An Efficient Parallel Algorithm for the
Minimal Elimination Ordering (MEQO)
of an Arbitrary Graph

Elias Dahlhaus’, Marek Karpinski’
TR-89-024
May, 1989

Abs_tract

We design the first efficient parallel algorithm for computing Minimal Elimination Ordering (MEO) of an
arbitrary graph.

The algorithm works in O(log 3 n) parallel time and O(n m) processors on a CRCW PRAM, for an n-vertex,
m-edge graph, and is optimal up to polylogarithmic factor with respect to the best sequential algorithm of Rose, Tarjan and
Lueker.

The MEO Problem for arbitrary graphs arises in a number of combinatorial optimization problems, as well as in
database applications, scheduling problems, and the sparse Gaussian elimination of symmetric matrices. It was believed
before to be inherently sequential and strongly resisting sublinear parallel time (sublinear sequential storage) algorithms.

Asan application, this paper gives the first efficient parallel solutions to the problem of Minimal Fill-In for arbitrary
graphs (and connected combinatorial optimization problems), cf., e.g., [RTL 76), [Ta 85], and to the problem of the
Gaussian elimination of sparse symmetric matrices [Ro 70}, [Ro 73]. (The problem of computing Minimum Fill-In is known
to be NP-complete [Ya 81].) It gives also an alternative to [GM 87] efficient parallel algorithm for computing Breadth-First
Search (BFS) trees in arbitrary graphs using O(n m) processors on a CRCW PRAM.

The method of solution involves a development of new techniques for solving connected minimal set system
problem, and combining it with some new divide-and-conquer methods.

1Dept. of Computer Science, University of Bonn.

2 On leave from the University of Bonn, research partially supported by the Leibniz Center for Research in Computer
Science, by the DFG Grant KA 673/2-1, and by the SERC Grant GR-E 68297.

L - -
. o
I i W=
U mr 1
e — - A
nim A
P e (] "y i
_al S —
" il <4 = 1
- 'S . /
- 0 B
Il

Introduction.

The theory of Elimination Orderings is used in a number of combinatorial optimization
and database applications, as well as in scheduling and general divide-and-conquer tech-

niques. Elimination Orderings also arise in Gaussian Elimination on sparse symmetric
matrices ([Ro 73], [RTL 76]).

The Minimal Elimination Problem (MEQ) for arbitrary graphs (cf., [Ro 73],
[RTL 76], [Ta 85], [DK 88a], [No 88]) is the following.

Given any graph G = (V, E) and an ordering (one-to-one numbering) < on V. Define
E« to be the corresponding chordal eztension of G, i.e. the minimal extension E’ of E,
suchthat fz < y, 2 < z and 2y, 22 € ' = yz € E.

The problem is to compute for any given graph G = (V, E) an ordering < on V, such
that E is (inclusion) minimal. We call such an ordering a Minimal Elimination Ordering
(MEO) of G ([RTL 76], [Ta 85]). An MEO-algorithm is an algorithm computing for an
arbitrary input graph G = (V, E), an ordering on V such that E. is (inclusion) minimal.

MEO-Algorithm (I/0)

INPUT: A graph G = (V, E).
OvuTPUT: An Ordering < on V such that
E. is inclusion minimal.

Given an arbitrary graph G = (V, E), and an ordering < on V. The Fill-In F¢ of G
under ordering < is the set of edges defined as follows (cf. [Ta 85]):

F. = {vw|v#w,vwe€ E, Ip apath p=v,v3...0 in G s.t.

v1 =9, U = w, and v; = min{v,w} fori =2,...,k—-1}.

An ordering < is minimal if there is no other ordering <’ of V such that F., C Fv..

The Minimal Fill-In Problem is to compute for arbitrary given graph G = (V, E), a
Minimal Fill-In of G (cf. [RTL 76}, [Ta 85]).

In the case the ordering < satisfies E = E, (V, E) is chordal and the ordering < is
called a Perfect Elimination Ordering (PEO).

2

It is known that the computation of a minimum (cardinality) E. is NP-complete
[Ya 81], Rose, Tarjan and Lueker have relativized this problem to the computation of
an MEO E. of a given graph. Their sequential algorithm works in O(nm) time and
O(n + m) storage [RTL 76].

There are efficient parallel algorithms to recognize chordal graphs and to compute
perfect elimination ordering for chordal graphs ([Ed 87], [NNS 87], [DK 86], [DK 87],
(K1 88]).

In this paper we give a parallel solution to the MEO Problem by designing an
algorithm computing an MEO for any given graph and working in O(log®n) parallel
time and O(nm) processors on CRCW PRAM.

The MEO algorithm of this paper directly entails recent results on existence of NC-
algorithms for Clique Separator Decomposition ([DK 88b], [DK 88al, [No 88]), and for
the first time provides a parallel technique of computing Minimal Fill-In (cf. [Ta 85]) for
arbitrary graphs, and combining our algorithm with Cholesky factorization algorithm
of Gilbert and Hafsteinsson [GH 88], an efficient parallel algorithm for the Gaussian
Elimination on sparse symmetric matrices (cf. [Ro 73]). It gives also an alternative to
[GM 87] parallel algorithm for computing Breadth-First Search (BFS) tree in arbitrary
graphs working in O(nm) processors. Our BFS algorithm is based on Klein's [K1 88|
chordal method of assigning parents to be 'richest neighbors’ applied to an MEO of a
given graph.

