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Abstract

The pros and cons of the backpropagation learning procedure have been the subject of
numerous debates recently. Some point out its promise as a powerful instrument for finding
the weights in a connectionist network appropriate to a given problem, and the generalizability
of the solution to novel patterns. Others claim that it is an algorithm for fitting data to a
function by error correction through gradient descent. The arguments in this paper focus on
the latter (curve-fitting) point of view, but take the point of view that the power of back
propagation comes from carefully choosing the form of the function to be fit. This amounts
to choosing the architecture and the activation functions of the units (nodes) in the net. A
discussion of the role of these two network features motivates two conjectures identifying the
form of the squashing function as an important factor in the process. Some preliminary
simulations in support of these conjectures are presented.






Introduction

Among the principal distinguishing and exciting features of connectionist networks is their capacity for learning.
The tendency for these networks to generalize from a limited set of training data to novel stimuli in interesting ways has
attracted considerable attention. However, while the connectionist literature contains dozens of examples of generaliza-
tion, the phenomenon remains poorly understood. Since there is no consensus on the definition of good or appropriate
generalization it comes as no surprise that the issue of whether a particular network generalizes "well” or "appropriately”
is frequently the subject of debate.

Consider the task of trying to find a "rule” underlying the correlations among some set of data. Assuming the data
can be coded quantitatively, this can be cast as a curve fitting task, which depends on choosing an appropriate form for
the function (linear, polynomial, Gaussian, etc.). Usually, this choice is motivated by considerations of mathematical sim-
plicity and by an understanding of the domain of the data. An additional factor particular to connectionist models is the
compatibility of the rule with the framework of formal neural networks; that is, it must be possible to realize the rule as
a network. Typically, the parameters of the system subject to adaptive modification are the weights between nodes.! Con-
nectionist networks tend to generalize well, relative to more "brittle" symbolic systems. If for no other reason, this is
because, rather than process a set of symbols, which the system may not be equipped to handle, a network computes a
vector function, parametrized by the weights, from any vector pattern given as input. Thus, given a novel input, a net-
work always computes an output; this is not a general guarantee of symbol manipulating systems. Of course, the ability
to produce an output for any input is not sufficient, in itself, to give appropriate forms of generalization. Other important
factors include an appropriate choice of coding for the input and output pattems and careful designing of the network
architecture.

This report presents two conjectures regarding the development of intenal representations, which are supported by
motivating arguments and some simulations on small networks.

Background

Back propagation
Error correction by back propagation of error (backprop or BP), as described by Rumelhart, Hinton, and Williams

(1986), has certainly been applied to a wider variety of generalization tasks and with greater success than any other con-
nectionist learning procedure, and has performed well against standard (i.e. non-neural) state-of-the-art techniques, as
well. Hence, this report is focused on the BP algorithm; but it should be noted that BP is an example of a more gencral
set of parameter fitting algorithms, to which this work applies. Since the description will involve certain details of the
algorithm, a synopsis of BP follows; this will serve to define the notation used throughout the report. The BP algorithm
is used to incrementally modify the weights in a feed-forward net, such that, for any of a given set of input patterns
5182 -+« S¥ the net will produce the corresponding output pattern T®. Each step of the modification, or training, pro-
cess, consists of three stages: selection of a pattern pair o, computing the network’s response to s% and modifying the
weights. The training environment E consists of the set of all the pattern pairs §%7* and a probability density across
them, In this discussion, only finite, discrete pattern sets will be considered. Let p(ct) denote the probability of pattern
pair c.

i
Network architectures will be specified by listing the fan-in set Fi(i) of every non-input unit, i, the set of input
units, In, and the set of output units, Out. In addition, it is useful to define the fan-out set, Fo(i) of units which are
activated by unit i, Each unit in this discussion is assumed to be a semi-linear unit; that is, each unit computes a lincar
sum x;, of its inputs, and passes it through a nonlinear function o;, to generate its own activity value r;:

IThe parameters which are adaptively modified by such a process in a connectionist network can be classified by their order, defined here as the
number of nodes directly interacting with the parameter. Thus, for example, a connection strength (i.c., a weight) is of order 2, the bias value used by
Rumelhart, Hinton, and McClelland (1986) would be of order 1, a sigma-pi unit (Rumelhart, Hinton, and Williams, 1986) is of order 3, and any global
parameter would be of order 0.

