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Abstract

We present parallel algorithms for evaluating game trees. These algorithms
parallelize the “Jeft-to-right” sequential algorithm for evaluating AND/OR trees
and the a-f pruning procedure for evaluating MIN /MAX trees. We show that, on
every instance of a uniform tree, these parallel algorithms achieve a linear specd-
up over their corresponding sequential algorithms, if the number of processors
used is close to the height of the input tree. These are the first non-trivial
deterministic speed-up bounds known for the “left-to-right” algorithm and the
a-fi pruning procedure.

1 Introduction

A game tree is a finite rooted ordered tree in which each leaf has a real value, the
root is a MAX-node, the internal nodes at odd distance from the root are MIN-nodes
and the internal nodes at even distance from the root are MAX-nodes. A Boolean
game tree is a game tree in which the value on each leaf is 1 or 0, and is called an
AND/OR tree. The value of a MAX-node (MIN-node) is recursively defined as the
maximum (minimum) of the values of its children. The value of node v is denoted by
val(v). The value of a game tree is the value of its root. The evaluation problem is to
determine the value of a game tree from the given values on the leaves.

Game trees traditionally occur in the game-playing applications of Al such as
chess, and game tree evaluation 1s a central problem in Al. The evaluation problem
for AND/OR trees is closely related to the problem of efficiently executing theorem-
proving algorithms for the propositional calculus based on backward-chaining deduc-
tion.

"This work was supported by NSF Grant DCR-8411954 and by the International Computer
Science Institute, Berkeley, California.



The best known heuristic in practice for evaluating game trees is the a-3 pruning
procedure [5]. In the case of AND/OR trees, a similar but simpler “left-to-right”
algorithm can be used instead. Both algorithms are effective sequential search meth-
ods. Within certain models of computation it has been shown [7, 8, 9, 10] that these
two algorithms are optimal among all the sequential game-tree evaluation algorithms
for evaluating uniform MIN/MAX trees and AND/OR trees, respectively.

There is a great deal of interest in the prospect of speeding up game-playing
programs and theorem-proving programs through parallel computations, and conse-
quently there has been a considerable research effort on parallel game-tree search over
the past decade. Early studies focused on identifying different methods of conducting
the a-f pruning procedure in parallel [2, 4]. More recent work has focused on exper-
imental studies of parallel game-tree search methods [6, 11, 3]. Apart from a recent
paper [1], which is discussed in Section 6, there has been little theoretical study in
this area.

This paper is a theoretical study of parallel game-tree evaluation algorithms. We
shall base our study on the leaf-evaluation model in which the unit of computational
work 1s the evaluation of a leaf, all other computation being considered free. The
basic step of an algorithm in this model is to evaluate a set of leaves of the input
tree simultaneously; and the algorithm decides its next step from the values observed
at previous steps. The running time of an algorithm is the number of basic steps
1t requires to determine the value of the root. The number of processors used in an
algorithm is the maximum number of leaves evaluated at one step during the execution
of the algorithm. An algorithm is parallelif it uses more than one processor; otherwise,
it is sequential. Our primary interest in a parallel algorithm is its speed-up factor
over the sequential ones as a function of the number of processors used.

The leaf-evaluation model, however, fails to reflect the reality that the game tree
occurring in an application is usually generated by the algorithm that evaluates it. To
capture the process of generating the input tree, we also consider the node-ezpansion
model in which the algorithm is given only the root of the input tree, and it generates
the other nodes of the tree by using an operation called node ezpansion. When this
operation is applied to a node v it either evaluates v if v is a leaf or else produces
the children of v. The unit of computational work in this model is a node expansion,
all other computation being considered free. The basic step of an algorithm in this
model 1s to expand a set of nodes simultaneously in one step. The running time of an
algorithm is the number of steps at which it performs node expansions. The number
of processors used by an algorithm is the maximum number of nodes expanded at
one step of the algorithm.

In this paper we present simple parallel algorithms that parallelize the “left-to-
right” algorithm for evaluating AND/OR trees and the a-f pruning procedure for
evaluating MIN/MAX trees. Our main result is that, on every instance of a uniform
tree, these parallel algorithms achieve a linear speed-up over their corresponding
sequential algorithms, if the number of processors used is close to the height of the



input tree.
Throughout this paper, B(d,n) denotes the set of uniform d-ary AND/OR trees
of height n and M(d,n) the set of uniform d-ary MIN/MAX trees of height n.

2 AND/OR Trees

In this section we study the problem of evaluating AND/OR trees in parallel. For
convenience, we present an AND/OR tree as a NOR-tree by replacing each AND-
node or OR-node by a NOR-node. The value of a NOR-node is 0 if any of its children
is 1; otherwise, it is 1. An AND/OR tree is equivalent to its NOR-tree representation
up to complementation of the value of the root and possibly the values on the leaves.

The total work of an algorithm is the number of leaves evaluated. For a NOR-tree
T, a proof tree of T is a smallest tree contained in T that verifies the value of T.
Any evaluation of T must be able to exhibit a proof tree of T in which each leaf has
been evaluated. For T' € B(d,n), a proof tree of T has degree 1 and d on alternate
levels. The number of leaves in a proof tree of T is at least dl"/2. So we have the
following elementary fact, which gives an inherent lower bound on the total work of
any algorithm which evaluates any instance of B(d,n).

Fact 1 For any T € B(d,n), the total work of any algorithm to evaluate T is at lcast
dln/2)

Let T be any rooted tree with root r. Let v be a node in T'. An ancestorof v is a
node on the path from r to v. So v is an ancestor of itself. The value of v is determined
if val(v) can be computed from the values of the leaves that have been evaluated. We
say v is dead if the value of some ancestor of v is determined; otherwise, v is live. A
simple sequential algorithm for evaluating NOR-trees is the “left-to-right” algorithm,
called Sequential SOLVE, which evaluates the leaves from left to right while skipping
over dead leaves.

Sequential SOLVE
At each step, evaluate the leftmost live leaf.

The following program S-SOLVE describes Sequential SOLVE recursively. Let v
be the root of the subtree to be evaluated.

