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Abstract

The statistical and sequential nature of the human speech production system makes automatic speech recognition
difficult. Hidden Markov Models (HMM) have provided a good representation of these characteristics of speech, and
were a breakthrough in speech recognition research. However, the a priori choice of a model topology and weak
discriminative power limit HMM capabilities. Recently, connectionist models have been recognized as an alternative tool.
Their main useful properties are their discriminative power and their ability to capture input-output relationships. They
have also proved useful in dealing with statistical data. However, the sequential character of speech is difficult to handle
with connectionist models.

We have used a classic form of a connectionist system, the Multilayer Perceptron (MLP), for the recognition of
continuous speech as part of an HMM system. We show theoretically and experimentally that the outputs of the MLP
approximate the probability distribution over output classes conditioned on the input (i.e., the Maximum a Posteriori (MAP)
probabilities). We also report the results of a series of speech recognition experiments. By using contextual information
at the input of the MLP, frame classification performance can be achieved which is significantly improved over the
corresponding performance for simple Maximum Likelihood probabilities, or even MAP probabilities whthout the benefit
of context.

However, it was not so easy to improve the recognition of words in continuous speech by the use of an MLP,
although it was clear that the classification at the frame and phoneme levels was better than we achieved with our HMM
system. We present several modifications of the original methods that were required to achieve acceptable performance
at the word level. Preliminary results are reported for a 1000 word vocabulary, phoneme based, speaker-dependent
continuous speech recognition system embedding MLP into HMM. These results show equivalent recognition performance
using either the Maximum Likelihood or the outputs of an MLP to estimate emission probabilities of an HMM.
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1 Introduction

Hidden Markov Models (HMM), which are widely used for automatic speech recognition,
inherently incorporate the sequential and statistical character of the speech signal. How-
ever, their discriminant properties are weak if they are trained along the Maximum Likeli-
hood Estimate (MLE) [Brown, 1987]. An algorithm based on another criterion, Maximum
Mutual Information (MMI) [Brown, 1987] provides more discrimination, but the math-
ematics are more complex, and many constraining assumptions must be made. Finally,
the incorporation of acoustic or phonetic contextual information requires a complex HMM
and a large (possibly prohibitive) storage capacity.

On the other hand, connectionist architectures, and more particularly Multilayer Per-
ceptrons (MLP), have been recognized as an alternative tool for pattern recognition prob-
lems such as speech recognition. Their main useful properties are their discriminative
power and their capcaity to learn and represent implicit knowledge. Also, contextual
information can easily be incorporated. Good results for phonetic decoding have already
been reported [Bourlard & Wellekens, 1989a], but are restricted to local decisions, as MLPs
are feedforward machines that are generally used for classification of static inputs with no
sequential processing. If the connections are supplied with delays, feedback loops can be
added providing dynamic and implicit memory. Several authors [Jordan, 1986; Watrous,
1987; Elman, 1988] have proposed original architectures of this type.

In this report, we discuss the link between stochastic models used in speech recognition
and connectionist devices used as classifiers [Bourlard & Wellekens, 1989b]. The hypothe-
ses made when using Markov models are compared with the potential solution offered by
MLPs. It is shown theoretically and empirically that the outputs of the MLP approxi-
mate the probability distribution over classes conditioned on the input (i.e., the Maximum
a Posteriori (MAP) probabilities, also referred to here as the Bayes probabilities). It is
- also shown that these estimates, made using contextual information at the input of the
MLP, lead to frame classification performance which is significantly improved over the
corresponding performance for MLE or MAP probabilities, where the latter are estimated
without the benefit of context.



Although it was clear that the classification at the frame and phoneme levels was
better, the recognition of words in continuous speech was not so simply improved by the
use of an MLP, Several modifications and improvements of the initial ideas were necessary
for getting acceptable performance at the word level. These modifications are presented
here and preliminary results are reported for a 1000 word vocabulary, phoneme based,
speaker-dependent continuous speech recognition system embedding MLP into HMM.

2 Hidden Markov Models

In the generic discrete HMM, the acoustic vector (e.g., cepstra calculated for each 10 ms
speech frame) is quantized in a front-end processor. Each vector is replaced by the closest
(in the Euclidean sense) prototype vector ;, selected in a predetermined finite set ) of
cardinality I. Let Q be a set of K different states g(k), with k = 1,..., K. Markov models
[Bahl & Jelinek, 1975] are constituted by the association of some of these states according
to a predefined topology. If HMM are trained using the MLE criterion, the parameters of
the models (defined below) are optimized for maximizing P(X|W), where X is a training
sequence of quantized acoustic vectors z, € Y, withn =1,..., N and W is its associated
Markov model made up of L states ¢, € Qwith¢ = 1,...,L. Of course, L # K # Nsince
the same state may occur several times with different indices ¢, since all states do not
appear in the model, and since loops on states are allowed. Dropping the parenthesized
index for a particular model, we denote by g7 the presence of state g, at a given time
n € [1,N]. Events ¢} are mutually exclusive so that probability P(X|W) can be written
for any arbitrary n:
L
P(X|W)=3_ P(q;,X|W), (1)
=1
where P(q}, X|W) denotes the probability that X is produced by W while associating z,,
with state g,. Maximization of (1) can be calculated from the forward-backward recur-
rences of the Baum-Welch algorithm [Brown, 1987).
Maximization of P(X|W) is usually approximated using the Viterbi method. It uses
a simplified version of the MLE criterion, in which only the most probable state sequence
in W capable of producing X is determined. To explicitly show all possible paths, (1) can
also be rewritten as

