Metric Constraint Satisfaction
with Intervals

Peter B. Ladkin®
TR-89-038
June, 1989

Abstract

We show how algorithms in Dechter, Meiri and Pearl’s recent paper on constraint
satisfaction techniques for metric information on time points /[DeMePe89] may be adapted to
work directly with metric contraints on intervals. Inter alia we show termination of path-con-
sistency algorithms if range intervals in the problem contain only rational number endpoints.

1 International Computer Science Institute, Berkeley, California, on leave from Kestrel Institute, Palo Alto,
California.

1 Introduction

In [DeMePe89], Dechter, Meiri and Pearl (henceforth DMP) consider a class of con-
straint satisfaction problems in which the variables are interpreted as having values
from the real numbers, and the constraints contain information on the differences
between variables. For them, a constraint on two variables is of the form

zi—z;€ |J [a, bl

1<k<m

where for each k, the closed interval [as, b] with ax < by is the set of real numbers
{r: ax <r < b}, and m depends on i and j. They showed how constraint networks
involving convex interval range constraints could be solved in low poynomial time
(the case m = 1 for each ¢ and j). They indicated that for the general problem,
certain approximation (terminology due to [vBeCoh89)) or relaxation techniques
were applicable, such as path-consistency computations. They noted as two prob-
lems that they were unable to show termination of path-consistency computations,
and they were unable to characterise all metric constraints on intervals since all the
constraints are binary, and some important contraints on intervals are 4-ary on the
endpoints.

In this paper, we extend this work by showing how metric information on points
and qualitative information on intervals may be combined into the same network.
The key issue is passing information on consistency back and forth between the two
kinds of information in the network. Complete success is bound to elude us, for we
conjecture that the passage of complete consistency information between the metric
and the qualitative interval facets of a combined network is NP-hard. However,
approximation algorithms used for each facet separately may be used to some effect.
We shall assume familiarity with standard notions of boolean constraint satisfaction
in general, as contained in e.g. [Mon7{, Mac77, Mac87], and with temporal interval
constraint satisfaction in particular e.g. [AlI83, VilKau86, LadMad88.2].

We have shown that qualitative interval networks may be solved equally well no
matter whether the endpoints of intervals are from the rational or the real domain
(e.g. [LadMad89.1]). For computational purposes, it seems that the rational num-
bers make a more suitable domain of interpretation since they are countable, but
have identical first-order order properties to the reals (in qualitative networks, one is
only concerned about order properties of endpoints of intervals). When using metric
networks, therefore, it makes sense to ask also whether we may restrict ourselves
to interpretations over the rational numbers. Since the rational numbers form a
field, indeed the smallest field containing the integers and since field operations are
the only operations considered by DMP, we may consider their techniques used over
rational points. One important result of this is that termination of path-consistency
computations now becomes provable, which we show in the next section.

We consider a metric interval network to be a network on variables z, ..., 2,
that have interval values. Associated with each z; is a pair of variables f,J, that
will take values constrained to be the left endpoint, respectively the right endpoint,
of z;. Each pair of variables z;,z; has associated with it two sorts of constraints: a
qualitative constraint of the sort considered by Allen, and a set of up to four metric
constraints between pairs of the variables f;, f;, g:, g; of the sort considered by DMP.
Our approach is to consider how order information may be obtained from solution
techniques applied to the metric information, which may then be added in to the
qualitative interval constraints. The qualitative interval constraints may then be
solved, or approximations generated, and the resulting qualitative information may
then be used to constrain the metric information still further. We conjecture that
calculation of complete ordering information from solution of even special types of
metric network (such as the convex constraint networks solved by DMP) is NP-hard.
It is known that solution of general qualitative constraint networks on intervals
is NP-hard [VilKau86]. So, since a general solution to the problem is infeasible
(modula our conjecture), we investigate combinations of techniques and special
properties of networks that allow easy solution techniques.

2 Metric Constaint Networks

In this section, we introduce the metric constraint networks of DMP.