2t should be noted that the back propagation procedure does not have a single author. Rosenblatt (1962) alluded to a procedure for multilayer net-
works involving "error propagation”. Werbos (1974) devised the algorithm, but his work was not widely recognized for its potential and was thus ig-
nored. Independent developments came over a decade later by Parker (1985) and by Rumelhart, Hinton, and Williams (1986); the latter received much
more attention than the prior developments, probably because it was published in the context of a broad approach to cognition.
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The function o;, is typically a monotonic function, mapping the real numbers onto a bounded interval; for this reason, it
is known as the "squashing" function for unit . It is a bit unorthodox to use different squashing functions for units within
the same network, but such configurations will be considered in this report, for reasons which will become clear.

Each step in the BP algorithm consists of four phases: pattem selection, forward propagation of activity, backward
propagation of error, and modification of connection weights. Selection of a pattern pair « is i.i.d. with each step from
the environment E. The input portion of the pair, S drives the input units, and activity propagates forward through the
network in accordance with Eq.[1]. The procedure for error computation and back-propagation is driven by a gradient
descent approach; that is a formula for the change of each weight value is calculated as the negative of the gradient of
the error E* for pattern pair o Thus, the change induced by pattern pair ¢, is given by
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where € is a small number (usually less than, or equal to, 0.1), and where the following formula for E* will be assumed:

E“=Z(T?"'?)2 [3]
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Equations [2] and [3] are sufficient to compute the change for each weight in the network. The back-propagation algo-
rithm is a technique by which an "effective error” §; can be computed for each unit, i, This quantity is computed for the
output units as the product difference of the desired output 7§ and the actual response r{', multiplied by the derivative of
the squashing function with respect to the current value of xi*. For the other units in the network, §; is computed by sum-
ming the effective errors of its fan-out and multiplying by o’ {x{):
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After the effective errors have been computed, the modification of weights is implemented in analogy to the Perceptron
leaming rule for single layer networks, in which the output units are activated directly by the input units (Rosenblatt,
1962), and the weights are modified in proportion to the product of the error in the output unit and the activity of the
input unit.

AWy =€ 8¢ rf (5]

Generalization

Underlying the notion of generalization is the assumption that the example pairs in the training environment E fol-
low some lawful relation. An important feature of connectionist nets is that they will always generalize; that is, having
reduced the error across E to some proscribed criterion, a lawful relation is defined by the network, which will produce
some output pattern for any novel input. The question, then, is whether the relation found by the network matches the
relation that exists in the world. An example from the curve-fitting analogy is to find a mathematical relation between
the variables x and y, given the example (x,y) pairs (0,0) and (1,1). Even if we restrict the possible solutions 10 power
laws, anything of the form y=x?, for p>0, is a correct solution. An example from Boolean algebra would be to complete
the truth table (p.g)—r, given the examples (0,0)-0, (0,1)—1, and (1,0)—1. Generalizing these examples to the estimate



(1,1)>1 completes the OR rule, and the estimate (1,1)—0 gives the EXCLUSIVE OR rule. Both of these examples
illustrate the notion that there is not an objectively correct solution to a generalization problem; the test is whether the
solution works.

The feature of BP networks most associated with generalization is an aspect of the architecture known as a
bottleneck. Let a bottleneck be defined as a pool of units which share identical fan-in and fan-out sets, and for which
the number of units in the pool is less than the number of units in the fan-in set. Bottlenecks force distributed represen-
tations of the patterns which feed into them from the common fan-in pool.

