learn local rep-
resentations; the localization of changes would be almost impossible otherwise. Fur-
thermore, it is an open question as to which kind of explanation can be supported by
monitoring changes in weight space.

The second possible way to give an explanation, presenting a similar case, can be much
easier for a connectionist system. This can be possible in principle, since the represen-
tation of schemas and events in distributed systems is similarity-based by its nature.

We conclude from the discussion above that explanation is difficult to realize in relax-
ation-type connectionist systems and simple feedforward-perceptrons. The next sections
discuss explanation and learning in connectionist systems with a special emphasis on

straight-forward spreading activation networks and structured connectionist systems.

4. Explanation in structured connectionist systems.

This section discusses the suitability of connectionist semantic networks (CSNs) for
explanation and gives a brief summary of connectionist systems which have realized



various types of explanation. It should be noted that spreading activation and marker
propagation systems have been used very successfully as part of explanation components
(I gave an example from Charniak (1987) in section 2). Marker propagation models are
massively parallel reasoning systems which use a heuristic reasoning component (the
"path evaluator") for the analysis of paths of activated concepts. The following discussion
excludes these kind of models and emphasizes interpreter-free connectionist models
with weighted connections and bit- or value-passing.

4.1. Explanation and Connectionist Semantic Networks.

CSNs are better suited for explanation than plain relaxation-type networks because of
their explicit structure, e.g. the inheritance hierarchy. Straight-forward spreading ac-
tivation systems have the advantage that each state in processing is meaningful and in-
termediate states can be used for processing. The use of explicit structures in connec-
tionist networks is crucial in this context.

The kind of explanation which can be given by a connectionist semantic network is de-
termined by the type of relations encoded. For example, in a standard CSN using sub-
sumption relations of concepts, the activation of attributes and values is completely de-
termined by the architecture of the concept hierarchy. This means that only the subclass
relation can be used for explanation, and not arbitrary relations as in logic-based sys-
tems (there are only a few connectionist systems which allow the representation of n-
ary predicates and variable binding, e.g. Shastri, L. & Ajjanagadde 1989).

The following is a brief description of a CSN. The network used in Diederich (1989a,b)
has five modules; each module is an n-layer network with mutual excitatory connections
between layers (in both directions) and inhibitory connections within layers. This ar-
chitecture is similar to the interactive activation model in McClelland & Rumelhart
(1981). Each layer is a specialization of a "winner take all' (WTA)} network. Competi-
tion among units in a layer results in the strong activation of a winner unit, but several
units might be active simultaneously if they receive strong outside excitation. Initially,
there are small randem weights in this network: weights within a layer are inhibitory
[0, -10] (weights are integers [-1000, 1000], in general); weights to the layer above
are initially excitatory [0, 10], as are weights to the layer below [0, 100]. Re-
cruitment learning can change random initial connections between layers to strong neg-
ative or positive weights.



The total network has fives "spaces," i.e. four network modules with the architecture
described above, and an additional single space containing a set of units without internal
organization (the instance space). In detail, there is a space for the representation of
structured objects, a space for the representation of aftributes, a space for the repre-
sentation of values of attributes, the instance space mentioned above and a context space
for the representation of episodic information (not used in the learning by instruction
process). All representations are localist; there is a single unit for the representation of
each structured object, attribute, value, instance and context.

Units are not only connected to units in their own space, but also to units in other spaces.
Object, attribute and value units are connected by binder units. A binder unit has three
sites where input-lines come in, and it has an activation function which requires input
from at least two sites for a positive output. There is one single binder unit for each

connection between an object, attribute and value.

Units with an assigned meaning build a hierarchy, i.e. object, attribute, value and con-
text units are embedded in a multi-layer network and form a straight-forward spread-
ing activation network. This spreading activation network is used for reasoning. Inheri-
tance, for instance, can be described by the following example: the object unit A is acti-
vated by some input. A will activate all units in the attribute and value space associated
with A and the more general unit B. B itself will also activate its properties in the at-
tribute and value space; therefore additional feature units become "on."