XlW Z Z P 9‘51: 1qgfan|W)
4H=1 fy=1
The Viterbi criterion can be obtained by replacing all summations by a “max ” operator.
Probability (1) is then approximated by:

-P-(X!W) = zlmax P(Qﬁ: ,q;:;,X[W), (2)
and can be calculated by the classical Dynamic Time Warping (DTW) algorithm [Bourlard
et al., 1985; Ney, 1984; Sakoe, 1979 ]. For this case, each training vector is uniquely
associated with only one particular transition (at time n) {q(k) — ¢(¢)} between two

states € Q.
In both cases (MLE and Viterbi), it can be shown that probabilities P(X|W) and

P(X|W) can be recursively computed from “local” contributions p[q},z.|Q7 1, X, W],
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where Q7! stands for the state sequence associated with the previously observed vector
sequence Ty,...,T,-1. For simplicity, it is generally assumed that the model is a first order
Markov model (i.e., each state is conditioned on the previous state only) and that the acous-
tic vectors are not correlated (i.e, X may be overlooked in the conditional). These “local”
contributions are then estimated from the set of local parameters p[g(€), yi|¢~ (k), W], for
¢=1,...,] and k,£=1,...,K. Notations ¢—(k) and ¢(¢) denote states € Q observed at
two consecutive instants. In the particular case of the Viterbi criterion, these parameters
are estimated by:

pla(®),vile™ (W) = o—=——, Vi€[LI], Vkle[LK], 3)
23':1 Zm:l T jkm

where n;i¢ denotes the number of times each prototype vector y; has been associated
with a particular transition from ¢(k) to ¢(¢) during the training. To reduce the number
of parameters, (3) may be split into an emission probability p(y:|¢(¢)) and a transition
probability p(q(€)|q~(k)). However, criterion (1) and estimates (3) do not minimize the
error rate, either at the word level or at the acoustic vector level. Discrimination is not a
criterion for training the models in a MLE. Consequently, the local probability (3) is not a
good measure for the labeling of a prototype vector y;, i.e., to find the most probable state
given a current input vector and a specified previous state. Indeed, the optimal decision
should be based on the Maximum a Posteriori Probability (MAP), (also referred to here
as the Bayes probability). In that case, the most probable state g(£,5) is defined by

bop = argmax pla(€)|yi, ¢~ (k)] , (4)

and not on the basis of (1).
It is easy to prove that the estimates of the Bayes probabilities in (4) are:

la(lvi a(B)] = (5)

Thus, the optimal criterion, minimizing the decoding error rate at the word or at the frame
level, should be based on the MAP. This assertion and the role of other probabilities used
in stochastic speech recognition were clearly explained in [Nadas et al., 1988]. It was also
shown that the MAP estimate appears safer for the training of speech recognizers when
the language model is poor, e.g., when the a priori word probabilities are poorly estimated.
However, the conclusions of this paper were only valid for isolated word recognition, and
did not apply to local probabilities used in the lower level decoding process (i.e., frame
probabilities used in an HMM for continuous speech recognition).

In the next section it is shown that the output values of an MLP are estimates of MAP-
like probabilities, i.e., (5) (or something more general if there is feedback from higher layers
to the input field). Using an MLP with this feedback and extending the input field to
include context, output probabilities can be generated which depend on a fixed temporal

window on both states and observations. These requirements were explained in [Poritz,
1988).

3 Statistical Inference in Multilayer Perceptrons

Let g(k), with k = 1,..., K, be the output units of an MLP associated with different
classes (each of them corresponding to a particular state of Q). Assume that the training
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is performed on a sequence of N vector quantized inputs {y;,,...,yiy} Where y;, € Y.
The training of the MLP parameters is usually based on the minimization of the following
mean square criterion (LMSE):

- %z_; Z (in, k) — d(in, ) (6)

where ¢(in, k) represents the output value of unit & given y;, at the input and d(i,, k)
is the associated target value and is equal to i (Kronecker delta) if the input is known
to belong to class g(£). Multiple presentations of the same current prototype are not
necessarily associated with the same class (inconsistent training). Expanding summations
to collect all terms depending on the same y;, (6) can be rewritten as:

=135 3 na o0 - diOF 7

where n; represents the number of times y; has been classified as having been generated
from ¢(k). Thus, whatever the MLP topology is, e.g., the number of its hidden layers and
of units per layer, the optimal output values gopn (7, k) are obtained by canceling the partial
derivative of F versus g(i,k). It can easily be proved that, doing so, the optimal values
for the outputs are then

. Tk
gopt (z? k) — E{\’ Ln . ? (8)
=1""

which are the estimates of the Bayes probabilities (5) (not including transition probabil-
ities). However, these optimal values can only be reached if the MLP contains enough
parameters, does not get stuck into a local minimum during the training, and is trained
long enough to reach the minimum.

