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Abstract

We present here some recent results on fast parallel interpolation of multivariate
polynomials over finite fields. Some applications towards the general conversion algorithms
for boolean functions are also formulated.
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Introduction

We consider the general problem of interpolation of multivariate polyno-
mials over finite fields given by black boxes (input oracles). In this setting we
are given a polynomial f over GF|[q], as a black box, and an information about
its sparsity ¢ (the bound on the number of nonzero coefficients). Given this, we
must determine an extension GF[¢*] of GF[q|, s as small as possible, and an ef-
ficient (deterministic boolean NC-algorithm, cf. [Co 85], [KR 88]) interpolation
algorithm working over GF[¢’] to determine all coefficients of f in GF[g]. Such a
general problem arises in a number of applications, e.g., in design of efficient al-
gorithms in algebra, coding theory and combinatorial optimization (cf. [Ga 83],
[Ga 84], [Ka 85], [KT 88], [MS 72|, [GK 87|, [BT 88|, [GKS 88]). The interest in
the parallel (boolean circuit) complexity of this problem has arisen recently in
connection with the design of fast parallel algorithms for the perfect matching
problem [GK 87]. [GK 87] gave the first deterministic algorithm for sparse in-
terpolation of determinants over fields of characteristic 0, and [BT 88] extended
it to the case of arbitrary sparse polynomials over fields of characteristic 0.

Following [GK 87], and [GKS 88] we shall use uniform boolean circuits in our
analysis. Given a (fixed) finite field GF[g]. We say that the black boz Interpolation
Problem (over a finite field extension GF[g*]) is in NC* (cf. [Co 83], [KR 88)), if
there exists a class of uniform (ntq)°(V-size and O(log*(ntq))-depth boolean cir-
cuits with oracle nodes S (returning values of a black box over the field extension
GF[g*]) computing for an arbitrary n-variate polynomial f € GF|q][zy, ..., ]
all the nonzero coefficients and monomial vectors of f. The oracle S ¢ is defined
by Sj(@1,.. ., Zn,y) iff f(z1,...,2.) = y over GF[¢®]. If the kifting of a black box
(given explicitly by a straight-line program, determinant, boolean circuit, etc.)
from the field GF[q] to the extension GF[¢*], and the computation of the value
f(z1,...,2,) over GF[¢*] by a black box, are both in boolean NC (in P), then
the explicit Interpolation Problem lies also in boolean NC (in P).

The reader is referred to [LN 83], [MS 72] for the basic algorithms for finite
fields, and to [Co 85], [KR 88] for the basic models of parallel computation.



1. Lower Bounds

We shall state first a result on the number of queries necessary to interpolate

a sparse polynomial f € GF[¢][z1,...,z,] over GF[q] (i.e., for the case of s = 1).

Theorem 1. ([CDGK 88]) Given an arbitrary finite field GF|[q] and a
t-sparse polynomial f € GF[q][zy, ...,z given by a black boz input oracle, any

algorithm for testing whether f = 0 requires Q(n'°8t) queries to the input oracle.

PROOF. Define the following search space X(n,t) for the class of ¢-sparse
polynomials f € GF[2][z1,...,z,],

X(n,t)={A|AC{0,1}",
(Vf € GF[q][z1,...,2n], fis t-sparse, f Z0)(Ja € A)[f(a) #0]}.

Denote the minimal cardinality of the set A in X(n,t) by d(n, 1),
d(n,t) = min{#A4|4 € X(n,t)}.

Please note that d(n,?) is the minimal number of queries to the input oracle
needed by any adaptive or nonadaptive algorithm for testing whether f/equiv0.

For a 0-1 vector z = (zy,...,2,) € {0,1}", define the set 271(0) = {i|a; =
0 }. Now for every subset of indices T C {1,...,n} such that #7T < |logt| define

a polynomial

fr=1[ia1)]] =
i€T JET

Denote this class of polynomials by F. The polynomials fr € F have the fol-
lowing properties: (i) fr's are t-sparse, and (ii) fr(z) # 0 iff 271(0) = T.