The use of bottlenecks in connectionist networks began with the description of the encoder architecture by Ackley,

Hinton, and Sejnowski (1985), in which a bottleneck of three units was inserted between the input and output layers.’
The training environment consists of 8 input-output pairs; hence, to succeed, the bottleneck layer must "discover” distinct
representations of the 8 input patterns, such that the output units can discriminate among them. Since the discrimination
is more efficient if the bottleneck representations are well-separated, the units are often driven to high and low values,
and thus the network learns to represent the 8 patterns using a binary code.

Recent work on modifiable architectures has indicated that generalization can be improved by incorporating the
number of bottleneck units and/or connections into the cost function minimized by the network (Rumelhart, 1988). In
this scheme, the number of units in the bottleneck is minimized concurrently with the error, thus fostering distributed
(vis-a-vis local) representations and thereby promoting generalization.

Features in Internal Representations

Hinton (1986) designed a rather elaborate five-layer network to learn kinship relations between the members of a
fictitious pair of family trees. His network uses bottlenecks to force distributed representations of orthogonal input pat-
terns, such that the distributed representations enjoy a similarity structure that allow the mapping problem to be solved.
In his simulations, the individual units in the bottlenecks come to represent features of the input patterns, which are key
to learning the mapping (for example, one unit comes to represent generation and another identifies the branch of the
tree). The development of local feature units is intriguing, for it may bear on the issue of local vs. distributed represen-
tations. Having developed this similarity structure among the patterns, the network is able to generalize its task to
stimulus patterns in novel combinations. For example, if it has been trained that "A is the father of B" and "B is the sis-
ter of C", the network can successfully complete the input "who is the father of C?"

Another example of analyzing the features discovered by bottlenecks is the work of Cottrell, Munro, and Zipser
(1987), who apply an encoder architecture to the problem of image compression to achieve compression on the order of
1 to 2 bits/pixel using encoders with quantized squashing functions. Analysis of the representations at the bottleneck
layer, shows that each unit accounts for a comparable amount of error. On inspection, each bottleneck unit seems be be
tuned to a particular orientation and a particular spatial frequency; curiously, neurons in mammalian visual cortex are
sensitive to these features as well.

Representations in a three layer net: two conjectures

While the above examples indicate a tendency for the units in bottlenecks to pick out identifiable features of the
input patterns, this does not universally occur. In a BP approach to mapping locative expressions (eg. "boat in water")
to spatial relationships (eg. first noun on top of and supported by second noun), it was found (Cosic & Munro, 1988),
that the mapping was successfully leammed, and it generalized well. Since Herskovits (1986) has demonstrated that this
mapping depends on certain features of the nouns’ referents, bottlenecks were included in the network immediately fol-
lowing the noun input patterns, which were orthogonal. It was expected, based on Hinton’s (1986) family trees result,
that units would develop to represent these features if the mapping were successfully learned. However, this was not the

3Ackley, Hinton, and Sejnowski designed the encoder for, and demonstrated it using, the Boltzmann machine. A stochastic network with a
different leaming algorithm. Their work predated Rumelhart, Hinton, and Williams (1986) description of BP, in which they apply BP to the encoder
problem successfully.



case. While nouns whose referents share similar physical features have similar representations at the bottleneck, these
features do not map onto individual units.

Since the absence of microfeatures does not seem to hinder performance, it might be argued that they are inconse-
quential. Some indirect evidence to the contrary is provided in the next section.