It 1s an interesting open question whether our MEO-algorithm can be used to design
an efficient (deterministic) parallel algorithm for a Depth-First Search (DFS) tree in
arbitrary graphs (cf. [AA 87] for the randomized solution; see also [KR 88]).

The paper is organized as follows.

In Section 1, the notational and fundamental concepts of this paper are introduced.
Section 2 describes the global strategy which is a divide-and-conquer strategy.

Section 3 presents the simple case of a graph G being the disjoint union of two cliques
C; and C,. In this case the problem is equivalent to the following set system problem:

Given a set V' and a set S of subsets of V. Compute an ordering (57 < ... < Sp) of
S, such that for i = 1,...,n, S; \ Uj<i S; is inclusion minimal in {Sx \ U;«; S; | k > ¢}.

In Section 4 we complete the algorithm using the special case of Section 3.

1 Basic Concepts and Notations.

In the whole paper graphs are undirected, without loops and multiple edges.

A graph G = (V, E) consists of a vertez set V and an edge set E. The edge joining
z and y is denoted by zy.
Define Ng(z) = {y|zy € E}. For M CV Ng(M) = Uzer N(z).

The computation model is the concurrent-read concurrent-write parallel random
access machine (CRCW PRAM) (cf. [FW 78], [Co 85], [KR 88]). We assume that basic
operations and predicates like the addition, the subtraction and the predicate < for
n-ary binary numbers need O(n?) processors and constant time or O(n) processors and
O(log n) time, and the multiplication of two n-ary numbers needs O(n log n loglogn)
processors and O(log n) parallel time.

There exist uniform boolean circuits classes with an unbounded fan-in and the same
sizes and depths, realizing these operations ([CSV 82], [KR. 88]).

Whenever nothing else is said, n is the number of vertices of G = (V, E') and m is
the number of edges.

We assume that the reader is familiar with the following results on parallel compu-
tation.

Theorem 1.

1) (see [SV 82])

The transitive closure and a spanning tree of any graph can be computed in
O(log n) parallel time and O(n 4+ m) processors.

11) (see [Co 86])
n numbers can be sorted in O(log n) parallel time and O(n) processors.

Given a tree T = (Vz, E7) with a root 7. Then we can define the unique direction
T = (Vr, A4;) or (y,z) of any edge zy of T to the root r. If (z,y) € A,, z is a child of
y and y is the parent of z. For each vertex « of T let {y{,...,yd,)} be the set of its
children. The edge y?, z is labelled by i, I(y¥z) = 1.

Let P; := (e; ... ep) be the sequence of the edges of the unique path from r to x
(that means e; = ry;, ep = yp_1z). Then I*(z) := (I(e1),...,I(ep)).

4

The depth-first-ordering < is defined as follows:

forz,y € Vrletz < y <= I*(z) is a subsequence of I*(y) or I"(z) is lexicographically
smaller than [*(y).

Theorem 2. (see [K188]) For a tree T' and a 'root’ 7 € Vr an ordering (num-
bering), such that each initial segment is a subtree containing r, can be computed in
O(log n) parallel time and O(n) processors.

A graph is called chordaliff it has no induced edge of length > 3.

Chordal graphs can be characterized in the following way.

Theorem 3. The following statements are equivalent:

i) G =(V,E) is chordal.

1) G = (V, E) has a Perfect Elimination Ordering <, that means if z < y, z < z and
zy, zz € E, then yz € E.

iii) G = (V, E) is the vertex intersection graph ([Ga 72], [Bu 74]) of a collection Sg of
subtrees of some tree T'.

Remark. It is easily seen, that the number of maximal cliques of a chordal graph
is bounded by n = #V.

Suppose, G 1s the vertex intersection graph of the collection Sg of subtrees of T.
For v € V let S, be the corresponding subtree in Sg. For t € Vi let ¢ be the set
{S € Sg |t € S}. We may assume that the maximal cliques of G are exactly the sets
& = {v| S, € e} ([Ga T2],[Bu 74]).

Philip Klein [KI 88] proved the following result
Theorem 4. There is a parallel algorithm computing for each chordal graph G

a perfect elimination ordering and the subtree structure (Tg, Sg) in time O(log? n) and
O(n + m) processors on a CRCW PRAM.

2 The Global Strategy.

Firstly, in an analogy to Philip Klein’s perfect elimination (PEO) algorithm ([K1 88])
we shall compute an endsegment V' C V' of an MEO, such that #V’ < 24V and for all
connected components C of V\V'#C < %#V by a later defined procedure Endsegment.

The divide and conquer strategy works as follows:

1. All vertices vy, v, € V' adjacent to the same connected component of V' \ V' are
joined by an edge € E.

2. We apply the recursion of computing a minimal chordal extension to (V’, E) and
for each connected component C of V\ V' to G | C := (C, {zy € E |2,y € C}).

3. For each connected component C of V' \ V' and the set C' := {y € V |w' € E}
add suitable additional edges between C and C’ by a procedure Minchord.

Remark: We begin with a first complexity remark on the first step. The connected
components can be computed in O(n?) processors and O(logn) time. This is true also
in the case of recursive application, since at the same time it is operated on disjoint
subgraphs. Since we can assume that n < m+1 we also have a processor bound O(nm).