Because of the properties (i) and (ii) above, an arbitrary search set 4 €
X(n,t) distinguishing all f-sparse polynomials f € GF[q][z1,....2,] from zero,
must contain all vectors z € {0,1}" such that z7'(0) = T for all sets T C
{1,...,n} with cardinality #T < |logt]. Thus the cardinality of such a set is

Llog t]
bounded from below by Z (’:), and consequently d(n,t) = Q(n!°8!), which
i=1

proves our theorem. O



For the important case of boolean functions (GF[2]) we are able to prove the
tight lower and upper bounds ©(r!°¢!) for the number of queries necessary to

determine 1dentity to zero of t-sparse polynomials f € GF[2][z1,...,z].

An Algorithm for GF[2] ([CDGK 88])

Input:  {-sparse polynomial f € GF[2][zy,...,z,]. given by a black box input
oracle;

Output: Yes, if f =0; No, if f # 0.

Step 1:  For all n-bit vectors v € {0,1}", having at most |log, t| zeros com-
pute the values o, = f(v).

Step 2:  Output Yes iff Vv [, = 0].

The correctness of the above algorithm was proven in [CDGK 88]. We do
not know whether the result generalizes for the arbitrary finite field GF[¢]. We
note that we deal here not only with interpolation of polynomials but arbitrary
functions in their RSE-representation ([We 87)).

For arbitrary boolean functions f: {0,1}" — {0,1} there exists exactly one
{0,1}-vector S = (S4)acq,...n) such that

fle)= @ SarnAuwn
AT} i€A
for @ boolean XOR and A boolean AND.
The size of the vector S is referred to as the size (RSE(f)) of f in its RSE-

representation (cf. [We 87]) (and is in our framework ezactly its sparsity over

GF[2[z1,.. ., 2n]).

Theorem 2. ([CDGK 88]) Given an arbitrary boolean function f by the
black boz input oracle, there ezists an algorithm for deciding over GF[2] whether
f = 0 using O(n'°s(RSEUNY queries to the oracle. The algorithm is optimal with
respect to the number of queries to the oracle over GF[2] taken by any (adaptive

or non-adaptive) algorithm for this problem.



The lower bounds of this Section proves the impossibility of polynomial time
(and NC-) algorithms for the general sparse polynomial interpolation with in-
put oracles over finite fields without proper field extensions. So the intriguing
question arises whether we can do interpolation over finite fields at all - without
going to the ’impossible’ field extension GF[g"] (where there are no effective
deterministic procedures known even for finding primitive elements!).

In the next section we shall present surprising upper bounds on the Inter-

polation Problem using only 'slight’ (logarithmic in nt) extensions of a ground

field.

2. Upper Bounds

We formulate now our main Interpolation result on the slight field extensions.

Theorem 3. ([GKS 88]) Given any t-sparse polynomial f €
GFlq)[z1,...,2,] by the black boz input oracle. There ezists a determin-
istic parallel algorithm (NC®) for interpolating f over a slight field ez-
tension GF[gl*"%(")+31] working in O(log®(ntq)) parallel boolean time and
O(n?t®log?(ntq) + ¢**log® q) processors. For the fired field GF[q], the algorithm

works in O(log®(nt)) parallel boolean time and O(n?t®log?(nt)) processors.

The algorithm discovered in [GKS 88] involves two major computational
steps: (1) breaking the zero identity problem of polynomials over a slight field
extension GF[q2"°8(")+3]] and (2) inductive enumeration of all partial solutions
for terms and coefficient vectors over GF[q] by means of recursion using (1).

We develop here a new general method involving Cauchy ([C]) matrices to
break zero-identity problem in Step 1, and combine it with the new parallel
enumeration method based on [GK 87] to solve Step 2. The number of queries
to the input oracle over the slight field extension GF[gl?"°8:(")+31] is bounded
by #(1+ (n —1)(})) (= O(nt?)).

We shall investigate here in more detail the problem of checking identity to

zero (Step 1) in order to compare it with the results of Section 1. (The method



of Cauchy matrices applied here could be also of independent interest.)

Definition. (Cauchy matrix) ([C])
An (N x N) matrix C' = [¢;;] over the field GF[g] is called a Cauchy matrix, if

1
Ti + Yj

Ci; =
for the fixed values z;,y;, € GF[¢], 1 <i,5 < N.