This process corresponds to simple inheritance in semantic networks. While the
spreading activation process continues, more and more general object units are activated
and more and more relevant feature units are turned on. Exceptions which would realize
a non-monotonic style of reasoning are built in by additional inhibitory links which
modify the flow of activation from more general concept units to units in the attribute
space. These links modify the inheritance process. More specific units can modify the
effect that links from more general object units have on units in the attribute space. So
the connections between more specific objects and their attributes become dominant.
This realizes a basic assumption of semantic networks: the more specific should domi-

nate the more general.



This brief description demonstrates why each intermediate state in a spreading activa-
tion CSN is meaningful. The input causes a flow of activation along the links of the in-
heritance hierarchy which corresponds to a sequential application of the super-
class/subclass relation plus property retrieval. Each intermediate state is the result of
the use of this relation. Furthermore, it is possible to record and replay intermediate
states during processing by use of recruitment learning, i.e. patterns of activation are
"frozen" into the weight of a single unit representing a particular time step (the weight
is set to the input value at the corresponding time step).

Recruitment learning in the context of sequential processing in connectionist networks
was first described by Fanty (1988).

These methods are probably not sufficient to realize- explanation in CSN using simple
inheritance (i.e. no cancellation links), but two important conditions for explanation are
given and can be used for future explanation components: semantic meaningful interme-
diate states and a possible replay of inferencing (or parts of the reasoning process) with
various degrees of granularity.

4.2. Explanation in connectionist diagnostic problem solving.

Peng & Reggia (1989) and Wald, Farach, Tagamets & Reggia (1989) describe a connec-
tionist model for diagnostic problem solving including abductive reasoning. The method
is competition-based, using a "multiple winner take all" approach which allows several
"winner units" as the result of the competition among units with mutual inhibitory
connections. A similar approach, based on a Hopfield-type network, can be found in Goel,
Ramanujam and Sadayappan (1988).

Abduction denotes to the task of infering a hypothesis that best explains data (Goel, Ra-
manujam and Sadayappan 1988). This inference class is computationally difficult in
that multiple disorders may occur simultaneously and a global minimum in the space
exponential to the total number of possible disorders is sought as a solution (Peng &
Reggia 1989), i.e. the diagnostic problem is viewed as a non-linear optimization prob-
lem. Peng & Reggia's (1989) approach is conceptually based on the parsimonious cov-

ering theory. In this theory, there is a set of disorders D, a set of manifestations M, and
a relation D x M O C representing the causal association between a set of disorders and

manifestations. A pair <d;, mj> is in C iff "disorder d; may cause manifestation mj."



Based on the relation C, two sets, "effects” and "causes," are defined for each d; e D and

each m; € M. A hypothesis D; represents a potential explanation for a set of manifesta-

tions M* (i.e. all present manifestations) in that it is a set of disorders, which when
present, could cause or account for M+ (after Peng & Reggia 1989).

This model can be used as a two-layer connectionist network: D and M are two sets of
nodes and C is the set of connecting links. Each link <d;, m;> e C has a constant weight

representing the causal strength. The model converges to a set of winners when relax-
ation reaches equilibrium at time t,. In other words, for each d;, di(t;) approximates
either 1 or 0, then the set of disorders Dg = {dj| di(ty) = 1} is taken to be the connec-

tionist's model problem solution.

The performance of this network, i.e. both accuracy and efficiency, depends on the acti-
vation rule chosen. Wald, Farach, Tagamets & Reggia (1989) used a slightly different
approach based on "simulated annealing” in order to guarantee globally optimal solu-
tions. The important point for the discussion here is the ability of Peng & Reggia's
(1988) network to generate explanations. An explanation is a set of "disorder" which
account of a set of observed manifestations (symptoms). The causal strengths between
manifestion and disorders, however, were not learned but randomly generated in Peng &
Reggia (1989) and provided by physicians in Wald, Farach, Tagamets & Reggia (1989).

Peng & Reggia's (1989) approach is important for the discussion here because it allows
the system to respond to "Why" questions (in principle). Given a number of manifesta-
tions, the system responds with a number of disorders explaining "why" these manifes-
tations were produced. Unfortunately, the activation levels of winner "disorder” units
approximates 1 (the maximum value) and it is not possible to treat the output as prob-
abilities. A possible explanation of results would be much more detailed and meaningful
if it were possible to explain to which degree manifestations have contributed to the re-
sult, i.e. generated disorders. This is not yet possible in Peng & Reggia's approach.