S-SOLVE (v: node): boolean;

if v is a leaf then
evaluate v;
return(val(v));
else
let uy,u,,...,uq be the children of v;



for:=1toddo
b — S-SOLVE(w;);
if b=1 then
return (0);

return (1);

Our goal is to parallelize Sequential SOLVE. The following algorithm, called Team
SOLVE, parallelizes Sequential SOLVE in the most direct way and achieves a square-
root speed-up.

Team SOLVE with p processors
At each step, evaluate the leftmost p live leaves.

Proposition 1 Let d be fized and p be such that 0 < p £ d". Then, on any instance
of B(d,n), Team SOLVE with p processors has a speed-up of Q(,/p) over Sequential
SOLVE.

Proof: It suffices to prove the result for p = d* where 0 < k < n. We think of a
subtree of height k as a super-leaf and the d* processors used in Team SOLVE as
a team which evaluates one super-leaf at each step. Sequential SOLVE and Team
SOLVE evaluate the same set of super-leaves. By Fact 1, Sequential SOLVE takes at
least dl%/2] steps to evaluate each super-leaf. The proposition follows. O

On the other hand, for any n, p and fixed d, it is easy to construct a tree in B(d,n)
on which Team SOLVE with p processors achieves a speed-up of at most O(,/p) over
Sequential SOLVE.

We present a new parallel algorithm, called Parallel SOLVE, that achieves a linear
speed-up over Sequential SOLVE on uniform trees, using a moderate number of pro-
cessors. A central notion to the design of Parallel SOLVE algorithms 1s the “pruning
number” of a live leaf. Node u is a stbling of v if u and v have the same parent; u
is a left-sibling (right-sibling) of v if u and v have the same parent z, and u precedes
(follows) v in the ordering of the children of z. The pruning number of a live leaf
v is the total number of live left-siblings of the ancestors of v. The significance of
the pruning number is that a live leaf with small pruning number is “likely” to be
evaluated by Sequential SOLVE. In particular, a live leaf with pruning number 0 is
the leftmost live leaf, which is the one evaluated by Sequential SOLVE.

The strategy of Parallel SOLVE is to evaluate live leaves with small pruning num-
bers. Parallel SOLVE has a parameter width to control its parallelism.

Parallel SOLVE of width w

At each step, evaluate all live leaves with pruning number at most w.

In particular, Parallel SOLVE of width 0 is identical with Sequential SOLVE.



When viewed top-down, Parallel SOLVE can be seen as a set of “left-to-right” se-

quential algorithms running in parallel, coordinated in a cascading structure. To illus-
trate the top-down view, the following program P-SOLVE describes Parallel SOLVE
of width 1 on a binary NOR-tree. Let v be the root of the subtree to be evaluated
and w the leftmost live leaf in the subtree. P-SOLVE has v and w as its parameters.
Let T(v) be the subtree rooted at v.

P-SOLVE(v, w: node): boolean;
if v is a leaf then
evaluate v;
return (val(v));
else
uy « left child of v;
up « right child of v;
if wis a leaf in T'(u;) then
r +—P-SOLVE(u,, w);
return (1 — r);
else
in parallel do
l «— P-SOLVE(u1, w); [*parallel on left subtree*/
r «— S-SOLVE(uy); /*sequential on right subtree*/
if P-SOLVE(u;, w) returns first then
if { =1 then
abort S-SOLVE(u,);
return (0);
else
u — leftmost live leaf in T'(u,);
abort S-SOLVE(u,);
r — P-SOLVE(u,, w);
return (1 —r); /*finish evaluating right subtree*/
if S-SOLVE(u,) returns first then
if r =1 then
abort P-SOLVE(y,, w);
return (0);
else
wait until P-SOLVE(u;, w) returns;
return (1 — I);
if P-SOLVE(u;, w) and S-SOLVE(u,)
return simultaneously then
return (nor(l,r)). /* “nor” is the NOR-function*/

We analyze the effectiveness of Parallel SOLVE of width 1. We show that Parallel
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SOLVE of width 1 has a linear speed-up over Sequential SOLVE on every instance of
a uniform NOR-tree.

Theorem 1 [Main Theorem] For a NOR-tree T, let S(T) be the number of leaves
evaluated by Sequential SOLVE to evaluate T and P(T) the number of steps that
Parallel SOLVE of width 1 takes to evaluate T. Then, for any d > 2, there s an
ng > 0, depending on d, such that for any T € B(d,n) with n > nyg,

S(T)

ﬁzc(n‘l'l)a

where ¢ > 0 is an absolute constant and n + 1 is the number of processors used by
Parallel SOLVE of width I on T.

Corollary 1 For T € B(d,n), let W(T) denote the total work of Parallel SOLVE of
width 1 on T. Then there is an ny, depending on d, such that for n > ng,

W(T) < ¢ S(T),

where ¢ > 0 ts an absolute constant.

3 Proof of Main Theorem

For a NOR-tree T', let L(T') be the set of leaves that are evaluated during the execution
of Sequential SOLVE on T. Thus S(T) = |L(T)|. Let Hr denote the NOR-tree
obtained from T by deleting the nodes that are not ancestors of leaves in L(T). We
call Hr the skeleton of T. Note that for a node v in Hr, v has the same set of left
siblings in T and in Hr.

The running time of Sequential SOLVE on T is the same as on Hr. A fundamental
relation between T and its skeleton Hy is that the running time of Parallel SOLVE
on Hr is at least as large as the running time of Parallel SOLVE on T. This 1s
because the evaluations occurring in some subtrees of T that are not present in Hr
may accelerate the evaluation of T'.

Proposition 2 Let P,(T) denote the number of steps Parallel SOLVE of width w
takes to evaluate a NOR-tree T. Then, for any width w and any NOR-tree T,
P,(T)) < P,(Hr).

Proof: We run Parallel SOLVE of width w on both T and Hr side by side. This
process has the following invariant property which implies the proposition. Note that
any node of Hr is also a node of T.