Lemma. (cf., e.g. [MS 72]). Let C be a Cauchy matriz, then the determinant

Det(C) = Mhcicien(@5 — i) (Y5 — i)
[Ticijen (i + ;)
For any of its minors # 0 a similar formula holds. Therefore any minor of any

size 18 nonsingular.
In our algorithm we construct the Cauchy matrix C = [¢;;] by
Cij = — IIlOCl
A P

where p 1s a prime.

An Algorithm for (the slight field extension) GF[q9os(nt)]
([GKS £8])

Input: t-sparse polynomial f € GF[¢|[zy,...,x,] given by a black box input
oracle;

Output: Yes,if f =0; No,if f Z0.
Step 1:  Determine a minimal s satisfying
t
" —1>4ng(n - 1)(2>.

So take s = [log,(nt) + 3].



Step 2:  Construct the field GF[¢°] and a primitive element w in GF|[g?] with
the help of Berlekamp Algorithm [Be 70].

Step 3: Let N = f“‘:—ﬂ_;l. Use the sieve of Erastosthenes to find a prime p with
2N < p < 4N.

Step 4:  Construct an N x N Cauchy matrix C = [¢;j] by ¢;; = % mod p,1 <

t,7 < N by means of the Euclidean algorithm.
Step 5:  Construct an arbitrary submatrix C = [&;] of C of size N x n.

Step 6:  Query in parallel the black box for any row ¢; = (¢;;), 1 < j < n, of
the matrix C, and for each [, 0 <[ < t, at the points

& (e L&

a =W = (W w ,...,wi'c"“)

and at the zero point eg, = (0,...,0).

Step 7: Output Yes (f=0)iff V0<!<t,0<t< N[a;=0].

The correctness proof of this algorithm is given below. The main reason for
the algorithm to work is the strong term separation property of a Cauchy matrix
constructed in Step 3 (the existence of a row & of a Cauchy matrix C separating
arbitrary two monomials of f under w% substitution to the black box oracle).
The Cauchy matrix design can be also viewed as a algebraic deterministic coin
flipping method for constructing a witness value for the fact f # 0 without
actually using randomness.

We prove now the correctness of the Algorithm.

Theorem 4. Given any fized finite field GF[q] and a t-sparse polynomial
f € GF[q][z1,...,x,] by the black boz input oracle, there exists a deterministic
parallel algorithm (NC?) for interpolating f over GF[q[?198(")+31] working in
O(log®(nt)) parallel boolean time and O(n2t3log?(nt)) processors, and making

O(nt®) queries to the black boz input oracle.



PROOF. Suppose f(0,...,0) = 0, otherwise f # 0. We are going to prove
that f # 0 iff there exists [ and ¢, 0 <1 < ¢,1 <1 < N, such that f(w"%) # 0.
Suppose f = 3 fyazk for k = (ki,..., k.) € {0,...,¢—1}" the multi-indices. We
show that for a certain vector ¢, 1 < i < N, after substituting w® for z;’s in

monomials z%, any two monomials z&1 | 2%, would yield two different elements

of GF[q].

Suppose that for a pair k, = (k... ., kW), ky, = (k{z), o k) and & we
have w% = w%% This means that 3 k}l)(_:ij =¥ k;z)ﬁ,‘j (mod ¢* — 1) and so
E(k}l} — k}zj)é,-j = 0 (mod ¢* — 1). Since |k§-1} - k}2}| < g¢-—1,and ¢j; < 4N,

we have | $° (k;l) - k}z))égﬂ < (g — 1)ndN < (¢° — 1). Therefore we have

1<jgn
Sk — ke, = 0.
Now for any pair of monomials z%t, 242, we consider "bad” vectors¢;, 1 < i <
N, such that Z (k‘({l) - kﬁzj)éij = 0. There cannot be more than (n — 1) "bad”

1<j<n
vectors for this pair. Suppose there exist n "bad” vectors &, ,...,&,. Then the

n X n submatrix of C build from the vectors &, ..., &, would have determinant

zero, since the following equality

Gt v Gie k{” - k{g)