The Squashing Function
Consider the squashing function. A common choice is the logistic function L(x):

1
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This function maps the real numbers onto the range [0,1]. This may have important ramifications for representations in
bottlenecks using this squashing function, since the components are restricted to positive values. Thus, the representation
vectors must all lie in the same orthant (the analogy of a 2-D quadrant in multi-dimensional space). In contrast, a linear
transformation of L(x), N(x) : 2L(x) - 1, has [-1,1] as its range. Thus the representation vectors of an n-unit bottleneck
are distributed in a space which is more "open" by a factor of 2% i.e. the number of possible vector directions is multi-
plied by a factor of 2"

This constraint on the set of representations leads to the following two conjectures, for two squashing functions,
and o*, which are arbitrary, subject to the conditions that they are continuous, differentiable, and g:R—[0,1] where
o*=20-1. Note that they need not be monotonic and that 6*:R—[-1,1].

Conjecture 1: Networks with bottlenecks using squashing function ¢ should adapt more slowly with
respect to a fixed criterion than identical networks using ¢*.

Motivation: Since the representations distributed over the region [-1,1]" are more "open" by a factor of
2" than those distributed over the region [0,1]%; i.e. the number of possible vector directions is multi-
plied by a factor of 2". Thus, representations in bottlenecks should be more readily separated if ¢ rather
than o* is used. See Figure 1.

Conjecture 2: Units in bottlenecks using ¢ are expected to show a tendency toward developing local
feature units relative to those using o*.

Motivation: Observe that orthogonal vectors confined to the positive orthant must have zero com-
ponents and hence lie on a boundary of the region, and that if n vectors are chosen in the positive
orthant of n-space, they must lie along the axes. Under the assumption that BP seeks to orthogonalize
distinguishing features of the environment in bottlenecks, these features will show a tendency to lie near
the coordinate axes of the representation space, if the function o is used; these axes correspond to indi-
vidual units.



Figure 1. Allowed vectors in a 2-D representation space. A. The allowed region for vectors using L(x) is shaded with
some sample vectors. B. The allowed region for vectors using N(x) is shaded with some sample vectors. Note that the vec-
tors in A are more similar than those in B, in that the average angle between them is smaller, and hence more resistant to
discrimination.

The Bias Level

A bias parameter is attached to every node in most BP applications. Formally, the bias is equivalent to a weight
from a unit that is always on, with strength B. So, if the bias for unit i is defined to be 6;, we have the following:

% = P0; + Twy 1] [7a]
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The bias unit strength, B, is constant through the network and over time, for a particular simulation. Other models using
the bias parameters 0; have always implicitly assumed B=1. It is introduced here as a parameter of the model to be varied
across different simulations (i.e., like €). Hence, B acts as an constant input component to the fan-out pool of a
bottleneck and, as such, plays a role in determining the similarity structure of the representations at a bottleneck.

Consider, as in Figure 1, a bottleneck consisting of just two units, unit m and unit n. Unit { in the fan-out pool, is
now activated by a three dimensional pattern (r,,s,,8) that is weighted by the corresponding parameters (wim,wi,,0). The
domain of possible patterns in the 3-space defined by units m, n, and the bias, is now restricted to the plane z=B,
bounded by a<r.<b and a<r,<b, where a and b are respectively the lower and upper bounds of the squashing function.
Examples of allowed regions for various a,b,, are shown in Figure 2.

The similarity matrix of the representation vectors is thus related to the values of a,b,andB. Since all regions of
this kind are related by linear scale transformations, the choice of region will not have an effect on certain aspects of the
space. For example, two sets of vectors are linearly separable either for all combinations of these parameters or for none
of them (of course, it is assumed that a<b). However, certain properties of Lhe solution may be subject to influence by
these parameters, as indicated by the two conjectures.
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Figure 2. Regions of allowed pattern vectors. The allowed pattern vectors must reside in a restricted region of (n+1)-space where m is
the number of components in the representation. Here, the vertical axis is the bias dimension, B. The following parameter values are
used in the diagrams: A. B=1, a=-1, b=1. B. =1, a=0, b=1. C. B=0, a=0, b=1. D. =1, a=0.5, b=1.5.