Property A
At any time, if v € Hr is dead in Hy, then v is dead in T.
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We prove Property A by induction. Property A trivially holds initially. Assume
inductively that Property A holds up to step t. We show that Property A holds after
step t. Consider v € Hr such that (i) v is livein both Hr and T before step ¢ and (ii)
v is dead in Hy after step t. We want to show that v will also be dead in T after step
t. Without loss of generality, we may assume that the value of v in Hr is determined
at step t. We use induction on the height of v.

Basis: v is a leaf. Since the value of v is determined in Hr at step f, v must be
evaluated in Hr at step t. Thus, at step t, the pruning number of v in Hr 1s at most
w. Suppose that a left-sibling u of some ancestor of v is dead in Hr at step t. By
the assumption that Property A holds up to step ¢, u must also be dead 1 T at step
t. Hence, at step t, the pruning number of v in T is no larger than that of v in Hr.
Hence, v will also be evaluated in T at step t and, therefore, will be dead in T after
step 1.

Inductive Step: Assume inductively that Property A holds for any node of height
at most h — 1 after step t. Let v be of height h. Let D be the set of children of v in
Hr whose values are determined in Hr at step ¢. Since the value of v is determined
in Hr at step t, we must have (a) D # 0 and (b) the value of v can be determined by
the values of its children in D. Since each u € D is dead in Hr after step t and is of
height h — 1, by our inductive assumption, u must be dead in T after step t. Thus,
the value of some ancestor v’ of u must be determined in T after step t. If v’ 1s also
an ancestor of v, then v is dead in T after step t; otherwise, we have v’ = u. Suppose
that the latter case holds for each u € D. Then, for each u € D, the value of u is
determined in T after step ¢. By (b), the value of v in T must also be determined,
and therefore v must be dead after step t.

The induction step is complete. O

By Proposition 2, Theorem 1 will be proved if we can show that Parallel SOLVE
of width 1 has a linear speed-up over Sequential SOLVE on the skeleton of any tree
in B(d,n). The advantage of focusing on Hr instead of T is that the total work of
Parallel SOLVE of width 1 on Hr is at most the total work of Sequential SOLVE
on Hr. Therefore, the effective speed-up follows if we can show that when Parallel
SOLVE of width 1 executes on Hr, it evaluates a large number of leaves for a large
portion of its running time. The rest of section is devoted to showing this.

The parallel degree of a step is the number of leaves evaluated at that step. A step
of small parallel degree is considered as “bad”. We want to bound the number of bad
steps of Paralle]l SOLVE of width 1. The following proposition gives such bounds. Let
tx(T") denote the number of steps of parallel degree k during the execution of Parallel
SOLVE of width 1 on a NOR-tree T.

Proposition 3 For any T € B(d,n),

tip (Hr) < (:) (d—1)F,
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where k =0,1,...,n.

Proof: Let w; denote the leftmost live leaf of Hr at step t. For each step t of Parallel
SOLVE of width 1 on Hr, the base path at step t, denoted by P,, is the root-leaf path
in Hr ending at w,. Because w, changes at each step, the base paths at different
steps are distinct.

Consider base path P, = v, vs,...,v, at step t. The code of P, denoted by C(t), is
avector (¢1,¢a,...,¢n) € {0,1,...,d—1}", where ¢; is the number of live right-siblings
of v; prior to step t. We show that the codes of different base paths are distinct. Let
ip = min{z | value of v; is known after step t}. Since leaf v, = w, is evaluated at step
t,ip <n. Let C(t +1) = (cl,¢c...,c},). Then

C:-D < Cig+ (1)

For:=1,2,...,10— 1, if the value of a right-sibling of v, 1s not deternuned before
step ¢ but is determined after step ¢, then ¢; < ¢;; otherwise, ¢; = ¢;. So

615011535023---:5:0_1Scig-l- (2)

By (1) and (2), C(t+1) precedes C(¢) in the lexicographic order of {0,1,...,d—1}",
which implies the distinctness of the codes.

The code (¢1,¢2,...,¢,) of base path P, = vy, vq,...,v, “encodes” the parallel
degree of step t. Let R = {i|]1l <i < n, and ¢; > 0}. For i € R, let T; be the subtree
whose root is the leftmost right-sibling of v; that is live at step t. Then the leftmost
live leaf in T; is evaluated at step t. Also, w; is evaluated at step ¢t. Hence, the parallel
degree of step tis |R|+ 1. Let ox be the total number of vectors in {0,1,...,d—1}"
with exactly k non-zero components. Clearly, o = gr)(d— 1)k. From the distinctness

of the base paths and the distinctness of the codes of the base paths, we can conclude
that tx41(Hr) < o). Hence, ti41(Hr) < (:) (d-1)%. O

By Proposition 3, the number of steps with small parallel degrees is limited. So
are their contributions to the total work. The inherent lower bound on the total work
would imply that much of the total work is contributed by the steps of large parallel
degrees. This is shown by the following two lemmas.

Lemma 1 Ford > 2, let
k) = max{k : (2) d* < dlv/4ly. (3)

Then there are absolute constants b > 0 and a > 0 such that for for n > b,

ki > an.



Proof: Let b > 0 be any constant satisfying (2be)? < 2°. Then, for n > b, we can
derive

(be)[8 & glnld-Init], (4)
Let m = [n/b]. So b > n/m. Then
(TL) S (E)m S ({Jﬁ)m S dlnf'zj—-m, (5)
m m

where the last inequality is by (4) and the condition d > 2.
By (3) and (5), wehave ky > m 2 an witha =0b"1. O

Lemma 2 Ford 2 2, let
k
b = ek oYK b i < gln/2)
ky = max{k:) (i +1) : (d—1) £ d"™4}. (6)
=0
There ts an ng, depending on d, such that for n > ng,
k, > an,
where « s the absolute constant in Lemma 1.