These results follow directly from the minimized criterion, not from the topology of
the model. In fact, the same optimal values (8) may also result from other criteria, such
as the entropy or relative entropy of the targets with respect to the output [Bourlard &
Wellekens, 1989b]. This solution, obtained by cancelling the partial derivative of the error
criterion (LMSE or entropy) versus the output vector g, is the optimal set of values that
could be reached by the algorithm actually used for the training of the MLP, the error
back-propagation algorithm (EBP). In this procedure, a gradient estimate is used to cancel
the partial derivatives of the error versus the weight parameters W.

Indeed: 9E 5
t g
dwi; Vob " Ow;;
where t signifies the transpose operation. Thus, a minimum in the output space (V,E = 0)
is also a minimum in the parameter space (0E [dw;; = 0, Vi,7). However, it is also clear
that E/0w;; = 0, V1,7, does not necessarily lead to V,E = 0 which then implies that
the network has converged to a local minimum of the error function. In this case, the
outputs will not be the MAP probabilities. In fact, it is no longer guaranteed that the
output values will look like probabilities, e.g., that they sum up to unity. An elegant way
to circumvent that problem is to replace the classical sigmoidal function applied at the
output units by a “softmax” function [Bridle, 1989] defined, for any ¢, as:

y V4,7,

ezlik)

g(z: k) Zt_b:] e::(i,!) ? ( )
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where z(i, k) is the output value of unit k before the nonlinearity for an input y;. This
function generalizes the sigmoid and has a nice relationship with the Gibbs distribution
[Bridle, 1989].

For these experiments we have used a discrete-input MLP for classification with “one-
from-K coding”, i.e., one output for each class, with all targets zero except for the correct
class where it is unity. If there are enough parameters in the system and if the training
does not get stuck in a local minimum, the output values of the MLP will approximate
the a posteriori probabilities (Bayes probabilities). Section 4 will show some empirical
evidence for this assertion.

This conclusion can also be generalized to continuous inputs. It is known by regression
theory that an LMSE criterion (as well as other criteria , including the entropy) converges,
if there is enough training data, to the conditional expectation of the output given the
input. That is, the estimate will converge to E[d(t)|v(t)], where v(t) stands for the input
vector at time ¢ and d(t) the associated desired output. In classification mode, as d(t)
is a “one-from-K coding”, we have then E[d(t)|v(t)] = P[d(t)|v(2)], i.e., the probability
distribution over classes conditioned on the input.

Since these results are independent of the topology of the models, they remain valid
for linear discriminant functions. In practice, performance is limited by the number of
parameters, so it is not guaranteed that the optimal values (equation 8) can be reached
(even if we can escape from local minima). However, it can be shown [Devijver & Kittler,
1982, see pages 171-172] that the discriminant functions obtained by minimizing a LMSE
criterion retains the essential property of being the best approximation, in the sense of
mean-square-error, to the Bayes probabilities.

4 Classification at the frame level

As shown in Section 3, the MLP can at best approximate Bayes (MAP) probabilities. The
only potential advantage of using an MLP instead of counting as in (5) is for interpolated
estimates when there is insufficient training data for the input space, e.g., when the input
is highly-dimensioned through the use of multiple frames as contextual input. This fact is
clearly illustrated in the following experiments.

Two databases have been considered. The first one is a German database and 1s speaker
dependent. It will be referred as the SPICOS data base. The second is a DARPA database
and is speaker independent. It will be referred as the TIMIT data base.

4.1 SPICOS data base

Two independent sets of vocabularies for training and test are used. The characteristics
of the acoustic analysis are:

e 16kHz sampling rate,
e 512-point FFT in a 10-ms frame rate with 25-ms windows,
o ’'mel-scale’-dependent cepstral smoothing of spectra,

¢ 30 sample points of smoothed, 'mel-scaled’ logarithmic spectra and the intensity
value.



training set
26767 patterns

fest set
27702 patterns

Full Gaussian 65.1 64.9
MLE 45.9 44 .8
MAP 53.8 53.0

Table I: Classification rates at the frame level on SPICOS by standard approaches

The training data-set consists of two sessions of 100 German sentences per speaker.
These sentences are representative of the phoneme distribution in the German language
and include 2430 phonemes in each session. These 2 sessions of 100 sentences are phonet-
ically segmented on the basis of 50 phonemes. However, as the segmentation of the test
set is not available, only the first session of the training set was used for training the MLP
while the other one was used for testing the generalization capabilities and was also used
as the stopping criterion (cross validation). The lexicon words of that database were not
available.

The test set comsists of one session of 200 sentences per speaker. The recognition
vocabulary contains 918 words, including the ’silence’ word. The overlap between training
and recognition is 51 words, which are mostly articles, prepositions and other structural
words.

The acoustic vectors were coded using an alphabet of 132 prototype-vector labels.
These prototype vectors were calculated from the training data by using a standard cluster-
analysis technique (K-means).