"The computation of £ needs in the first step constant time and O(nm) processors. In
the recursive application eventually new edges are used. But for a new edge e = uv one
can find edges e; = u;v; and v{v generating it. Successively we get edges e;;, = uv;y,
and v{,,v; generating e; until some ey is in E, which we also call the representative of
e. Since the recursion operates on disjoint vertex sets on the same time, ex = u,u, may
be a representative of edges incident to u; and incident to uy. But edges, incident to
u; having the same representative join u; by the same connected component of V'\ V'.
Therefore after contraction of the connected components of V' \ V’, which can be done
in constant time by O(n?) processors, we have again an edge bound of m. Therefore E
can be computed in O(nm) processors also in the recursive application.

In the rest of this section we look for the problem how to compute such a set V’ .
For this purpose we use the following known result.

Lemma 1. [RTL 76] (V,E') is an inclusion minimal extension of (V, E), iff
ECF', (V,E’)is chordal and for e € E'\ E (V,E'\ {e}) has an induced cycle of four
vertices (and edges).

The key result for the construction of V' is the following

6

Theorem 5. Let M be a connected subset of V. Then N(M) is an endsegment
of an MEO.

_ ProoF Let Cy...Ck be the connected components of V \ N(M) and
C; = N{C)NIN[M) for § =100k

Let C! := C;UC; and let Gy := (N(M), E};) where Ey; arises from E by making
all C; complete. Let G} := (C!, E;) where E; arises from E restricted to C! by making
C; complete.

Let (C!, E}) and (C},, E},) be minimal chordal extensions of (C;, E;) and (C’, Esr) resp..

Claim. G’ := (V,Ej; U|JE!) is a minimal chordal extension.

PROOF OF THE CLAIM It is easily seen, that G’ is chordal. To prove that G' is
a minimal chordal extension of G, we have only to prove that each edge zy € E! \ E,
z,y € C; forms after its deletion an induced cycle.

Since z,y are adjacent to the same connected component C;, one finds a path
T, Y1---Y Y, s.b. y; € C;. This forms a cycle in G,
Since G’ is chordal, there is a y;, which is adjacent to z and y in G.
Since z,y € N(M) and M is connected, one finds a path z,m; ... m,y, s.t. all m; € M.
Since also z,m; ...,y forms a cycle and G’ is chordal, one finds an m;, which is adjacent
to z and y.

By the construction of G' (v; v;,z,mj,y,v;) forms after deletion of zy an induced
cycle of length four. O

It remains to check, that N(M) is an endsegment of a perfect elimination ordering
of G'. But this is trivial, since N(M) is closed by chordless paths of G'. |

We continue with another useful remark.

Theorem 6. Forzy ¢ E, C;y := z U (N(z) N N(y)) is an endsegment of an
MEO.

PROOF Let B := EU {uv|u,v € Cy}. It is clear that each minimal chordal
extension of (V, E) is a minimal chordal extension G’ of (V, E), since for uv ¢ E,
z,u,y,v forms a cycle of length four. Since C., is complete in G', it is an endsegment
of a perfect elimination ordering of G'. O

Now we are able to compute a set V', which is an endsegment of an MEQ, in parallel.

7

Procedure Endsegment (G, V")

INPUT PARAMETER i G=(V,E)
OUTPUT PARAMETER : V/CV
Begin

1)For each v € V compute d(v) := #{w € V |vw € E}
(n 4+ m processors, O(log n) time by iterated addition of 1) .
2) a)let Dy := {v|d(v) < 3#V}; let Dy := {v|d(v) > 2#V};
compute the connected components C; ...C} of Dy,
(O(n + m) processors, O(log n) time)
b)Sort (C;): by their sizes in descending order
bl)For each i compute #C;. (O(n) processors, O(log n) time)
b2)Sort (#C;): (numbers of length (log n) are compared, therefore one < needs
O(log n) processors and O(loglogn) time).
The whole sorting procedure needs O(log n loglog k) time by k - log £ < n processors.
3)If #Cy > 2V
a)Compute a spanning tree 7} of Cy. (O(n + m) processors, O(log n) time)
b)Pick up r € C}, s.t. d(r) is maximal.
Compute the enumeration of a depth-first order on T} with root r, say (vy...%,).
(O(n) processors, O(log n) time)
c)Fori € {1...p}let B; := N(vy...v;). (O(n+ m) processors (see [KI 88]))
d)Compute for each i #B;. -
Pick up a #B5;, s.t.
SHV <Bi< S#B; V=B

SToP.
(O(n) processors, O(log n) time)
(Remark. Each B; is an endsegment of an MEO by Theorem 5)

4)Otherwise:

a)Check wether D; is complete by counting the number of edges inside Ds.
(O(n + m) processors, O(log n) time)
b)If YES and # Dy < 24V then V' = D,.
If YES and #D; > 34V
(V'is a subset of Dy, s.t. #V' = 24V;)
Stop.
(O(n + m) processors, O(log n) time)
¢)lf NOT, find z,y€ Dy, zy € E.
(O(n + m) processors, O(log n) time (see [KI 88]))
d)Let U be the common neighbourhood of z and y.
(O(n + m) processors, constant time)
If {z}UU < 24V, then V' :={z}UU,
otherwise let V/:= {z}UU’, st. #{z}U U’ = Z#V.
End.

By this procedure we get the following result

Theorem 7. For any graph G = (V, E) we can compute an endsegment V"’ of an
MEOQ, s.t. #V' < %#V and for each connected component C of V\ V' #C < %#V3
in time O(log n) by O(n + m) processors. o

We remark that the procedure Endsegment is similar to P. Klein’s procedure NONE
[K1 88], which computes an endsegment of a perfect elimination ordering.