Proof: Without loss of generality, we assume k, < 7. Let k be less than k,. Then,
for all ¥ < k, () < (7). Thus,
5 n : n
Z(Hl)(i)(d’"l)l<(k+1)z(k)(d”l]k‘ (7)
i=0
Let 2o = zo(d) = inf{z|(z + 1)*(d — 1)* < &} = inf{z|Llog(z + 1) < 1log(:5)}.
Since f(z) = 1log(z + 1) is decreasing in z > 0,
(k+1)d-1)<d, ifk> a2 (8)

Let no = max{a~'zq, b}, where o and b are the constants in Lemma 1. Then, by
Lemma 1,

ki > an >z, ifn 2 n,. (9)
By (7), (8) and (3), we have
o 5 i ok /2]
S (E+1) . (d-1)Y < kldlsd : (10)
i=0
Hence, by (6), (10) and (9),
ko 2 by 2 an.

O



Proposition 4 For any d > 2, there is an no, depending on d, such that for any
T € B(d,n) with n > nyg,

S(T)
P(Hr) < c(n+1)’

where ¢ > 0 1s an absolute constant.

Proof: The proof is a combination of Proposition 3 and Lemma 2. We have

n+1l

P(HT)= Z:fg(HT). (11)

We maximize (11), subject to two constraints:
a) tin(Hr) < (3)(d-1);
b) I ti(Hr)i < S(T).

Constraint (a) is by Proposition 3 and constraint (b) is by the fact that the total work
of Parallel SOLVE on Hr cannot exceed the total number of leaves of Hy, which is
S(T).

It is clear that, subject to (a) and (b), P(Hr) is maximized when

i) tiga(Hr) = (7)(d = 1), for i = 0,1,..., ko,
ii) tko42(Hr) = |z] and
iii) t;(Hr) = 0 for i > ko +2,

where "
ko = max{k : Z(i+l)(?§)(d—1); < 5(T)} (12)
and z satisfies .
Y417 (@ -1+ o+ 2)2 = 5(7). (13)
=0

Hence, by (11) and (i)-(iii),
ko
Pt < 3 (1) @1+ . (19

By Fact 1, S(T) > d\"/2l. Then, by Lemma 2 and (12), there is an no, depending
on d, such that for n > no,

ko > B (n+1), (15)
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where 8 > 0 1s an absolute constant. Let

= i (’f)(d—l)'dr 2] (16)

i

i=|ko /2]
Thus, by (14) and (16),
P(Hr) < 2a. (17)
By (13), )
s> 3 (40 (})@-1) + (420 2 Lo 18)
i=(ko/2)

Hence, by (17), (18) and (15), for n > no,
4
P(Hr) < 20 < £-5(T) < 20 L
X0

where c =4/3. O

Theorem 1 follows immediately from Propositions 2 and 4. O

The proof of Theorem 1 given in this section reveals that the absolute uniformity
of the input tree is not required. The conditions that make the proof work are (i) the
lower bound on the sequential time is large, exponential in the height of the input
tree, and (ii) the upper bound on the number of possible steps of small parallel degrees
is relatively small. These conditions holds for trees that are “close” to be uniform.
The following corollary is just one example.

Corollary 2 Let 0 < a <1 and 0 < 8 < 1. Let T be a NOR-tree such that the
number of children of any non-leaf node in T is between ad and d and each root-leaf
path in T has a length between fn and n. Then there is an ng, depending on d, a and
B, such that for n > ng, the conclusion of Theorem 1 holds for T.

4 MIN/MAX Trees

In this section we turn to the problem of evaluating MIN/MAX trees. We describe a
parallel algorithm, called Parallel -8, which parallelizes the a-# pruning procedure
for evaluating MIN/MAX trees.

We shall describe a general method for evaluating MIN/MAX trees, which includes
the sequential a-# pruning procedure and Parallel a-f as special cases. This method
is a pruning process which evaluates the input tree while pruning away certain nodes
whose values cannot affect the value of the root.

Let T be the input MIN/MAX tree with root r. At a general step of the pruning
process, we have a pruned tree, denoted by T, which is a tree obtained from T by
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deleting some subtrees of T'. Let valf(v_) denote the value of node v in 7. This prunin g
process maintains the invariant property that valx(r) = valr(r). Initially, T =T and
no leaves are evaluated. At a general step, certain leaves of T are evaluated. A node
v € T is finished if every leaf in the subtree rooted at v in T is evaluated; otherwise,
v is unfinished. For each finished node v in T, the pruning process is able to compute
valz(v), the value of v in T

A general step of the pruning process consists of a leaf-evaluation step in which
one or more leaves are evaluated and a sequence of pruning steps in which certain
nodes are pruned away and propagation steps in which the values of the newly finished
nodes are computed. The value of the pruned tree is returned as the value of the
input tree when the root 1s finished.

The pruning steps are governed by the pruning rule. The pruning rule is based
on two bounds, the a-bound and the f-bound. The a-bound of v in T, denoted by
az(v), and the B-bound of v in T, denoted by Bz(v), are defined as follows:

az(v) = max{—oo, max{valz(u)| u is a finished sibling of a MIN-ancestor of v}}.
Bz(v) = min{+oo, min{valz(u)|u is a finished sibling of a MAX-ancestor of v}}.

Notice that the a-bound never decreases and the S-bound never increases.
The pruning rule applies only to the unfinished nodes.

Pruning Rules _
Delete an unfinished v from T if az(v) 2 Bz(v).

The pruning rule allows a node to be deleted when it cannot influence the value
of the root. This ensures that the root of the pruned tree remains unchanged. More
precisely, we have the following theorem.

Theorem 2 At any time, we have valy(r) = valr(r). Hence, when rootr is finished,
the pruning process returns valp(r).

Proof: (sketch) Suppose that v is deleted from T by the pruning rule. Then az(v) 2
Bz(v). Let FC(z) denote the set of finished children of z. Let u be a MAX-ancestor
of v and w a MIN-ancestor of v such that

fx(u) = max{valx(u')|u" € FC(u)} = az(v),
g7(w) = min{val(w) |’ € FC(w)} = fx(v).