Vector-quantized mel cepstra were used as binary input to a hidden layer. Multiple
input frames provided context to the network. While the size of the output layer was kept
fixed at 50 units, corresponding to the 50 phonemes to be recognized, the width of the
contextual input and the number of hidden units were varied. The acoustic vectors were
coded as one of 132 prototype vectors by a simple binary vector with only one bit ’on’,
so the input field contained 132 x a bits where a represents the number of frames in the
input field. In that case, the total number of possible inputs is equal to 132%. There were
26767 training patterns and 26702 independent test patterns. Of course, in the case of
contextual inputs, this represented only a small fraction of the possible inputs, so that
generalization was potentially difficult.

Training was done by an "error-back-propagation” algorithm, first minimizing an en-
tropy criterion [Hinton, 1987; Solla, 1988] and then the standard least-mean-square error
[Rumelhart et al, 1986]. In each iteration, the complete training set was presented, and
the parameters were updated after each training pattern. To avoid overtraining of the
MLP, improvement on the test set was checked after each iteration [Morgan & Bourlard,
1989]. If the classification rate on the test set was decreasing, the adaptation parameter
of the gradient was also decreased; otherwise, it was kept constant. This test set stopping
criterion was also used to determine when to switch the error measure from entropy to
least-mean-square.

For comparison with classical approaches, results obtained with a Gaussian classifier
described by a full covariance matrix for each class are given in Table I (*Full Gaussian®).
In this case the results are very good, perhaps because the continuous mel-cepstra are



training set test set

26767 patterns | 27702 patterns
MLE 45.9 44.8
MLP5x132-20-50 65.5 59.0
outputs/priors 60.2 51.7
MLP9x132-5-50 62.8 54.2
outputs/priors 61.5 51.9
MLP9x132-20-50 75.7 62.7
outputs/priors 72.1 57.5
MLP9x132-50-50 86.4 61.4
MLP9x132-200-50 86.9 59.4
MLP9x132-50 76.9 65.0
outputs/priors 67.7 54.5
MLP15x132-50-50 83.6 64.2
outputs/priors 86.8 64.9
MLP21 x132-20-50 93.0 64.0
outputs/priors 89.7 59.1
MLP21x132-50-50 95.0 67.7
outputs/priors 95.4 66.1
MLP21x132-50 92.6 68.6
outputs/priors 87.8 62.7
MLP25x132-20-50 92.8 62.7

Table II: Classification rates at the frame level on SPICOS for different MLPs

classified directly without losing any information through the vector quantization process.
In Table I, results obtained with Maximum Likelihood Estimates (MLE) and Maximum
a Posteriori (MAP) probabilities are also given. In those cases, the parameters have
been obtained by standard methods for estimating discrete probabilities (i.e., simply by
counting). Since we know the phonemic transcription and segmentation of the training
set, we can count the frequencies F(i, 5) of observation of label 7, z = 1,...,132 within a
phoneme 3, j =1,...,50.

The MLE of phoneme j is then given by:

F(i,7)
N;

p(ils) =
where N; is the overall frequency of phoneme j, and the MAP is:

F(i,j)
N;

p(jle) =

where IV; is the overall frequency of prototype 7 in the training set.

Results obtained from different architectures of MLP are given in Table II. In that
Table, “MLPaxb-c-d” stands for an MLP with a blocs of b (binary) input units, ¢ hidden
units and d output units. For Spicos, the size of the output layer is kept fixed at 50 units,
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| # hidden units | # parameters/ # training patterns | training test
MLP9x132-5-50 - 23 62.8 (1.010) [ 54.2 (1.012)
MLP9x 132-20-50 93 75.7 (1.030) | 62.7 (1.035)
MLP9x 132-50-50 2.31 86.4 (1.018) | 61.4 (1.000)
MLP9x 132-200-50 9.3 86.9 (1.053) | 59.4 (0.995)

MLE .25 45.9 44.8

MAP 25 53.8 53.0
50 NCI .34 53.5 (1.011) | 52.7 (1.012)

Table III: Classification rates and MAP approximation at the frame level on SPICOS

corresponding to the 50 phonemes to be recognized. For the binary input case, b is the
number of prototype vectors (132 for Spicos). If ¢ is missing, there are no hidden units.
Results reported in Table II clearly show that it is possible to improve the classification
rates (at the frame level) obtained by classical approaches (e.g. MLE) by providing context
to the network, which seems to be one of the potential advantages of the MLP. For simple
relative frequency (counting) methods, it is not possible to use contextual information,
because the number of parameters to be learned would be too large. Therefore, in Table
I .and MLE in Table II, the input field was restricted to a single frame. This restriction
explains why the Bayes classifier (MAP, in Table I), which is inherently optimal for a given
pattern classification problem, is shown in Table II yielding a lower performance than
the potentially suboptimal MLPs. Frame performance is also shown for the cases where
the MLP outputs were divided by the respective a priori class probabilities. While this
generally degraded classification performance, we believed that it might lead to improved
word recognition. This was later verified, as described in a later section.