3 A simple case.

We assume in this Section that V' and V' \ V' induce complete subgraphs. There are no
restrictions on edges between V' and V \ V'.

For v’ € V\ V' let N'(v) := N(v)NV’. For the computation of a chordal extension
we can prove the following

Lemma 2. (compare also [NNS 87])
G is chordal iff for vy,v, € V\ V', N'(v;) and N’(v;) are comparable with respect to
inclusion.

PROOF
=: Suppose w; € N'(v1) \ N'(v2) and wy € N'(vg) \ N'(v1).
Then v;,v,, w3, w; forms a chordless cycle of length four.

&=: We assume that G is not chordal.
Then a chordless cycle must be of the form wvy,vs,wr,ws, s.t. v1,v2 € V\ V' and
wy,ws € V'. Longer chordless cycles are not possible. But then N'(v;) and N’(v;) are

not comparable by inclusion. This is a contradiction.
O

For the non chordal case the computation of a minimal chordal extension G’ of G
means the computation of a suitable enumeration (u;), of V' \ V’. Denote by N"(u;) the
neighbourhood of u; in V' w.r.t. G'.

Then N”(v;) = [JN'(u;)-

i<i

This enumeration must have the property M:
Ifve N"(ui), but v & N’(u;), then there is a uj, j < ¢, and a w € N(u;), s.t. v € N’(u;)
and w € N'(u;) \ N"(u;).

Then the deletion of the edge vu; induces a 4-cycle u;,w,v,u;.

Lemma 3.
If, for each 7, N'(uiy1) \ Uj<i N'(u;) is inclusion minimal for

{N'(uwe) \ U N'(uy) | & > i},
i<i
then (u;); satisfies the property M.

PROOF
Consider any v € N"(u;) \ N'(w). Let ¢ be the minimum, s.t. v € N'(uiyq).

Since N'(uir1) \Uj<i N'(u;) = N'(uiy1) \ N"(u;) is minimal for {N'(ug) \ N”(ui) |k >

¢}, w.r.t inclusion and N'(uip1) \ N”(w;) # N'(w) \ N"(u;) (they differ by v), there is a
w € N'(w) \ N"(u;), which is not in N"(u;yq).

O

To compute a sequence (u;);, satisfying the assumption of Lemma 2, is clearly equiv-
alent to the following computation problem:

Given a set system £ C P(V). Compute an enumeration A; of ¢ which satisfies the
following Property I

I: Ay \ |J Aj is inclusion minimal in {4\ |J 45 : &k > 1}

J<i 3<i

Theorem 8. Under the assumption, that € is presented as a bipartite graph with
n vertices and m edges, an enumeration satisfying the property I can be computed in
time O(log® n) by O(n 4+ m) processors.

PrROOF We shall state a recursive divide-and-conquer algorithm computing an
enumeration satisfying property I:

10

Procedure Property I ({4;|ie€I},V,P)

INPUT PARAMETER : Afamily {A; : i € I} of subsets of V
OuTPuT PARAMETER : Sequence P := (ij...isr), which enumerates |
Begin

Dlet I = {i#A: < 3#V}Y, L= {i#4 > #V}
a)lf # | J Ai > 3#V, then

el
select I1 C Iy, s.t.

%#VS# UJaicz#v; vie=] 4 v=v\V.
ier ied!

o] b

bYIf # | J A € [1#V, 2#V], then

el
T U dAps Y= PP,
icfy
o)if # | J 4i < J#V, then
iel
B V= U A;.
el
Let A be an iz € I3, s.t. #A4;\ V' is minimal V" := V' \ A

Z)Let
o L
J2 = {i: Ue =V'}
J3 = I\(J}U 2]

{B; : i1} := {A; : t € 1};
{Bg : iEJa} H— {Ag\V” 3 iEJs}:
3)Property I ({B; : ie 1}, V', P) (ifJ;>1)
Property I ({B; : ie J3}, VAV, P) (ifJ3>1)
Let P; be any injective sequence enumerating Js.
P:= P, —~ P, —~ P3is the concatenation of Py, P; and Ps;

End.

The correctness of this algorithm can be shown as follows:

Since all ¢, s.t. A; € V' are in J; and all ¢, s.t. Bj, j € Js, induces an inclusion
minimal 4;\ V" =4;\ |J 4.
teJiuds

11

Let P; =< j1...Jk >, s.t. By, is inclusion minimal {B;, \ Ui; B;, : k > t}. But
Bj, \Ur<i Bi = Ai \ Uja1 Aj U Ujenun, 45 -

This completes the correctness proof .

The computation of all #A; needs O(log n) time and O(n+m) processors. The same
is true for the computation of # J;cy,. Therefore the preface of 1) can be executed in
O(log n) time by O(n + m) processors.

The selection of I] as in 1a) can be done as follows:
Sort I{ w.r.t. #A,; in decreasing order Ij := {i1...1,};

- Compute for each v the least j, say j(v), s.t. v € A;; and let s; := #{v : j(v) =j};
(S5 = #(4;\ U 44))-

3'<3

Compute by bisection a k, such that ;¢ S; € [3#V, 3#V] (this exists, since, for
each j, S; > 3#V).

It is easily seen, that each step needs at most O(log r) time and O(n+m) processors.
Therefore 1a) can be executed in O(log n) time by O(n + m) processors.