Simulations

Some preliminary simulations have been run, which provide some support for the conjectures. The networks are
strictly layered, with a bottleneck of just two units inserted between the input pool and the output pool. In each case, the
input values and the training values are set at 0 and 1, and so the function L(x) is used as the squashing function by the
output units.* However both L(x) and N(x), as well as a variety of bias values are used for the bottleneck units of each
problem. Figure 3 shows the hidden unit representations formed by a 2-2-2 encoder. The final states show that, for the
simulations using N(x), as the bias strength increases from 0 to 1, the angle between the representation vectors goes from
perpendicular to antiparallel. In three dimensions (counting the bias component), the angle remains roughly perpendicu-
lar. Figure 3D shows the development of representations using L(x); note that the final states are near the axes.

#Following the suggestion of Plaut, Nowlan, and Hinton (1986), the training values are sometimes set at values close to, but inside of, the bounds
of the squashing function.



Figure 3. Bottleneck representations developed by a 2-2-2 encoder. This figure shows the evolution of representations by BP
for L{x) and for various values of the bias using N(x). The axes correspond to activities of the two units in the bottleneck.
The lines are the activity trajectories over time, the small squares are the final states. A. L(x), ﬁ:l. B. N{x), ﬁ=0.1.
N(x), B=0.2. D. N(x), B=1.

In Figure 4, the effect of the squashing function is illustrated. The evolution of representations from three patterns
in a 3-2-3 encoder is traced. In both cases, the patterns are well separated. Note that the representations that develop
under the L(x) function lie at the corners of the quadrant, whereas a different configuration evolves under N(x). This
demonstrates that the representations formed under these two functions are qualitatively distinct; that is, the difference in
the arrangements does not differ by a simple scale factor (even though the transfer functions are linearly related).

Finally, results from two 4-3-6 networks are presented below. The input/output environment is shown in Table 1.
Note that the input patterns are orthogonal, but that output patterns 1 and 2 are quite similar, as are patterns 3 and 4, and
that the two groups are mutually perpendicular. The results of simulations using N(x) and L(x) at the bottleneck are
compiled, in Tables 2 and 3 respectively, after the error has been reduced to a low level.



Table 1. Environment for the 4-3-6 Network Simulations

¢ | Input Pattern Qutput Pattern

1|1 0 0 0|10 10 05 00 0.0 00
20 1 0 005 10 10 00 00 00
3/0 0 1 0|00 00 00 1.0 10 05
4 |0 0 0 100 00 00 05 10 1.0

Table 2. Results from the 4-3-6 network after 1600 iterations using N(x)
Input Bottleneck Qutput Error
1 0.194 0910 -0348 | 0.957 0979 0505 0.017 0.021 0024 | 0.00
2 0851 0.044 0893 | 0.503 0977 0956 0.025 0.023 0020 | 0.00
3 0275 -0.863 0.882 | 0012 0.020 0.029 0961 0980 0504 | 0.00
4 -0.847 -0.868 0.108 | 0.015 0.019 0.019 0503 0981 0964 | 0.00
Total error = 0.01

Table 3. Results from the 4-3-6 network after 2000 iterations using L(x)
Input Bottleneck Qutput Error
1 0909 0042 0.106 | 0917 0976 0525 0.038 0.024 0.009 0.01
2 0953 0782 0.031 | 0.520 0957 0878 0.005 0043 0.070 0.02
3 0046 0.148 0974 | 0.054 0.041 0009 0914 0959 0.509 0.01
4 0.111 0954 0933 | 0004 0.019 0060 0.528 0981 0.920 0.01
Total error = 0.06

Both conjectures are supported by the simulations. Conjecture 1 is supported by the observation that the total error
is higher after more iterations in the L(x) simulation than in the N(x) simulation (both started with the same weights and
parameter settings). Conjecture 2 is supported by analyzing the hidden unit representations. Note that unit 1 and unit 3
in the bottleneck have responses near the ceiling and the floor of L(x), such that unit 1 has become a "feature detector”
for the sibling patterns 1 and 2, and unit 3 has the converse role with the other siblings, pattens 3 and 4. Unit 2 is used
to discriminate between patterns within a pair. The bottleneck units in the N(x) simulation don’t exhibit this quality of
flagging specific features so clearly, although units 2 and 3 seem to show a tendency in this direction.