An interesting empirical question was whether the MLP was indeed able to approximate
Bayes probabilities at the output (proved theoretically in [Bourlard & Wellekens, 1989b] ).
We have compared the results obtained with a fixed contextual input window (9 frames)
for a hidden layer which varied from 5 to 200 units (Table III). The line denoted “50 NCI”
stands for the results obtained from the training of a MLP with 50 hidden units and no
contextual input (only the current acoustic vector coded by 132 input units). The mean
of the error between the “ 50 NCI” output values and the actual MAPs (which can be
obtained by counting) are, for the training and the test sets, equal to 2.78 x 10~* and
2.93 x 10~* respectively. The standard deviation was 1.15 X 10~2 in both cases, which
leads to the confidence interval:

P(|lg(z, k) — p(g|y:)| > 0.04) < 0.001 ,

using the standard assumption of normality.

In Table III, the numbers in parentheses give the average sum, over all the training
or test patterns, of the MLP output values. Since these outputs approximate MAP, their
sum is approximately unity. It can also be observed that the MLP solution converges
to the optimal MAP performance (53.5 and 53.8 for the training set and 52.7 and 53.0
for the test set). Again, the average sums of the output values are very close to unity.
All these results clearly suggest that the training did not get stuck in a very suboptimal
local minimum (since the optimal global minimum can be proven to correspond to Bayes
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probabilities at the output of the MLP). Therefore, an MLP can be useful in estimating
Bayes probabilities associated with acoustic vectors in a temporal context which is too
large for the training of a classical HMM.

It is also interesting to notice that large values for the parameterization ratio (# pa-
rameters / # training measurements) only corresponded to a slight degradation of gener-
alization performance (3.3% over a factor of 10 in number of parameters). The iterative
estimation process was stopped when generalization degraded for an independent data set
(cross-validation) [Morgan & Bourlard, 1989], which explains the insensitivity of test set
classification scores to the net size.

It can be observed in Table II that the best results are sometimes obtained with no
hidden layer. We also wished to learn if the sigmoid function at the output was useful
or not. Without this nonlinearity the MLP would reduce to simple linear discriminant
functions. We wanted to observe the effect of reducing the strong discrimination due to
the sigmoid function which approximates a logical decision. Accordingly, we trained one of
the best MLPs (with 9 contextual input frames) with a linear function at the output. Two
results are reported in Table IV: “LMLP9x132-50” stands for the MLP with no hidden
units and linear outputs, “LCMLP9x132-20-50” stands for the MLP with 20 hidden units
with linear outputs and the desired outputs that correspond to the confusion between
classes (e.g,. 0.9 for the correct class, 0.6 for the classes which are close to the good one
and 0.1 for the others). For comparison, Table IV also shows some results obtained with
standard MLPs of Table II: MLP9x132-50 and MLP9x 132-20-50.

It can be observed in Table IV that, for these preliminary experiments, the classification
results at the frame level are worse than for the nonlinear case. This is probably because
we no longer approximate the perceptron when the sigmoidal function is removed from the
output; i.e., we no longer minimize the number of errors but simply a standard least square
criterion. This can be seen by comparing “MLP9x132-50” and “LMLP9x132-50", where
the only difference is the presence or absence of the output sigmoid. It is also important
to notice that the result reported in “LMLP9x132-50” is probably a good approximation
to the optimal linear discriminant since we are minimizing a standard quadratic function
that has no local minima. The training is also faster.

Finally, we did a few preliminary experiments using continuous-valued inputs from
the same Spicos data base. As we knew that the training of a standard MLP by error
back-propagation was comparatively slow with continuous-valued cepstral input vectors,
we only tried this for single-frame (no context) input. Results are reported in Table V:

training set test set

26767 patterns | 27702 patterns
LMLP9x132-50 57.2 52.3
MLP9x132-50 76.9 65.0
LCMLP9x132-20-50 54.2 50.5
MLP9x132-20-50 75.7 62.7

Table IV: Classification rates at the frame level on SPICOS with linear and nonlinear
outputs



training set test set
26767 patterns | 27702 patterns

MLP1x31-50 34.6 33.8
MLP1x31-132-50 58.8 56.6
MAP 53.8 53.0
MLP9x132-5-50 62.8 54.2

Table V: Classification rates at the frame level on SPICOS with continuous inputs

“MLP1x31-50” stands for an MLP with one 31-dimensional cepstral vector at the input,
no hidden units and the classical sigmoid function at the output. The results are very bad,
probably because we are limited to 50 linear functions in a small input space.

The results denoted “MLP1x31-132-50” are more promising and were produced in an
experiment inspired by radial basis function theory [Broomhead & Lowe, 1988; Niranjan
& Fallside, 1988]. The function computed by the hidden units was replaced by a well-
defined continuous function (e.g., a Gaussian function), and the error back-propagation
was modified accordingly. Such an MLP can generate any kind of dichotomies if there
are enough hidden units. To test the potential advantage of continuous inputs versus
discrete ones, we needed to compare two systems with the same number of parameters.
The MLP incorporated 31 continuous inputs corresponding to one 10-ms cepstral vector,
132 hidden units and 50 classical output units. If c;x represents the k-th component of the
i-th prototype vector (as used for quantization in the previous experiments), the weights
w;r between input units ¥ and hidden unit ¢ was fixed to ¢;x. If z = (€1, 8x); K =31,
1s the input cepstral vector, the activation value of hidden unit ¢ was defined as:

K
hi = exp(— ) (wix — zx)?) .

k=1

From these activations, the hidden-output weights were trained using the same EBP al-
gorithm. However, as the function on the hidden unit is continuous, it is clear that the
input-hidden weights could also be trained by a simple modification of the learning algo-
rithm. However, in this preliminary test, the input-hidden weights were kept fixed to the
prototype vectors, so that the second layer optimized the classification using the distances
between the input vector and the 132 prototypes. It is thus a kind of "generalized“ quan-
tization where we keep all the distances instead of considering only the closest prototype.
In spite of the fact that the system has no more parameters than a classical MAP classifier
(132 prototype vectors and 132 x 50 real values, e.g., discrete emission probabilities), it can
be seen in Table V that it yields better classification rates. Those results obtained with a
single, but continuous, input frame are even quite equivalent to the results obtained for an
MLP with similar parameters but with discrete and contextual inputs (MLP9x132-5-50).
Of course, the continuous input case could be improved by adding contextual information
and training the first layer too (which corresponds to the training of the prototype vectors
in order to optimize the performance of the last layer).
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| | training | test | validation |

MLP1x562-60 | 41.4 (1.176) | 36.1 (1.116) | 37.3 (1.129)

MLP7x562-60 | 69.8 (1.043) [ 40.3 (0.998) | 40.9 (0.960)
MLE 36.0 29.2 30.2
MAP 42.2 36.4 38.2

Table VI: Classification rates at the frame level on TIMIT data base

4.2 TIMIT data base

In a further set of experiments, we attempted speaker-independent continuous speech
recognition using the SRI discrete features extracted at SRI from the TIMIT data base
[Murveit & Weintraub, 1988]. Each acoustic vector was described by 4 features, the
mel-cepstrum (f;), the delta mel-cepstrum (f2), the energy (fs) and the delta energy
(f1). These features are independently described by 256, 256, 25 and 25 prototypes,
respectively. Even without contextual information from the input field, it is impossible to
directly estimate the probability of observing a set of 4 features given a class (or a state)
gr without any independence assumption (as there are 256 x 256 x 25 x 25 or 4 x 107
possible inputs). Therefore, assuming independence, the joint probability estimate is

P(fhf?: f31f4|gk) = Hp(fllqk) $ (10)

i=1

Using Bayes’ rule, the MAP estimate can then be calculated:

. iz p(filar)-plgx)
p((qklflsf21f3af4) = P(fl,fzafs,fq) . (11)

If we now consider an MLP with four input groups, each of them coding a particular
feature (256 4+ 256 + 25 + 25 = 562 input units), the k — th output will approximate, in
theory, the MAP probability p(qx|f1, fz, f3, fa) without any independence assumption.

Preliminary results are reported in Table VI where classification rates obtained from
MLE (equation 10), MAP estimates (equation 11, i.e. under the hypothesis of indepen-
dence of the 4 features) and MLPs (no independence assumption) are compared. The
TIMIT data base was described using 60 phonemes. “MLP1x562-60" and “MLP7x562-
60” stand for MLPs with one input frame (no contextual information) and seven input
frames, respectively. For the training of this data base, the crossvalidation technique al-
ready used on SPICOS was extended by splitting the data in three parts: one for the
training, one for the test and a third one absolutely independent of the training procedure
for validation. As reported in Table VI, no significant difference was observed between
classification rates for the test and validation data.

The classification rates obtained from the MAP estimated by (11) are similar to those
obtained with the MLP without contextual input (1 x 562 - 60). This suggests that there
is not enough class-dependent correlation of the input features to make a difference in the
recognition scores. However, it is also true that the training procedure is not guaranteed
to reach the optimal solution. If some contextual information (7 x 562 - 60) is added ,
the network performance is somewhat better. As in Table I, the numbers in parentheses
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give the average sum, over the training set, test set or validation set, of the output values.
Again, these values are very close to unity.

5 Integrating an MLP into an HMM

In the experiments described in the previous Sections, each acoustic vector was classified
independently of the preceding classifications; the sequential character of the speech signal
was not modeled, except in the sense of the time-space mapping which was done to use
the context of multiple time frames in the classification of each frame. The system has no
short-term memory from one classification to the next one, and successive classifications
may be contradictory. As shown by both the theoretical and experimental results above,
MLP output values may be considered to be MAP probabilities for pattern classification.
Either these, or some other related quantity (such as the output normalized by the prior
probability of the corresponding class) may be used in the Viterbi search (DTW) to de-
termine the best time-warped succession of states (speech sounds) to explain the observed
speech measurements. This hybrid approach (MLP to estimate probabilities, HMM to
incorporate them to segment continuous speech into a succession of words) has the poten-
tial of exploiting the interpolating capabilities of MLPs while using the DTW procedure
to capture the dynamics of speech. We know of no one else who has been successful at
using this or any other method to recognize large-vocabulary continuous speech (at least
1000 words) with an MLP at an accuracy as good as that of conventional statistical sys-
tems. Nonetheless, it is likely that any successful effort of this sort must make use of some
method (such as the DTW) to recognize the succession of states which comprises an entire
continuous utterance.