A constraint on two variables 1s of the form

zi—z; € |J [ak, bl

1<k<m

where for each k, the closed interval [ag, bi] with a; < b is the set of real numbers
{r: ax <r < b}, and m depends on i and j. We refer to the pair of variables
{zi,z;) as the domain of the constraint, and the set of real numbers Ur<kcm [k, bi]
as the range. We systematically (try to) use the notation Py for the constraint
with domain (z;, z;) and similarly use R for the range. Thus Py is the constraint
expressed by the formula (z; — zx € R;.). We shall denote this by

P : (:n,' — I E ng)

The constraint says that the difference between the values of the two variables
z; and z; is to lie in the union of the convex closed intervals [ag, br]. We shall
indicate the domain of the constraint by the usual syntactic notation for formulas,
1.e. Py(z;, zt), where we need to.

A form of a range is a set {{ax,b;) : 1 < k < m} where R = Ur<kgm o, bi]
A range thus has many forms, because there is no criterion that the intervals

represented in a form be disjoint. We define the normal form of a range to be a
form {{ar,bc) : 1 £ k < m} where for 1 < k < m, ar < b < aryy. We define
NF(R) to be the normal form of R. It is immediate that ranges are in one-to-
one correspondence with their normal forms. We shall often express operations on
ranges by giving operations on their normal forms. A range R’ is a subrange of
the range R if R’ C R. Expressed in terms of normal forms, it is easy to check that
this is equivalent to the following condition. If NF(R) = {{ak,bx):1 <k < m}
and NF(R) = {(cj,d;} : 1 < j < p}, then for each (¢;,d;) € NF(R'), there
exists (ax, br) € NF(R) such that ax < ¢; < d; < b;. Thus we may consider set-
type operations on ranges to be equivalent to algebraic operations on their normal
forms. This is the approach taken by, for example, the relation algebra and cylindric
set algebra of Tarski (e.g. [Tarfl, HeMoTa??)), and by the relational algebraic
approach to relational data bases, where it has proved fruitful. We have used relation

algebra to characterise operations on qualitative interval networks in [LadMad89.1,
LadMad88.2].

Associated with the constraint Pi(z;, zx) is the binary relation Q,:
Qir = {{ai,ar) : (a; — ax € Rix)}

which we call the satisfaction set of the constraint Pi.. Since one has to know
merely the variables involved, and the acceptable pairs of values of those variables
to known a constraint, the constraint Py is specified precisely by its domain along
with the satisfaction set, so a constraint may be considered as a triple (2, K, Qir)
We extend the notion of range to include the range of a satisfaction set, defined as
R, where @ = {({a;,ax) : (a; — ax € R)}. We will denote the range of @ as R(Q)
in the case where the set @ is not associated with any particular constraint. For an
arbitrary set of pairs of real numbers @, R(Q) is just a set of real numbers.

An n-ary constraint network is a collection of these pairwise constraints on a set
1, ..., Ty of n variables, along with unary constraints (as below). Thus an n-ary
constraint network may express up to n(n—1) binary constraints. Since z; —a; = 0,
we have to define unary constraints differently. A unary constraint P; on a variable
z; is a constraint of the form z; € R;, where R; is a range as defined above. The
network is satisfied by an assignment of real numbers ay, ..., ¢, to the variables
T1, ..., Tn such that a; — a; € R;; for each binary constraint P;; (i.e. if we consider
P;j to be a formula with free variables z;,z;, then a;, a; satisfy this formula), and
a; € R; for each unary constraint P;. A network may be represented in the usual
way (e.g. [Mac87] as a labelled digraph in which the nodes represent the variables,
and the edges are labelled with the constraint on the variables corresponding to the
nodes at the head and tail. DMP give examples of such constraint networks and
their solution.

We shall define next the usual notions associated with the solution of constraint

satisfaction problems, for the case of metric networks. Thus techniques from [Lad-
Mad.88.2] may be directly adapted to networks of these constraints. We shall also
show that the computation of path-consistency for rational number interpretations
always terminates.

3 Operations on Metric Constraints and Net-
works

In order to perform operations on networks of constraints, we shall need to define
certain operations on constraints. We shall then use these operations to define
prunings, or reductions, of the constraints in a network, as an aid in satisfying (i.e.
finding solutions to) the network. In particular, as for DMP, we shall concern our-
selves with the notion of path-consistency. In order to apply algebraic techniques
and algorithms from [LadMad88.2], we need to define the sum, or union; the prod-
uct, or intersection; the relative product, or composition, and the converse of
constraints.