4.3. "Explanator herence" in_connectionist networks.

The next example is a structured connectionist system for the modelling of "explanatory
coherence" (Thagard 1988), i.e. the selection of a set of hypotheses that is best ex-
plained by evidential data, direct observation and other hypothesis. The generation of
internal coherence among these propositions can be modelled by a connectionist system.

10



Coming from the theory of scientific explanation, Paul Thagard (1988) describes a
computational theory of "explanatory coherence" that applies to the acceptance or rejec-
tion of sets of scientific hypothesis (or "propositions"”). Propositions compete to build
stable coalitions, i.e. sets of consistent and non-contradictory hypothesis which are best
explained by evidential data, direct observation and other hypothesis. The theory con-
sists of seven principles which establish relations of local coherence among proposi-
tions. According to Thagard (1988) "a hypothesis coheres with propositions that it ex-
plains, or that explain it, or that participate with it in explaining other propositions, or
that offer analogous explanation." Propositions that describe direct observation have
acceptability in their own. An explanatory hypothesis is accepted if it coheres better
overall than competing propositions.

Thagard's (1988) theory consists essentially of seven relations which establish coher-
ence among propositions. They are symmetry, explanation, analogy, data priority, con-
tradiction, acceptability and system coherence. We take two of these relations, explana-
tion and analogy, in order to give a brief example for coherence relations. See Thagard
(1988) for a complete description.

The explanation principle is described by Thagard (1988, p.3) in the following way:

If Py ... Py, explain Q, then:

(a) For each Pi in P1 Pm, Pi and Q cohere.

(b) For each P; and PJ- in Py ... Py, Py and P]- cohere.

(c) In (a) and (b) the degree of coherence is inversely proportional to the number of

propositions Py ... Pp,.

The analogy principle is explained this way:
(a) It Py explains Qq, P5 explains Qo, P4 is analogous to P, and Q4 is analogous to Qy,
then P4 and P cohere, and Q4 and Q, cohere.

(b) If Py explains Qq, P5 explains Q,, Q4 is analogous to Qo, but Py is disanalogous to
Po, then Py and P, incohere.

11



How are relations of the kind described above translated to a connectionist model and how
does it work? First of all, there is a primitive high-level description language which
allows expression such as (EXPLAIN (H1 H2) E1) and (CONTRADICT (H1 H2)) which
means that hypothesis H1 and H2 both explain evidence E1, but H1 and H2 contradict
eachother. These expressions are compiled into a connectionist network where each
proposition is represented by a single unit. If two proposition cohere, then there is an
excitatory, symmetric link between them with positive weight. Consequently there is an
inhibitory link if two propositions incohere. Data priority is implemented by an excita-
tory link from a special data unit.

Activation values greater than 0 signify acceptance of a proposition (Thagard 1988,
p.13) and the coherence of a whole system of propositions at time t is validated by a
function which is the inverse to "energy" or "harmony” function in neural networks

HD=2 2 wialat)

where wj; is the weight from unit i to unit j, and a;(t) is the activation of unit i at time

t.

Running the network means generating a coherent set of propositions (if this set is
available) represented by a stable pattern of activation over propositional units. This
stable coalition dominates other possible sets of hypothesis with less explanatory co-
herence. Thagard (1988) used this method for a number of simulations in the area of
scientific explanation and reasoning, for example Lavoisier's argument for oxygen
against phlogiston theory, Darwin's argument for evolution and against creationism and a
number of cases of legal reasoning. The most complex application so far (about Coper-
nicus' heliocentric theory) involved 150 units 210 cycles for a stable result.

Thargard (1988) demonstrates very nicely how competition can be used to built coher-
ent sets of explanations, but Thagard does not explain how a single explanation can be
produced by a connectionist network.

5. Conclusion.

We gave a brief overview of "explanation” in symbolic Al and discussed several pro-

posals for the realization of explanation components in connectionist systems. It has been
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shown that connectionist systems benefit from the explicit encoding of relations and the
use of highly structured networks. Structured connectionist systems using spreading
activation have the advantage that any intermediate state in processing is semantically
meaningful and can be used for explanation, in principle. It was also shown that connec-
tionist systems contribute to explanation approaches which require multiple constraint
satisfaction in problem solving.
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