Without loss of generality, we assume that u is an ancestor of w. Let T" be the
pruned tree after v is deleted. Notice that v is in the subtree of an unfinished child
of w. Since the values of unfinished children of w can only decrease g=(w). we must
have valz,(w) < gx(w). Thus, fz(u) > valx(w). Since u is a MAX-ancestor of
w, valz,(w) cannot influence the value of u, i.e., valz (u) = valx(u). Consequently,
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valz,(r) = valx(r). The same conclusion holds when there is more than one node
being deleted at the same step. The value of the root is maintained at each pruning
step and the theorem follows. O

The sequential a-f pruning procedure, in the leaf-evaluation model, is as follows.

Sequential a-f3
At each step, evaluate the lefimost unfinished leaf of the current pruned iree.

The pruning number of an unfinished leaf v is the total number of unfinished left-
siblings of ancestors of v. The following parallel algorithm, Parallel a-f, parallelizes
Sequential a-f. Like Parallel SOLVE, Parallel a-# has a width parameter to control
its parallelism.

Parallel a-8 of width w
At each step, evaluate all unfinished leaves of the current pruned tree whose
pruning numbers are at most w.

In particular, Parallel a-f of width 0 is identical with Sequential a-3.

When viewed from top down, Sequential a-f can be seen as a depth-first search
that traverses the input MIN/MAX tree from left to right while maintaining the
a-bound and the f-bound for the currently visited node v. It may backtrack from
v upon discovering that the children of v meet the condition of the pruning rule.
Parallel a-8 can be seen as a set of Sequential a-f algorithms running in parallel,
each having its own a-bound and f-bound, coordinated in a cascading structure.

The correctness of Sequential a-f and Parallel a- 3 are guaranteed by Theorem 2.
The following theorem is the counterpart of Theorem 1 for MIN/MAX trees.

Theorem 3 For a MIN/MAX tree T, let 5(T) be the number of leaves evaluated by
Sequential a-B to evaluate T and P(T) the number of steps that Parallel a-f of width
1 takes to evaluate T'. Then, for any d > 2, there is an ny, depending on d, such that
for any T € M(d,n) with n > ng,

(951!

(T)

WZC(TL+1),

Mot

where ¢ > 0 is an absolute constant and n + 1 s the number of processors used by
Parallel a-f of width 1 on T.

The proof of Theorem 3 follows the same line as that of Theorem 1. The only
task is to extend Proposition 2 to MIN/MAX trees. We shall state this extension
without proof in the next proposition. For a MIN/MAX tree T, let L(T) be the set
of leaves evaluated during the execution of Sequential a-8 on T. So S(T) = |L(T)|.
Let Hr denote the MIN/MAX tree obtained from T by deleting the nodes that are
not ancestors of leaves in L(T).
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Proposition 5 Let P,(T) denote the running time of Parallel a-f of width w on a
ﬁﬂl\_f_{ﬁfAX tree T. Then, for any width w and any MIN/MAX tree T, P,(T)) <

Pw(HT)'

The intuitive reason that Proposition 5 holds is that the evaluations of the subtrees
of T that are not present in Hy may provide additional information to “sharpen” the
a-bounds and fB-bounds for other nodes, thus speeding up the process of evaluating
T as a whole.

The following fact is well-known (see [5]). It plays the same role for MIN/MAX
trees as Fact 1 for AND/OR trees.

Fact 2 For any MIN/MAX tree T € M(d,n), d"/% +dI"/%1 —1 is an inherent lower

bound on the total work of any algorithm that evaluates T.

Proof: Let r be the root of T. Let @ and b be any two numbers such that ¢ <
val(r) < b. An algorithm that evaluates T would be able to verify both statements
“a < val(r)" and “val(r) < b” by viewing. T as a Boolean tree. Since r is a MAX-
node, a proof tree for verifying “a < val(r)” has dl"/% leaves and a proof tree for
verifying “val(r) < b has d/™/?1 leaves and, moreover, these two proof trees have
exactly one leaf in common. The lemma follows. O

The conclusion of Proposition 3 remains valid for MIN/MAX trees. Proposition 5,
Fact 2 and Proposition 3 are the ingredients needed for the proof of Theorem 3.

5 Node-Expansion Model

We have developed parallel algorithms for evaluating game trees in the leaf-evaluation
model. In this section we consider the counterparts of these algorithms in the node-
expansion model introduced in Section 1.

The algorithms described previously in the leaf-evaluation model have their coun-
terparts in the node-expansion model. As an illustration, we describe the node-
expansion versions of both Sequential SOLVE and Parallel SOLVE, called N-Sequential
SOLVE and N-Parallel SOLVE, respectively, and show that the counterpart of The-
orem 1 holds in the node-expansion model. Consider a node-expansion algorithm on
input tree T. Let T denote the tree consisting of the nodes of T that have been
generated so far by the algorithm in consideration. Initially, T'" consists of only the
root of T. A node v € T" is dead if the value of any ancestor of v is determined in T'™;
otherwise, v is live. A frontier node is a live node that is not expanded. The pruning
number of a frontier node v is the total number of live left-siblings of ancestors of v.

N-Sequential SOLVE
At each step, ezpand the lefimost frontier node.
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N-Parallel SOLVE of width w
At each step, ezpand all the frontier nodes with pruning number at most w.

In particular, N-Parallel SOLVE of width 0 1s identical to N-Sequential SOLVE.

In Section 7, we shall discuss the implementation of N-Parallel SOLVE of width 1.
As a preparation, we present the algorithm as a program. For convenience, we assume
the input tree to be binary. The following program S-SOLVE* describes N-Sequential
SOLVE. Let v be the root of the subtree to be evaluated.

S-SOLVE*(v: node): boolean;
expand v;
if v is a leaf then
return(val(v));
else
u; « left-child of v;
uy « right-child of v;
l & S-SOLVE*(u,);
if | =1 then
return (0);
else
r +— S-SOLVE*(u,);
return (1-r);

The following program P-SOLVE*(v, g) describes N-Parallel SOLVE of width 1 on
a binary NOR-tree. P-SOLVE*(v, g) is similar to program P-SOLVE in Section 2.
P-SOLVE*(v, ¢) has two parameters, v and g, where v is the root of the subtree to be
evaluated and g is the base path in the subtree i.e., the path from v to the leftmost
frontier node in the subtree. We assume that g carries with it the right-siblings of
the nodes on g. Initially, g consists of only v.