The definitions of union, intersection and composition are due to DMP. The
sum and product of two binary constraints, P;; + Pf; resp P;j - Py, are given by
the formulas

P; + P,-’j : zi—z; € Ry U R;j
respectively
P,'J' . P:J DX — 25 E R,'J' N R:J

l.e. the sum and product are given by the union and intersection of the ranges. It is
easily checked that the satisfaction sets of the sum and product of two constraints
are respectively the union and intersection of the satisfaction sets of the constraints.

We define the composition of the ranges R o S as follows;
a€(RoS) & (3B)(I)BERNYES A a=p+7)

The composition of ranges is defined for every pair of ranges. In contrast, we will
define the composition of two constraints only between constraints that have a
variable in common, say z;. Let (P;;, Pj) be two constraints with the common
variable z;. The composition constraint (P;; o Pj;.) is defined as follows:

(Pij o Pix) : xi — 2y € (Rij o Ry)

The importance of the notion of composition is that z; —x; € Ri; and z; —), € R
imply that z; —zr € (R;j0 R;;), as may be easily checked from the defining formula.
This means that the information contained in the composition constraint on x;,
1s only the information derived from knowing the constraints on the pairs z;, z; and

5

z;, Tk (Rij o Rj) may be understood as the narrowest range to which x; — 2 must
belong, given only the constraints P;; and Pj. The definition of composition is
derived from the notion of the composition of two binary relations. Specifically, the
standard definition of the composition of two binary relations [LadMad838.2] is

S108; = {{a,¢) : (3b)({a,b) € S1 A (b,c) € S}

and it is easily checked that the satisfaction set of the composition of two constraints
1s the composition of the satisfaction sets of each constraint.

Converse: We shall need the notion, which DMP do not use, of the converse of a
constraint. Given a constraint P;;, the converseis denoted by (P;;)~. The domain of
(Pij)~ is (z;,z;), and represents the ‘same’ constraint as (P;;), in the sense that the
logical force of the converse constraint is exactly that of P;; itself, but the variables
appear in the reverse order. To motivate the definition, consider the case where
Rij = [a,b], i.e. the range is a single convex interval. Since ¢ < z; — z; < b, then
reversing the signs gives —b < z; — 2; < —a. So first we define the converse of an
interval [a, b]~ to be the interval [—b, —¢], and the converse of a range R;;~ as the
union of the converses of the component intervals, i.e. if

Riy= | lax, b

1<k<m

then
Ry~ = |J lox 0" = U [—br, —au]

1<k<m 1<k<m

We may now define the converse of a constraint
P a; = r;€ Ry

to be the constraint
Py™y gp—~g€ By
It should be clear that the pairs of values of z; and x; satisfying both P;; and P;;~

are the same. This may be stated also in terms of satisfaction sets. As in relation
algebra, we define the converse 5™ of a set of pairs S by:

S~ = {{b,a): {a,b) € S}

It follows that the satisfaction set of P~ is S;7+ (This can be thought of in the
following way: if we reverse the order we consider the variables in, i.e. the domain,
then we have also to reverse the order we consider satisfying instances in, i.c. we
need the converse of the satisfaction set).

We define a network A’ to be a reduction of a network A if (a) 4 and 4’
have exactly the same variable sets, and for each constraint P,; of A there is a
corresponding constraint P{; of A’ such that R, C R;;. We say that 4’ is an
stable reduction of A (also called a relazation in [DecPea88)) if and only if 4’ is
a reduction of A, and A and A’ have exactly the same n-tuples of global solutions,
ie.

{{ar, s an) : (Vi j <n)(ai —a; € Rij) A (Vi <n)(a: € Ri))

Uar,yaa) : (Vi #j <n)(ai—a; € RY;) A (Vi < n)(a € R}

and also that Much of the work in constraint satisfaction is concerned with comput-
ing reductions and stable reductions of networks. Usually, concepts such as arc- and
path-consistency are used to compute stable reductions, and then search techniques
are used to compute (non-stable) reductions of these (c.f. [LadMad88.2)).