Since | J;e, Ai can be computed in constant time by O(n+m) processors, 1b) and the
first part of 1c) can be computed in constant time by O(n+m) processors. #A;, \ V' can
be computed in O(log n) time and O(n + m) processors. Therefore 1c) can be executed
in O(log n) time and O(n + m) processors.

Since V' is a fixed set, the check for each i, whether 4; C V', can be done in
constant time by O(n +m) processors. By the same arguments as in the computation of
V!, Jyy Ja, {Bi : i € J1}, {B; : i € J3} can be computed in constant time by O(n +m)
PIOCessors.

Since V' and V" are constructed in that way, that #V' < 2#V and V/\ V" < 24V,
the recursion depth as in 3) is O(log n). Therefore the whole procedure needs O(log® n)
time and O(n + m) processors (note that J; and J3 are disjoint, therefore the processor
number needed for Property I is the sum of the processor numbers O(n; + m;) and
O(n3 4+ m3) needed for
Property I ({B; : i € J1},V', P), Property I ({B; : ¢ € J3},V'\ V", Ps) resp..

But n; +ny <nand m; 4+ my <m,since SN =0and V' N(V\V") =0.
' (]

12

4 The General Case.

Let C be any connected component of G | V'\ V'. We assume that MEO is just executed
on Gl V\V.

Then we know a perfect elimination ordering of a chordal extension G of G | C and
therefore also a description of G, as intersection graph of a collection S of subtrees of a
tree T, say (T,S) which can be computed in O(log n) time by O(n?) processors, if we
just know the perfect elimination ordering (see [GH 88], [KI 88]). Shortly we call (T, S)
a tree description of G.

Moreover we may assume, that the vertices of T' correspond to the cliques of G. On
the other hand we assume, that N(C) N V' has been made complete.

We proceed as follows:

Procedure Minchord (G,C, V', E)

INPUT PARAMETER : G,V CV, aconnected component C of V' \ V’
OuTPUT PARAMETER : A set of edges E
ASSUMPTIONS i G| C,G | V' chordal

Begin

1)Compute a tree description (T,8) for G | C (8 :={S, , v € C}).
2)Change and direct T' in a suitable way to a root r or an root edge e,
T := Direct (T, S)
(the procedure Direct will be described later).

3)For each v € C let r, be the root of S, with respect to T (R, may be ¢,.);
Fort € Vp t#r,t notincident to e, let SUC(t) be the unique successor (parent) of ¢ in T
if is incident to e, let SUC(t) := e,.
4)Let N'(v) := N(v)n V' forv € C;
let = be the reflexive and transitive closure if the directed edge set of T
let N"(t) = U N'(v);
ry—i
N"(@) = N'@)U{N"@)[tE Syt =%r}
N'(@) U J{N"(®) [t € Sy, S(2) = 70}

5)For each ¢ € Vr : Apply Property I ({N"'(v) : v, =1}, V' N N(C), P);
Assume P, = (v]...9}):
Foreach i € {1...ke} : N((v}) := |J;<; N/ (0}):
6)vw € E iff we N®(v).
End

13

Also not knowing the procedure Direct, we can state the following:

_ Lemmad4. IfG|Cischordal, G | V'is chordal and V'NN(C) is complete, then
G := (VUC,E | (VUC)UE) is chordal.

ProoF Since V' N N(C) is complete, at most two (but at least one) vertices of a
chordless cycle of G belong to V".

Let (v;...vr) be the sequence of vertices of C' belonging to the chordless cycle d.
Then the edges v;vi;; belong all to different cliques C;, which correspond to vertices t,
of T. We may assume that the vertices ¢; are consequentively on a path of T

It is clear, that t; =4 ry, or #g_y — r,, if £ > 2. But then vyw, or vyw; is a chord

of d.

If ¥ =2 and r, = ry,, there is by the application of Property I a chord in d. If
Ty, — Ty, then N(v;) < N®)(v;) by construction, that means v,w; is a chord of d.
]

We continue with a complexity analysis of Minchord

1) can be executed in O(log?n) time by O(n?) processors [KI 88]
3) can be done by standard techniques in O(log n) time by O(n?) processors

4) 5 can be computed in O(log n) time by O(n?) processors using standard tech-
niques.

N"(t) and N"(v) for each v can be computed in constant time by O(rm) proces-
sors using standard techniques.

5) by Theorem 8 we can compute the sequence P, by O(n?) processors in time
O(log?n). N can be computed in constant time by O(n?) processors .

Therefore up to step 2) the procedure Minchord needs O(log?n) time and O(nm) pro-
cessors (we ever can assume that n < m+ 1). Since Minchord operates in its recursive
application on disjoint subgraphs of G at the same time, the whole MEO-procedure

needs O(nm) processors and O(log®n) time under the assumtion that the procedure
Direct needs this processor bound and O(log®n) time.

- It remains to develop the procedure Direct

14

Procedure Direct (T,S,7)

INPUT PARAMETERS : T,S
OUTPUT PARAMETER : A directed tree T
Begin

1)For each edge e of T let S, be the set of subtrees passing e ;
Let Sub := {(e1,e2) : S.;, C Se, }-
Let Sub’ := {(e1,€2) : Se;, C2Se, }
2)For each edge e :=t;t; of T, let T} be the connected component of 7'\ ({e} U {e': (e',e) €

Sub'}), t; belongs to;
let Sf := {S, € 5|5, does not pass e and S, N T # 0}

Ng = UN'(2)| S, € 8L }:
3)Set t1 — tg = (t1,t2) € TV <= #NI < #N et T' C T
direct each connected component T of undirected edges to a root r4 and add it to T;

4)For Sit, Cz Star, let ty — ta < t3 — 4 iff 13 — 14 in the connected component of ¢;
(i:=1,2) of T\ {t:1t2};

5)For all &€ T let f(€) be the unique #S, maximal ¢, st. e <q Eif € exists, s.t. ¢ <; € and
let M :={€:He& <2 ¢}
6)Forall &=t —tpand fori=1,2,let Mi:={e'€ M : Siay 2 Ses (e, f(€")) ¢ Sub), and

S. C Sur, ((e,€') € Sub'} (We shall see that M} is connected.)
Compute the root r, of M?;

7)Replace t; — t by r; — 12;

End.