P-SOLVE*(v, g: node): boolean;
if v is the only node on g then
expand v;
if v is a leaf then
return (val(v));
else
uy « left child of v;
u, + right child of v;
g — {wl};
g records u; as the right-sibling of u;;
else /* v has a child on g */
9+ g\ {v};
u + the child of v on g;
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if u is the right child of v then
r «— P-SOLVE*(u,g);
return(l — r);

else /* u is the left child of v */
Uy —

ug « right child of v;

in parallel do
| — P-SOLVE*(uy, g);
r «— S-SOLVE*(u2);
if P-SOLVE*(u;, g) returns first then
if ] =1 then
abort S-SOLVE*(u,);
return (0);
else
g + base path in subtree rooted at u,;
abort S-SOLVE*(u,);
r + P-SOLVE*(uy, g);
return (1 —r);
if S-SOLVE*(u,) returns first then
if r =1 then
abort P-SOLVE*(uy, g);
return (0);
else
wait until P-SOLVE*(u,, g) returns;
return (1 — [);
if P-SOLVE*(u;, g) and S-SOLVE*(u,)
return simultaneously then
return (nor(l,r)).

The following theorem is the counterpart of Theorem 1 in the node-expansion
model.

Theorem 4 For a NOR-tree T, let S*(T') be the number of nodes ezpanded by N-
Sequential SOLVE to evaluate T and P*(T) the number of steps that N-Parallel
SOLVE of width 1 takes to evaluate T. Then, for any d > 2, there is ng, depending

on d, such that for any T € M(d,n) with n > ne,

5*(T)
P~(T)

> c(n+1),

where ¢ > 0 is an absolute constant and n + 1 is the number of processors used by

N-Parallel SOLVE of width 1 on T'.
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The proof of Theorem 4 goes as that of Theorem 1. The only part in the proof
that needs to be changed is Proposition 3. The parallel degree of a step in the node-
expansion model is the number of nodes expanded at that step. Let {;(T) denote
the number of steps of parallel degree k during the execution of N-Parallel SOLVE of
width 1 on T. The skeleton Hr defined in Section 3 consists of precisely those nodes
of T that are expanded by N-Sequential SOLVE on T.

Proposition 6 For any T € B(d,n),

n 2
o) < (0= (€ 1%
where k=0,1,...,n.

Proof: At each step of N-Parallel SOLVE of width 1 on Hr, the base pathis the path
from r to the leftmost frontier node. By the same argument in Proposition 3, the
number of base paths of length m with parallel degree k + 1 is at most ('}:)(d - 1)%,

where m > k. Hence, t;,,(H7) is at most

% (T)(d‘l)k = (ﬂ—k)(:)(d—n*.

m=k

O

The bound in Proposition 6 is larger than the one in Proposition 3 by a factor
of O(n). It is easy to check that the asymptotics of the subsequent analysis is only
affected up to a constant factor. Therefore, Theorem 4 holds.

Sequential a-f and Parallel a-# can also be converted into their node-expansion
versions, so is Theorem 3. Given the space limitation, we shall not present this
changes here.

6 Probabilistic Approaches

It is easy to construct instances of uniform AND/OR trees such that Sequential
SOLVE would have to evaluate all the leaves. In fact, any deterministic algorithm
that evaluates uniform AND/OR trees would have to evaluate all the leaves in the
worst case. One can also construct such worst-case instances for the a-# pruning
procedure. To avoid this worst-case behavior, researchers have taken up probabilistic
approaches.

One approach is to make some probabilistic assumptions on input instances and
study the expected number of leaves evaluated in a random input. In the i.1.d. model,
the value on each leaf in an AND/OR tree is determined by an independent coin flip
with a fixed bias p, 0 < p <1, and in a MIN/MAX tree the values of leaves are drawn
independently from some common distribution. Under this model, it has been shown
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that Sequential SOLVE and Sequential a-# are asymptotically optimal for evaluating
a random uniform AND/OR tree and a random uniform MIN/MAX tree, respec-
tively [8, 10]. This suggests that these sequential procedures are good candidates
for parallelization. A recent paper by Althofer [1] gives a probabilistic analysis of a
certain algorithm for evaluating uniform binary AND/OR trees in the i.i.d. model
where the bias p = @ He states that, when the number of processors is moderate,
the expected speed-up over Sequential SOLVE is proportional to the number of pro-
cessors. In contrast, our analysis is conducted deterministically. Consequently, our
theorems hold in the i.i.d. model automatically.

Another approach that avoids imposing any assumptions on the input is through
randomization. A rendomized algorithm is allowed to flip coins, and the actions of the
algorithm may depend on the outcomes of these flips. For our purpose, we restrict our
discussion of randomized algorithms to the node-expansion model. The complexity
of a sequential randomized algorithm is the expected number of nodes expanded on
a worst input. There is a natural way to randomize N-Sequential SOLVE: expand
the root; repeatedly choose an unexpanded child of the root at random and evaluate
the child recursively until the value of the root can be determined. We call this
algorithm R-Sequential SOLVE. As shown in [9], R-Sequential SOLVE is optimal
among randomized sequential algorithms for evaluating uniform AND/OR trees.

Conceptually, R-Sequential SOLVE is like Sequential SOLVE acting on a randomly
permuted input tree, i.e., a tree obtained from the input tree by randomly permuting
the children of each node. We can extend the randomization to N-Parallel SOLVE to
obtain randomized algorithm R-Parallel SOLVE. Conceptually, R-Parallel SOLVE is
equivalent to the execution of N-Parallel SOLVE on a random permuted input tree.
In practice, of course, the entire randomly permuted tree is not explicitly constructed;
instead, randomizations are performed only to the extent necessary to determine the
steps of the algorithm.