3.1 Regular Metric Networks

The concept of a regular network was defined in [LadMad88.5], and this applies to
metric networks, given the definition of composition above. A network is regular if
there is only one constraint between any given pair of variables z; and z;. A regular
network may be represented as a digraph with a single directed edge between a given
pair of nodes. For any network there is an easily computable regular network which
is a stable reduction. Suppose a nonregular network has both constraints Py;(x;, ;)
and Pji(z;, ;) for some pairs of variables. The following algorithm computes the
most general regular reduction (which is also stable). (A most general regular
reduction is a regular reduction A’ such that any regular reduction A” of A is also
a reduction of A’).

Regular Reduction Algorithm For every pair of variables z;, z; with i < j,
replace the pair of constraints P;;(z;,z;) and Pj(z;, ;) with the single constraint
P'(z;,x;) where P’ is the constraint (P;; N Px).

(This algorithm is from [LadMad88.3]). The justification for this algorithm is
as follows. As we noted above Pji(z;,2;) = (Pj)~(2i,2;). So both Py and By
give a range for x; — z;, and therefore any value for z; — z; is constrained to lie in
both the ranges R;; and Rj;~, and therefore in the intersection. The new network
1s regular, and has the same set of solutions as the original networlk, as should be
easy to see. Henceforth we shall assume that the networks are all regular, and use
the conventions that P;; appears as a constraint if 7 < j, and that the constraint
with domain (z;,z;) with j > 7 is (P;;)~. We shall say, for regular networks, that
the domain of a constraint is the set {x;,2;} without fear of ambiguity.

|

3.2 Arc-consistency in Metric Networks

We shall need to define the binarification of a unary relation. Suppose R is a unary
relation on a set U. We define the binarification R’ to be that relation on (U x U)
defined as
R(i,i) & R(i)
For any relation R, R’ is a subrelation of the identity relation Id(Uf), i.e. RP C
Id(U). For a constraint network A, define R; = (R;)®. (This was the approach
taken to coercing unary constraints to binary constraints in [LadMad88.2)). Using
the definitions above, we may now define a metric network to be arc-consistent if
and only if
Yi£i€n : m(8;) = Ru A 73(Si) = By

where 7, m, are the projection functions on respectively the first and second co-
ordinates of a set of pairs. Thus a network is arc-consistent if and only if every
value specified by a unary constraint on a variable is also consistent with all binary
constraints on that variable, 1.e is part of a value-pair in the satisfaction set of every
binary constraint on that variable. Notice if the network is regular, then tlhe second
clause is redundant. Another formulation of arc-consistency, which may be found

in [LadMad88.2], is the following:
VE%]SR & R,‘,‘OS,‘J':RJ'J'

Recent work on another algebraic formulation of arc-consistency constraints, with
some algorithms, may be found in [GiisHer88], where it is called local consistency.

3.3 Path-consistency

Given these definitions, we may define path-consistency of a network as follows.
The definitions and algorithm are adapted from [LadMad88.2]. A network is path-
consistent if and only if
Rij C (Rix o Ryj)

for every 4,7,k < n. This could also be stated in terms of the satisfaction sets:
Sij C (Sik o Syij) for every i,7,k < n. The following algorithm scheme computes
the most-general path-consistent reduction A/GR3(A) of a network 4. (A
triangle (2, 7, k) is the triple of variables (z;,z;, z¢).)

Path Consistency Algorithm: Given a network 4, iterate until no more changes:
For every triangle (i,%,j) in A: do P;j « Pij- (Py o Py;).

DMP showed that execution of this algorithm may be accomplished by the
Floyd-Warshall all-pairs-shortest-paths algorithm for the case of metric constraint
networks. We showed in [op.cit.] that path-consistency may be computed in time

8

O(n*logn), and that there are examples that will cause standard types of algorithms
(reduction-type algorithms [op.cit]), whether parallel or serial, to take time Q(n?),
thus providing effectively an asymptotic lower-bound for such computations.