A first result is the following

Lemma 5. Let T’ be defined as in the procedure Direct. If t — t',t — t" € T”,
then Sy and Sy are comparable by inclusion and unequal.

PROOF Assume that S;;» and Sy~ are incomparable or equal by inclusion. Denote
tt' by €’ and tt" by €”.

Assume that { belongs to T¢'. Then there is a path from f to #, s.t. all its edges &
do not belong to Sub/(e') := {& Subl(e',e)}.

15

Since between the edges é and e” ever is €', € does not belong to Sub'(e”). Since
Se and Sen are incomparable by inclusion or equal, e does not belong to Sub’(e”).
Therefore each edge € as above belongs to S¢".

Hence Ng C N¢". Therefore #N,¢ < #N&" < #N¢,.

By the same arguments we also can prove the unequation via versa. That is a con-
tradiction.
O

Remark. For the case, that for one of the edges €', ¢” is undirected, we also get a
contradiction.

Changings in step 7) do not destroy connectedness of the subtrees S, by construction
of the roots ri.

M is connected: otherwise there would exist an ¢ € M!, s.t. § #(& contains e. This

is a contradiction. No €1,€; € M’j is of the form ¢, — 15, t; — t}. Otherwise we can

assume, that S,, C S, and therefore S, CS,, C S 1) ES%,,

This is a contradiction. All S, in M} are pairwise incomparable, since M! C M.

Therefore M} is directed to a root ri and T restricted to M is not changed in the whole
procedure.

The procedure guarantees for S;,_.;, C Sy, = Se, that e = t; — ¢, is shifted to
the t3-side of T', w.r.t. e’ :=t; — t3, and therefore T becomes directed to a root.

The shift of ¢, to r2 guarantees that the target of e is shifted to the root of
N{S, : S, €S.}.

We shall show that T is a suitable directed tree to get a minimal chordal extension:

We differ between edges vw € Ej,s.t. w € N"(v), and edges vw € E}, which are
generated by the procedure Property I.

We still proved in section 3, that erasing an edge e of E} generates an induced cycle
of length four.

We have to prove the same for edges of EY.

16

Assume vw € E{, but vw ¢ E. That means w € N"(v), but w ¢ N'(v). Then
there is a ¢, s.t. ¢ = r, € T and w € N'(¢). That means there is a V’, s.t. ryy = ¢ and
w € N"(v'). Since we find a v/, s.t. w € N'(v) or we have w € N"(t).

The shift of the target of e to rZ ensures that for no edge € =t; — ta, s.t. to = t we
have S,C4S;,,. Therefore N”(t) = T{™.

Since t — 7, we have #ﬁr‘.":v > #N"(¢).

i) Assume w € N',f:" N N"(%).
Then we find a S,» € Sf7v, 5. t. w € N'(v").

Since S, is on a T-path, s.t. none of its edges & Sz C Si,,, we find a path p from
v” to v, s.t. for none of its vertices # v,?, S; € Sy,

Therefore the concatenation (v’,v) with p, denoted by v —~ p is chordless. There-
fore there must be a chord vw in the cycle v/ ~ p ~ w —~ v', moreover there are
chords between w and all vertices of v/ —~ p.

Therefore the deletion of vw induces a chordless cycle of length four.
ii) Assume now w € N(t)\ N&v.
Since #N"(t) < #Jif,f:", there is a vertex w' € z‘\}j":" \ N”(t), and therefore a

v" € S}, s.t. w' € N'(v"). By the same arguments as in i) we get a chordless path
v’ ~ p from v’ to v”, s.t. p begins at v, since w’' & N"(t).

We have no edge v'w'. But also here we have a cyclecyc := v/ ~p~w' ~w ~

v,

Let p=v,vy,..., v, v". In a chordal extension of ¢yc there is an edge vw’ or an edge
wvy.

In both cases the deletion of vw induces a chordless cycle of length four.

Therefore we have the following

Theorem I. Minchord together with the subprocedure Direct as above computes
for each graph an inclusion minimal chordal extension and therefore an MEO of G.

The last to do is a complexity analysis of Direct.

The number of T-edges and vertices is bounded by n.

17

We can therefore execute step 1) on constant time by O(n®) processors. It can also
be done by O(nm) processors in O(log n) time, computing the connected components
of G\ {v : S, € &} and setting (¢/,e) € Sub iff ¢ joins two different connected
components. In step 2) the computation of a connected component of one tree needs
O(n) processors and O(log n) time. The computation of all T needs O(n?) processors
and O(log n) time. The computation of S§ needs constant time and O(n?) processors.

The computation of all ﬁrf‘ needs O(nm) processors and constant time.

The comparison in step 3) needs O(log n) time and O(n) processors. The compu-

tation of the connected components 7' needs O(n) processors and O(log n) time. The
direction of these connected components needs O(log n) time and O(n) processors.