Theorem 5 For a NOR-tree T, let P4(T) and Si(T) denote the random variables
that are the number of steps that R-Parallel SOLVE of width 1 and R-Sequential
SOLVE take to evaluate T, respectively. Let E(PR(T)) and E(Si(T)) denote the
ezpectations of Pr(T) and SR(T'), respectively. Then, for any d > 2, there is an no,
depending on d, such that for any T € B(d,n) with n > ng,
E(Sr(T))
E(Pg(T))

where ¢ > 0 15 an absolute constant.

>c(n+1).

Proof: Follows from Theorem 4 by averaging. O

We can randomize N-Sequential a-f by letting the algorithm traverse the input
tree in a random depth-first search. We call the resulting randomized algorithm R-
Sequential a-f. Similarly, we can extend the randomization to N-Parallel a-3 to
obtain randomized algorithm R-Parallel a-8. '
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Theorem 6 R-Parallel - of width 1 achieves a linear ezpected speed-up over R-
Sequential a-f for uniform MIN/MAX trees.

Remark: We do not know whether R-Sequential a-£8 is optimal among randomized
sequential algorithms for evaluating uniform MIN/MAX trees, although a randomized
version of a variant of N-Sequential a-f called SCOUT [7] was proved to possess this
optimality [9].

7 Implementation

Although the node-expansion model is more realistic than the leaf-evaluation model,
it omits important details as to how the invocations of procedures S-SOLVE* and
P-SOLVE* are assigned to processors, how the results of such invocations are passed
from one processor to another, and how pruning occurs. In the present section we
describe an implementation of N-Parallel SOLVE of widht 1 on a message-passing
multiprocessor system in which any processor can send a message i unit time to
any other. Our implementation maintains the linear speed-up of N-Parallel SOLVE
of width 1 over N-Sequential SOLVE on uniform NOR-trees. For convenience in
exposition we restrict ourselves to the case that the input NOR-tree is binary in
which each internal node has exactly two children.

In our implementation, the procedure S-SOLVE* will not be implemented recur-
sively. Instead, the processor responsible for executing S-SOLVE*(v) simply executes
a depth-first search of the subtree rooted at v, skipping over subtrees whose leaves
are all dead. A pushdown stack is used to control the search. At each step the stack
contains a description of the path g from v to the node currently being expanded.
Along with each node in the path are stored the names of its two children, and an
indication of whether its successor in the path is its left child or its right child.

Our implementation of procedure P-SOLVE* will differ from the description given
in Section 5. In that description P-SOLVE* has two parameters: a node v and a path
g from v to the leftmost frontier node of the search. In our implementation, only
the parameter v will be passed; the processor executing the procedure will always
have enough information available to determine g for itself. Additional procedures
P-SOLVE** and P-SOLVE*** will be required. These procedures are variants of
P-SOLVE* and, like P-SOLVE*, require a single parameter v, giving the root of the
subtree to be searched. Procedure P-SOLVE**(v) is called instead of P-SOLVE*
when 1t is known, at the time of invocation, that node v has already been expanded
but the value of its left child has not been determined; procedure P-SOLVE***(v) is
called when it is known that v has already been expanded and that the value of v’s
left child is 0. The circumstances under which these variants of P-SOLVE* come into
play will be described later in this section.

Let d(v), the level of node v, be defined as the distance of node v from the root.
Our processor allocation method is extremely simple. Each level of the NOR-tree
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has a processor assigned to it. The processor assigned to level d is responsible for
precisely those invocations of S-SOLVE*, P-SOLVE* , P-SOLVE** and P-SOLVE***
in which the root node v is at level d.

Because of pruning, the execution of a procedure may have to be aborted before its
completion. For example, suppose that nodes w and z are siblings, and that both P-
SOLVE*(w) and S-SOLVE*(z) are being executed. If one of these procedures returns
a 1 then the execution of the other procedure should be aborted. If P-SOLVE*(w)
returns a 0 then the execution of S-SOLVE*(z) should be aborted and, instead, an
execution of P-SOLVE*(z) should be initiated, with a base path g equal to the path
that was on the stack at the time S-SOLVE*(z) was aborted. The desired behavior
can be achieved without explicit messages directing procedures to abort, provided
that the following “pre-emption” rule is obeyed: processor d works only on the most
recent invocation of S-SOLVE* whose root node is at level d and on the most recent
invocation of P-SOLVE*, P-SOLVE** or P-SOLVE*** whose root node is at level
d; moreover, it works on S-SOLVE(v) only if it has not been directed to execute
P-SOLVE*(v); all other invocations automatically become terminated and the space
allocated to these invocations is released. The only point at which one processor
directs another to halt some invocation occurs at the end of the computation, when
the value of the root is determined. At that point, a “halt” message is broadcast by
processor 0 to all other processors.

We now describe the implementation in greater detail. A processor may send
or receive messages of six types: S-SOLVE*(v), P-SOLVE*(v), P-SOLVE**(v), P-
SOLVE***(v), val(v) = 1 and val(v) = 0. Processor d may receive a message of one
of the first four types only if d(v) = d. A message of one of the last two types is
always directed from processor d(v) to processor d(v) — 1.

When processor d(v) receives the message “S-SOLVE*(v)” it begins a nonrecursive
execution of the left-to-right sequential NOR-tree evaluation algorithm on the subtree
rooted at v. The execution continues until one of the following events occurs: 1)
the execution terminates and the value of v is reported to processor d(v) — 1; ii)
processor d(v) receives a message of the form “S-SOLVE*(w),” where d(w) = d(v)
and w # v. In this case processor d(v) terminates the execution of S-SOLVE*(v),
as val(v) is no longer relevant; iii) processor d(v) receives a message of the form “P-
SOLVE*(v).” In this case it terminates the execution of S-SOLVE*(v) and begins
executing P-SOLVE*(v), as described below.