Thus, a feedforward MLP can be used to estimate the emission probabilities of an
HMM. When recurrent connections are added to the MLP, state transition probabilities
may also be incorporated. Several recurrent networks have already been proposed for
speech recognition. In [Prager et al., 1986], a particular Boltzmann machine dealing with
sequential inputs was defined where some of the hidden units, called “carry units”, were
supplied as extra inputs with the purpose of generating a time dynamic. In [Watrous &
Shastri, 1987], sequential processing is obtained with the “temporal flow model”. Delayed
self-loops are added to the hidden and output units of the MLP. The system described
in [Elman, 1988] is also an alternative implementation of this network in which the out-
put self-loops are eliminated, and where the delayed hidden unit values are fed back as
supplementary input units. Feedback is easily implemented by extending the input field
with an additional vector containing the hidden unit values generated by the preceding
input frame. All these machines can be referred as “hidden-to-input feedback” models.
Approximation of these recurrent networks over a finite time period has been presented in
[Waibel et al., 1988]. In that case, the loops at each layer are replaced by the explicit use of
several preceding activation values. The activations in each non-input layer are computed
from the current and multiple delayed values of the preceding layer.

In the HMM formalism, the speech signal is modeled as being produced by a (first
order) Markov source for which the probability of reaching a particular state depends
entirely on the previous state and on the observed acoustic vectors associated with the
speech time slots. In this framework, it can be shown [Bourlard & Wellekens, 1989b] that
local contributions as (5) can be generated by an MLP feeding back to the input field, the
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output values associated with the previous input frame. Canceling the partial derivative
of the associated LMSE criterion with respect to the outputs leads to the estimates given
in (5) which take the transition probabilities into account. The basic architecture of the
corresponding MLP (using contextual information for the input acoustic vectors) is similar
in design to the net developed in [Jordan, 1986] to produce output pattern sequences.
It can be referred as an “output-to-input-feedback” model. Again, the génerated local
contributions can be used in a DT'W process to achieve a global discriminant recognition.
A straightforward generalization can be made to more general or high order Markov models
by replicating outputs corresponding to several previous frames in the input field. Another
way to take account of previous decisions is to represent, in the same extra input vector, a
weighted sum (e.g. exponentially decreasing with time) of the preceding outputs [Jordan,
1986]. This can be achieved by adding a self-loop on the fed-back units with a scalar
weight u, with 0 < g < 1. The k — th output unit will then estimate the a posteriori
probability of state g(k) given the current input vector and given the probabilities that
previous vectors were classified into ¢(¢), £ =1,..., K.

The main advantage of the “output-to-input-feedback” topology, when compared with
other recurrent models proposed for sequential processing [Elman, 1988; Watrous, 1987],
besides the possible interpretation in terms of HMM, is the control of the information fed
back during the training. Indeed, since the training data consists of consecutive labeled
speech frames, the correct sequence of output states is known and the training is supervised
by providing the correct information. All of these recurrent nets can be interpreted in terms
of state space equations of “nonlinear” control theory [Robinson & Fallside, 1987].

6 Recognition at the word level

6.1 Algorithm

After training the MLP, each output unit is associated with a particular phoneme. As
described above and in [Bourlard et al, 1989], the activation value of an output unit k
for a given input y will be the estimate of p(g(k)|y). These outputs (or their logarithms)
can be used in a classical one-stage DTW [Ney, 1984] for connected speech recognition
in the same way as the local contributions (5) of a discrete discriminant HMM. If the
MLP has been trained for phonemic labeling (each output of the MLP is associated with
a phoneme or a state of a phonemic HMM), “word models” can be build along the vertical
axis of a DTW table by concatenating the outputs of their constituting phonemes. The
horizontal axis then corresponds to the time ordering of the acoustic vectors. The DTW
table then defines a set of grid points (z,£,w) associated with time slot ¢ of the speech
signal (¢ = 1,...,N) and state q(j,(w)) with £ = 1,..., L, and where j,(w) is the index
of the ¢-th state in word w.

The local DTW contributions (the emission probabilities of the HMMs) are computed
for all states by a single calculation of the MLP outputs per time slot (e.g., 10 msec)
of the speech signal. Then, using the technique of dynamic programming [Ney, 1984],
we seek, among the paths starting from grid points (1,1,w) and arriving at (N, Ly, w),
Yw = 1,...,S5 (S = size of the lexicon), that path which provides the smallest accumulated
“distance” G(N, Ly, w). This “distance”, alternatively referred to as a matching score, is
associated with the best path and defines the optimal word sequence. These accumulated
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distances are obtained by the following recurrences:
G(i,l,w) = Iﬂcl}ﬂ {G(z —1,k,w) — In[g(z, k, je(w))]}
within a word model, and:

G(i,1,w) = min {6(i 1, Lo, ') — gy — In[g(i z,, (w), jr())]}

between word models, where {k} and {w'} respectively stand for the set of possible prede-
cessor states of ¢j,() and possible predecessor words of w. The term — lnp; in the second
equation stands for the word transition penalty chosen to minimize the number of errors.
The best path is recovered by backtracking through the DTW table.