Future directions

Representations

An analysis of several network architectures and pattern environments is planned, specifically, but not exclusively
including evaluation of the representations developed under various squashing functions and parameters (eg. the bias
strength). While the verification of Conjecture 2 may seem inconsequential to the function of connectionist nets, it
would have the following ramifications. First, it would lead to a more complete understanding of the learning process in
multilayer networks of nonlinear units. Second, a recipe for producing feature detecting units would be a useful tool for
research and development in neural networks. Third, further substantiation of Conjecture 2 (either analytical or empiri-
cal) may integrate two phenomena from neurobiology: (a) Every neuron acts in a purely inhibitory or excitatory fashion
-- that is representations must lie within a particular orthant, and (b) neurons with identifiable trigger features abound, at
least in sensory cortex.



Figure 4. Bottleneck representations developed by a 3-2-3 encoder. This figure shows the evolution of representations by BP
for A. L(x) and B. N(x). See text for description.

Generalization

Various factors, such as weight decay (Plaut, Nowlan, and Hinton, 1986) have been shown to have an effect on
generalization. Recent experiments using minimization of the bottleneck have also shown promise (Rumelhart, 1988).
Another direction for future work will be to establish a relation between generalization and some factors which have not
yet been analyzed in this context, such as bias strength and bounds on the squashing function. Analysis of these particu-
lar parameters is motivated by the arguments and preliminary studies presented in support of the two conjectures. Since
generalization seems to be strongly related to internal representations, it is difficult to imagine studying one without the
other. :

Another aspect of learning, which may bear on the issue of generalization, is the order of pattern presentation. In a
typical simulation, patterns are presented to networks randomly, independent of the previously presented pattern (exclud-
ing networks trained on sequences). This may lead toward the development of a network that could influence its environ-
ment, such that it could dynamically alter the probability distribution for the presentations. A simple example would be
to allow the network to have a stimulus repeated under certain conditions (if it gave a particularly high error, for exam-
ple). Networks with such an ability to interact with their environment may exhibit greater capacities for leaming and gen-
eralization,

Extension to larger networks

The complexity and scale of the networks described above is minimal. While this greatly facilitates the detailed
analysis, it begs the question of whether the results will be relevant for networks designed to handle real-world problems.
Thus, work is also planned toward extension of the results of the analyses of representation and generalization to net-
works of increasing complexity. The first candidate is to work with small, and then with larger versions of Hinton’s
(1986) family trees network. Other candidates include Sejnowski and Rosenberg’s (1986) NetTalk, Munro’s (1987)
scalar reinforcement network, Cottrell, Munro, and Zipser’s (1987) image compression network, and Cosic and Munro’s
(1988) locative preposition network.



With greater complexity come opportunities for exploring more subtle and varied factors of the simulation. For
example, several networks have multiple bottlenecks; it may prove fruitful to investigate simultaneously using different
parameters on different bottlenecks within a network.

Networks with several intermediate layers (eg. Linsker, 1986) are expected to show complex courses of learning.
An important open issue for examination is to consider the order in which these layers organize. In supervised training
paradigms such as BP, the environment acts on the network from both ends. Hence, the feed forward activations are not
stable at the upper layers until the lower representations settle down, but the feed back error signals do not stabilize until
the upper weights reach equilibrium. A hint to this chicken and egg dilemma comes from an analysis of developmental
stages in neurons of the primate visual system (Harwerth, Smith, Crawford, Duncan, and von Noorden, 1986), who give
evidence that stages closer to the input stabilize earlier. A theoretical explanation for this is offered by Munro (1936).
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