Step 4) needs O(log n) time and O(n?) processors for the computations of <;.

In step 5) the computation of f(€) can be done in O(log n) time by O(n?) processors.
M can be computed in O(logn) time by O(n?) processors.

In step 6) the computation of M} can be done in O(log n) time by O(n?) processors.
The computation of ri needs O(n?) processors and O(log n) time.

Step 7) can be done in constant time by O(r) processors.

Therefore we can state our main Theorem:

Theorem II. Given an arbitrary n-vertex, m-edge graph G, there exists a parallel
algorithm for computing an MEO of G working in O(log® n) parallel time and O(nm)
processors on a CRCW PRAM.

PROOF: We recall the beginning of the global strategy in Section 2. The first step
could be done in time O(logn) by O(nm) processors. The second step was a recursion
step on disjoint subgraphs of G. The third step was the application of the procedure
Minchord. This can be done in O(log?n) time and O(nm) processors. Therefore the
whole algorithm needs O(log®n) time. We know by the remark on step 1) that the
processor bound of O(nm) for the recursive application of step 1) is also true. In the
procedure Minchord the only step using explicitely O(nm) processors is step 1) of the
subprocedure Direct (in all other steps we have a processor bound of O(n?)). But n
connected component problems on subgraphs of (V’,(E) U E) can be handeled also as
n connected component problems on subgraphs of (V, E), then the processor bound of
this step of O(nm) is also preserved. C

18

5 Applications.

We summarize some applications of our parallel MEO-algorithm. We refer to [Ro 73],
[Ta 85], [KI 88], [DK 88a] for fundamentals, and to [GH 88]. By sparse Gaussian elimi-
nation we mean a Gaussian Elimination where the set of nonzero entries in the whole
elimination procedure is inclusion minimal [Ro 73], [OCF 76].

Theorem III. There exist parallel algorithms working in O(log®n) parallel time
and O(nm) processors on a CRCW PRAM for the following problems.

1. Constructing an MEO and a Minimal Fill-In of an arbitrary graph.
2. Constructing a Minimal Fill-In for arbitrary graph.
3. Breadth-First Search Problem (alternative to [GM 87 for sparse graphs).

4. Sparse Gaussian Elimination on Symmetric Matrices.

PROOF OF THEOREM III: The first statement has been proved in Theorem II.
A Minimal Fill-In problem is reducible to the MEO problem in O(log®n) parallel time
and O(n?) processors on a CRCW PRAM ([Ta 85], [GH 88]). In (3) we proceed similar
as in in the case of chordal graphs [KI 88]:

We can assume that an MEO <, is known. For each vertex z # maxz<V there is a
vertex y, s.t. ¢ < y and zy € E. We choose for each vertex z a largest vertex f(z), s.t.
z f(z) € E. Setting T = {(z, f(z)) |z € V' \ {maz<V}}, we have a breath first search
tree, because by construction there is no edge zy € F, s.t. y = F"(z) for some n € IN.
Hereby the third statement is proved.

By application of the algorithm of Gilbert and Hafsteinsson [GH 88] to the con-
structed MEO we obtain the fourth statement. O

6 Further Research.

From the main result of this paper the following questions arise.

1. Is there a way to improve our algorithm in the number of processors (O(nm))
giving the MEO - this way - even better sequential time algorithm ([RTL 76]
provides an O(nm) time algorithm)?

19

2. Is it possible to modify our algorithm to work in O(log?n) parallel time and in
the same number of processors on a CRCW PRAM (P. Klein has asked us this
question in [K1])? The recursive structure of any such MEO algorithm working in
a ’shallow’ O(log® n) parallel time would be of its own interest!

3. The Breadth-First Search (BFS) algorithm of Theorem III uses the chordal 'parent
- richest neighbors’ method of [KI 88| applied to an MEO of an input graph. Are
there MEOs which can be used directly to construct the Depth-First Search (DFS)
tree for an arbitrary graph? Can our MEO-algorithm be modified as to generate
efficiently DFS-trees of arbitrary graphs? (In general it will be very interesting to
shed some light on the connection between DFS-orderings and MEOs. At present
it is not much known.)

Acknowledgements

Bob Tarjan has raised to us the question of an efficient parallel algorithm for the

MEO Problem. We are thankful to him, and also to Philip Klein for the stimulating

=]

discussions.

References

[AA 87]
[Bu 74]

[Co 86]
[Co 85]

[CSV 82]
[DK 86]

[DK 87]

Aggarwal, A., Anderson, R., A Random NC Algorithm for Depth First Search,
Proc. 19** ACM STOC (1987), pp. 325-334.

Bunemann, P. A Characterization on Rigid Circuit Graphs, Discrete Mathe-
matics 9 (1974), pp. 205-212.

Cole, R., Parallel Merge Sort, 27** FOCS (1986), pp. 511-516.

Cook, S.A., A Taxonomy of Problems with Fast Parallel Algorithms, Infor-
mation and Control 64 (1985), pp. 2-22.

Chandra, A., Stockmeyer, L. and Vishkin, U. A Complexity Theory for Un-
bounded Fan-In Parallelism, 23'* FOCS (1982), pp. 1-13.

Dahlhaus, E., and Karpinski, M. The Matching Problem for Strongly Chordal
Graphs is in NC, Research Report No. 855-CS, University of Bonn (Dec. 1986).