&1+ Bign L(1) _ }gr(f)

enforces singularity of C.
Since f is t-sparse there are at most (;) pairs of monomials. Thus there are

at most (n — 1)(;) "bad” vectors for all pairs of monomials z%t, z%2. Because

4 -1){! B i ; _
(n— 1)(;) = W{an)(z) < [q‘;nqll = NN, there must exist a (witness) vector ¢,

which is not bad for any pair of monomials =%, zf2 (any two monomials xki | ke

yield distinct elements of GF[¢*] after substituting w® . We show now that this
implies f(w'® ) # 0 for some 0 < [ < t. Suppose the contrary, i.e. f(w'® ) =0
forall [, 0 <1 <t. Then XV = 0, where X = (fi)r and V = (w'%£) is the ¢ x ¢

matrix whose rows are indexed by /, 0 <1 < ¢, and columns are indexed by the



k that appear as exponents in f.
Note now that

I | L B
ky #k,
(V' is a Vandermonde Matrix), which leads to the contradiction, proving cor-

rectness of the Algorithm.

Complexity Analysis. We have chosen s to be minimal s satisfying ¢*—1 >
dng(n — 1)(;) We have also chosen N = I%l, so we get the following upper
bound for N, N < ¢nt?, Furthermore, |GF[¢*] < Nng. The number of querries
to the oracle made by the Algorithm for a fixed GF[q| is O(nt®).

The construction of the field GF[¢°] from GF[¢] and s can be done by the
Berlekamp Algorithm [Be 70] in O(N log®(Nngq)) processors and O(log? N) par-
allel time. Next we find a primitive element w of GF[¢*] in the following way.

Factorize ¢° — 1 into prime factors,
¢ —1=[[p¥ piprime.

For any a € GF[q*], compute aH:’_-T]" for each ¢ (using the binary expansion of the
exponent and the techniques from [Lo 83]). An element a € GF[¢*] is a primitive
element iff all these powers are distinct from 1. This all can be done in the same
bounds as needed by the Berlekamp Algorithm.

The remaining part is to compute powers % for 0 < [ < £, 1 <1 < N,
and 1 € j € n in GF[¢°]. Using binary representation of the exponents this
can be done in O(Nntlog?(Nnq)) processors and O(log® V) parallel time. Since
N < ¢nt? for the fixed field GF[q] we get the upper bound of O(n?t3log?(nt))
processors and O(log?(nt)) parallel time. This proves Theorem 4. O

Theorems 3 and 4 can be generalized to work over arbitrary fields of positive
characteristic, by applying our method to the slight extensions of their primitive

subfields of the same characteristic.



3. Some Consequences for Boolean Function

We shall derive some interesting consequences of Theorem 3, and 4 for the
case of boolean functions (GF[2]). Although we formulate them for GF[2] only,
same results holds for arbitrary ’small’ (or fixed) finite fields (in this case instead
of boolean circuits we use straight-line programs!).

The boolean RSE-Conversion Problem is the problem of converting a boolean
function f (given by the input oracle), and such that RSE(f) < t into the
equivalent RSE-formula.

A SPARSEg-SAT problem is the problem of checking whether f (given as
above) has a satisfying assignment.

Theorem 3 entails directly the following.

Corollary 1. The boolean RSE-Conversion Problem is in NC3. The algorithm

uses O(log>(nt)) parallel boolean time and O(n*t®log?(nt)) processors.

It is interesting to note that SPARSE4-SAT problem was not known before
to be in P. Theorem 1 says that there is no polynomial time algorithm without
using proper field extensions. Corollary 1 puts this problem in P and determin-
istic boolean NC?, and Theorem 4 yields even better O(log®n) parallel time

bound.

Corollary 2. SPARSE4-SAT is in NC2. The algorithm uses O(log®(nt))

parallel boolean time and O(n?t®) processors.

4. Further Research

The research on parallel complexity of multivariate polynomial interpola-
tion was spurred by its application towards the parallel matching algorithms (cf.
[GK 87]), and resulted already in several applications in problems like sparse fac-
torization and polynomial GCD (cf. [KT 88], [BT 88]). The good bit-complexity
algorithms require however computations over finite fields rather than ZZ. In this

connection an important problem arises to improve on the number of processors

10



of the algorithms of Theorem 3, and 4.

It is also another interesting aspect of this work. Our method of Cauchy

matrices provides a deterministic 'random-like’ method for catching separator

values of polynomial terms. Can it be also applied to other problems with known

randomized solutions to yield the efficient deterministic solutions?
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