If a recurrent MLP is used to generate local contributions as in (5), taking the transition
probabilities into account, some modifications of the dynamic programming procedure are
necessary and have been explained in [Bourlard & Wellekens, 1988].

6.2 Results

Table VII shows the word level performance using a simple HMM with a single state
type per phoneme, duration being modeled by concatenating such states into a chain half
as long as the number of frames in the average length of the phoneme, with a self-loop
and forward transition of a fixed arbitrary probability (.4 for the self-loop and .6 for the
forward transition). The performance for the best of the cases is roughly comparable with
the standard MLE. “MLPaxb-c-d/MLE” stands for the outputs divided by the priors
(which essentially estimates the MLE). “MLPaxb-c-d/MAP ” means there has been no
division by the priors. The word transition penalties have been optimized empirically on
the test set (first 100 sentences) and appear to generalize well to the second set of 100
sentences. The number in the parentheses is the value of the optimal word transition
probability. It appears (from our experimental results) that the severity of this penalty
must be increased for larger input context. Note also that the validation set performance,
shown here for the classical MLE case and for one of the best MLPs, was not substantially
different from the test set performance.

Table VIII shows the results of an additional experiment in which we did not optimize
the word transition penalty but instead scaled -ln(output values) between [0,1000]. In
other words, an output z = —In(voutput|o]) is transformed into 1000&%. In that
way, the values in the DTW are bounded and it is easier to fix a good word transition
penalty (in our case, 1000). As we had learned that MLE appears to give better word
recognition performance than MAP, we only tried the MLE for 1, 3 and 9 input frames.

| test I validation |

MLP9x132-20-50/MLE | 51.9 (10~*) 52.2
MLP9x132-20-50/MAP | 40.9 (10~!*)
MLP9x132-50/MLE | 53.3 (10~4)
MLP1x132-50-50/MLE | 49.7 (10~7)
MLP1x132-50-50/MAP | 27.3 (10~7)
regular MLE 52.6 (1078) 52.5

Table VII: Word recognition rate with the optimized word transition penalties
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| test |

MLP1x132-50-50/MLE | 47.8
MLP3x132-50-50/MLE | 47.1
MLP9x132-20-50/MLE | 45.2

Table VIII: Word recognition rate with output scaling

6.3 Discussion

Although it was clear that classification at the frame and phoneme levels was much better
using an MLP than it was for simple relative-frequency Maximum Likelihood methods,
the recognition of words in continuous speech was not so simply improved. Several modifi-
cations and improvements of the initial ideas were necessary for getting comparable word
recognition performance. The most important modifications were:

e Better training procedure using crossvalidation techniques, in order to avoid over-
training. That has been explained in [Morgan & Bourlard, 1989]

e Division of the output values of the MLP by the a priori probabilities of the classes
as observed on the set training. As shown in the previous Tables, this leads to an
improvement of 10-20 % at the word level.

e Optimization of the transition probabilities of the HMMs depending on the size of
the contextual window at the input to the MLP.

These modifications to our basic methods led to word performance comparable to those
obtained with standard HMM. This progress, as well as the good classification rates at
the frame level, seems to justify our further investigations.

7 Conclusion

It is now clear, both from a theoretical perspective and from empirical measurements,
that the outputs of an MLP (when trained for pattern classification using the mean square
criterion) approximate the MAP probabilities, which are the class probabilities conditioned
on the input. It has also been shown that these estimates, given the use of contextual inputs
to the MLP, lead to frame classification performance which is significantly improved over
the corresponding performance for simple MLE, or even MAP without the benefit of
context (at least for the speech data examined here).

The recognition of words in continuous speech is not yet significantly improved by the
use of an MLP. Dynamic time warping (DTW) for decoding HMM is not only useful in
handling the variability of speech pronunciation, but is also an efficient tool for connected
speech segmentation. This property is difficult to achieve using a "neural” architecture.
Indeed, even assuming a perfect dynamical system taking the complete history into ac-
count, the output of these machines is just the “instantaneous” activation value of each
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output class (e.g. associated with words or phonemes) and does not determine the under-
lying segmentation. For example, with the HMM approach, even if we were able to build
a very high order Markov model, the time warping would still be useful. Thus, avoiding
explicit DTW for a real task continuous speech recognition remains a challenging problem.
On the other hand, it is also questionable whether it is even desirable to replace the DTW
algorithm, as it is well known that this process is very effective, and also has efficient
hardware implementations [Murveit & Brodersen, 1986]. Lippmann & Gold (1987) have
defined a neural net architecture, called the “Viterbi Net”, that can implement a DTW
decoder, but there is no obvious advantage to its use. In short, we have yet to learn how
to incorporate "neural” networks to any advantage in the recognition of words in contin-
uous speech. However, the progress that has been made for the levels which we appear to
understand (e.g., frame classification) seems to justify our further investigation. Further-
more, the good levels of word recognition performance reported here suggest the viability
of MLP methods when used in the context of an HMM speech recognition system.
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