Dahlhaus, E., and Karpinski, M. Fast Parallel Computation of Perfect and
Strongly Perfect Elimination Schemes, Research Report No. 8513-CS, Univer-
sity of Bonn (Nov. 1987), submitted for publication.

20

- [DK 88a]

[DK 88b]

[Di 76]
[Di 87]
[Ed 87]
[FW 78]

[Ga 72]

[GM 87

[GH 88]

[GRE 84]

[Go 80]

[HL 88]

[KR 88]

Dahlhaus, E., and Karpinski, M. Fast Parallel Decomposition by Clique Sep-
arators, Research Report No. 8525-CS, University of Bonn (May 1988).

Dahlhaus, E., and Karpinski, M. Efficient Parallel Algorithm for Clique Sepa-
rator Decomposition, Research Report No. 8531-CS, University of Bonn (Nov.
1988), to be submitted.

Dirac, G.A., On Rigid Circuit Graphs, Abh. Math. Sem. der Univ. Hamburg
25 (1961), pp. 71-T6.

Diestel, R. Simplicial Decomposition of Graphs - Some Uniqueness Results,
Journal of Combinatorial Theory, Ser. B 42 (1987), pp. 133-145.

Edenbrandt, A. Chordal Graph Recognition is in NC, Information Processing
Letters 24 (1987), pp. 239-241.

Fortune, S., and Wyllie, S. Parallelism in Random Access Machines, Proc.
10th ACM-STOC (1978), pp. 114-118.

Gavril, F. Algorithms for Minimum Coloring, Maximum Clique, Minimum
Coloring by Cliques, and Maximum Independent Sets of a Chordal Graph,
SIAM J. Comput. (1972), pp. 180-187.

Gazit, H., Miller, G.L., An Improved Algorithm for BES of a Directed Graph,
manuscript, USC (1987).

Gilbert, J. and Hafsteinsson, H. Parallel Solution of Sparse Linear Systems,
SWAT 88 (1988), LNCS 318, pp. 145-153.

Gilbert, J., Rose D. and Edenbrandt, A. A Separator Theorem for Chordal
Graphs, SIAM J. for Algebraic and Discrete Methods 15 (1984), pp. 306-313.

Golumbic, M.C. Algorithmic Graph Theory and Perfect Graphs, Academic
Press, N.Y. 1980.

Ho, C.W. and Lee, R.C.T. Efficient Parallel Algorithms for Finding Maximal
Cliques, Clique Trees and Minimum Coloring on Chordal Graphs, Information
Processing Letters 28 (1988), pp. 301-309.

R. Karp and V. Ramachandran, A Survey of Parallel Algorithms for Shared-
Memory Machines, Research Report No. UCB/CSD 88/407, University of
California, Berkeley (1988); to appear in: Handbook of Theoretical Computer
Science, North Holland (1988).

21

(1]
[K1 88]

[NNS 87]
[No 88]

[OCF 76

[Ro 70]

[Ro 73]

[RTL 76]

[Sa 76]
[SV 82]

[Ta 85]

ITY 84]

[TY 85

[Ya 81]

Klein, Ph. Personal communication

Klein, Ph. Efficient Parallel Algorithms on Chordal Graphs Proc. 29th IEEE
FOCS (1988).

Naor, J., Naor, M., and Schaffer, A. Fast Parallel Algorithms for Chordal
Graphs, Proc. 19th ACM STOC (1987), pp. 355-364.

Novick, M.B., NC Algorithms for the Clique Separator Decomposition, Cornell
University, Manuscript (Nov. 1988).

Ohtsuki, T., Cheung, L.K. and Fujisawa, T., Minimal Triangulation of a
Graph and Optimal Pivoting Order in a Sparse Matrix, J. Math. Analysis
and Applications 54 (1976), pp. 622-633.

Rose, D.J., Triangulated Graphs and the Elimination Process, J. Math. Appl.
32 (1970), pp. 597-609.

Rose, D.J., A Graph Theoretic Study of the Numerical Solution of Sparse
Positive Definit Systems of Linear Equations, in: R. Read ed., Graph Theory
and Computing, Academic Press, New York (1973), pp. 183-217.

Rose, D., Tarjan, R.E., and Lueker, G. Algorithmic Aspects of Vertex Elimi-
nation on Graphs, SIAM J. Comput. 5, pp. 266-283.

Savage, J.E. The Complexity of Computing, Wiley, N.Y. (1976).

Shiloach, Y. and Vishkin, U., An O(log n) Parallel Connectivity Algorithm,
Journal of Algorithms 3 (1982), pp. 57-67.

Tarjan, R.E. Decomposition by Clique Separators, Discrete Mathematics 55
(1985), pp. 221-232.

Tarjan, R.E., and Yannakakis, M., Simple Linear Time Algorithms to Test
Chordality of Graphs, Test Acyclicity of Graphs, Test Acyclicity of Hyper-
graphs, and Selectively Reduce Hypergraphs, SIAM J. Comput. (1984), pp.
556-579.

Tarjan, R.E., Yannakakis, M., Simple Linear Time Algorithms to Test
Chordality of Graphs, Test Acyclicity of Graphs, Test Acyclicity of Hyper-
graphs, and Selectively Reduce Hypergraphs, Addendum, SIAM J. Comput.
14 (1985), pp. 254-255.

Yannakakis, M., Computing the Minimum Fill-In is NP-Complete, STAM J.
Algebraic Discrete Math. 2 (1981), pp. 77-79.

- 22