When processor d(v) receives the message “P-SOLVE*(v)” its behavior depends
on whether an execution of S-SOLVE*(v) is in progress. This gives two cases. The
first case is that no execution of S-SOLVE*(v) is in progress. In this case, v is not
expanded and processor d(v) does the following: it expands v; if v is a leaf then it
evaluates v, sends the value to processor d(v)—1 and halts; otherwise, it obtains a left
child w of v and a right child z of v. It then sends the messages “P-SOLVE*(w)” and
“S-SOLVE*(z)” to processor d(v) + 1, and waits for messages giving the values of w
and z. If it learns that one of these values is 1 then it sends the message “val(v) = 0"
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to processor d(v) — 1 and halts; if the first message it receives is “val(w) = 0” then it
sends the message “P-SOLVE*(z)” to processor d(v) + 1. As soon as it has received
the two messages “val(w) = 0” and “val(z) = 0” it sends the message “val(v) = 17
to processor d(v) — 1 and halts.

The second case is more complicated. In this case, processor d(v) receives the
message “P-SOLVE*(v)” when it has already received the message “S-SOLVE*(v).”
This 1s the case in which it must switch from executing the sequential left-to-right
evaluation algorithm on the subtree rooted at v to coordinating the execution of
the width-1 algorithm on that subtree. Processor d(v) continues the execution of
S-SOLVE*(v) until it is ready to expand a node. At that point, its pushdown stack
contains a path g from node v down to the node being expanded. Processor d(v)
traverses that path, starting at v, and sends messages corresponding to the nodes it
encounters, as follows. Let u be a node in the path g (the case u = v is not excluded),
let w be the left child of u, and let = be the right child of u. If w is on the path g
then processor d(v) sends the message “P-SOLVE**(u)” to processor d(u) and the
message “S-SOLVE*(z)” to processor d(u) + 1. If z is on the path g (in this case it
is known that the value of w, the left child of u, is 0) then processor d(v) sends the
message “P-SOLVE***(u)” to processor d(u). If u is the terminal node of the path g
then it sends the message “P-SOLVE*(u)” to processor d(u). When the traversal of
the path is complete and all the required messages have been sent, the execution of
P-SOLVE*(v) terminates.

When processor d(v) receives message “P-SOLVE**(v)”, it behaves as in case one
of “P-SOLVE*(v),” except that v is already expanded and so there is no need to
expand v and send the messages “P-SOLVE*(w)” and “S-SOLVE*(z)”. It simply
waits for the messages giving the values of w and z and then takes its subsequent
actions.

The message “P-SOLVE***(v)” is similar to “P-SOLVE**(v)” except that, in
addition, it is known that the value of the left child of v is 0. Thus, the task of
processor d(v) is to wait until it receives a message of the form “val(z) = b,” where z is
the right child of v. Upon receipt of this message it sends the message “val(v) = 1—b"
to processor d(v) — 1.

This completes our description of the implementation of N-Parallel SOLVE of
width 1 for binary NOR-trees.

From the description above, one can deduce that the “pre-emption” rule achieves
the correct pruning behavior. This ensures the correctness of the implementation.
The major time delays introduced in our implementation occur with the actions of
processor d(v) in case two of “P-SOLVE*(v)”. In this case, it has to traverse the
path ¢ maintained on its stack and send messages as it traverses. This traversal is
considered as instantaneous in the node-expansion model. We show that the delays
caused by these traversals can be incorporated into the path-counting in the proof
of Proposition 6 of Section 5. Consequently, the conclusion of Theorem 4 holds for
N-Parallel SOLVE, implemented as described. With each time step 7 we associate a
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“base path” as follows. Let X (r) = {y| P-SOLVE*(y) is being executed at time 7}.
Let v be the rightmost node in X(r). Let u be the node most recently visited by
processor d(v) during the execution of P-SOLVE*(v) (There are two cases; either
u = v or u is the last node reached in the top-down traversal of the path g held on
processor d(v)’s stack). The base path is the path from the root of the NOR-tree to
u. This base path has the following properties: i) the number of processors that are
evaluating the right-siblings of the nodes on this base path is equal to the number of
1’s in the “code” of the base path; ii) it has not been counted as a base path before; iii)
it is a path counted in Proposition 6. By these properties, the base paths associated
with the steps of the traversal will not increase the bounds stated in Proposition 6.
One can conclude that our implementation does not compromise the linear speed-up
of N-Parallel SOLVE over N-Sequential SOLVE.

Finally, we remark that our implementation can be adapted to the restriction of
having only a fixed number p of processors available. This can be done by dividing
levels of the input trees into “zones” of p consecutive levels, and let processor d be
responsible for level d in each zone and switch between the levels in different zones
by multiplexing.

8 Conclusion

We presented parallel algorithms that parallelize the sequential “left-to-right” algo-
rithm for evaluating AND/OR trees and the sequential a-f pruning procedure for
evaluating MIN/MAX trees. We showed that these parallel algorithms achieve a lin-
ear speed-up over their corresponding sequential algorithms on uniform trees, if the
number of processors used is close to the height of the input tree.

All of our parallel algorithms presented are based on the same strategy. This
strategy is a general and effective paradigm for parallelizing a class of sequential
tree search algorithms. It is suitable for efficient implementations on various parallel
computer architectures. We hope that the parallel algorithms presented here will
suggest some efficient parallel programs for evaluating the game trees occurring in
practice.

The major weakness of our results is that the effective speed-up is proved only in
the case of a low degree of parallelism. Our algorithms allow an increasing degree
of parallelism by increasing their width parameter. For example, when the width
parameter is 2 or 3, the number of processors used on a uniform tree of height n is
O(n?) or O(n?), respectively. We believe that the speed-up on uniform trees should
remain linear in the number of processors for any fixed width. We are not able to
prove this. The counting argument that works for width 1 is no longer applicable to
higher widths. It appears that new proof techniques are needed for the analysis of
higher widths.

Our results are asymptotic in the height of the input tree. The larger the branching
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factor is, the larger the height is needed to be. This should be contrasted with the
“wide-and-shallow” game trees encountered in chess programs, which has relatively
large branching factor and limited depth. The provable constant ¢ in Theorem 1 is
rather poor. Some simulations we did indicates that a better constant is achievable.
It would be highly desirable to establish this theoretically.
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