3.4 Termination of Path-Consistency

Here we show that path-consistency computations always terminate for the case
where the ranges of the constraints have endpoints from the rational numbers. This
will suffice for our concerns, since we work with the countable model of Allen’s
interval algebra, where the endpoints are rationals [LadMad89.1]. In particular,
we are ultimately interested in the T'US model of the interval algebra, which is
isomorphic to the pairs-of-rationals model [Lad88.1].

First, we show that path-consistency computations for integer ranges terminate.

Lemma 1 Suppose A is an n-ary constraint network in which all the ranges R;;,
t,7 £ n have integer endpoints; i.e. if NF(Ri;) = {{ar,b) : 1 <k < m} then
for 1 <k < m, ay, b are integers. Then the path-consistency computation scheme
above terminates.

Proof: We use the standard notation Z for the integers. Let maz(R), min(R)
be respectively the largest, smallest integers appearing in a convex interval in R,
and let maz, min be the largest, respectively the smallest, of the maz(R), min(R).
Let the scope of R, SC(R) = {a € Z : min(R) < a < maz(R)}. Let the
scope of 4, SC(A) = {a € Z: min < a < maz}. Note SC(R) C SC(A) for
R a range in a constraint in A. Let EP(R) be the set of endpoints of intervals
i NF(R), so EP(R) = {a1,b1,a2,......,Gm, bm }, where R = U;crem|ar, bi] and
ap < b < ay < ... < Ba < by Let Ranges(A) = {R:R is a range, and
EP(R) C SC(A)} . Then Ranges(A) is a finite set, since SC(A) is finite, hence
has finitely many subsets, and the EP(R) are in one-to-one correspondence with
ranges R. Note also that Ranges(A) is closed under subranges.

Note the following truths: EP(R) C SC(R), EP(RUS) C (EP(R)UEP(S)) C
(SC(R)U SC(S)), EP(RNS) C (EP(R)U EP(S)), and EP(RN S) C (SC(R) N
SC(S5)). From these it easily follows that Ranges(A) is closed under the operations
of union and intersection.

If R is a range in A, and S is any integer range, then EP(RN §) C (SC(R)N
SC(S)) € SC(A). It may be easily checked that the definition of composition
preserves integer endpoints. Consider now the operation involved in the path-
consistency operation, rephrased in terms of ranges, Ri; «— Ry - (Ri. o Ryj).
The result is a subrange of R;; (possibly including many more convex subintervals),
therefore still in the set Ranges(4). Ranges(A) is a finite set, so the partial order

under the relation of subrange is well-founded. Since the path-consistency operation
at each instantiation produces a subrange, the operation above must terminate for
every i, j, k. Hence the path-consistency computation terminates.

End of Proof.

Lemma 2 Suppose A is an n-ary constraint network in which all the ranges Rj,
t,J < n have rational number endpoints; i.e. if NF(Ry;) = {{ar,b) :1 <k < m}
then for 1 < k < m, ag,bx are rationals. Then the path-consistency computation
scheme terminates.

Proof: Let EP(A) = U4 EP(R), i.e. the collection of endpoints of ranges in
A. Given arange B = Ujcrgmlar, be], let m* R = Uscrem[(m X ar), (m x b))
The following distributive laws are easy to check: m* (RU S) = (m* R) U (m * S)
m*(RNS)=(m*R)N(m=*S5),m=*(RoS)=(m=*R)o(m=S5)

Let M = gcd(EP(A)), and let (M % A) be the network just like A except every
range R in each constraint has been replaced by (M % R). (M * A) is a network
with integer ranges, and hence path-consistency computations terminate, by the
previous lemma. By the distributive laws above, the path-consistency computation
on (M % A) is isomorphic to the computation on A, since each operation commutes
with the factor M. Hence the computation on A also terminates.

End of Proof.

We are mainly concerned with countable interval models of Allen’s system (which
are all isomorphic [LadMad89.1]), and in particular with the TUS, so these results
suffice for us to show termination of path-consistency. The argument of the lemma
cannot be extended to even the case of normal forms with algebraic number end-
points, since the set of endpoints obtainable by performing addition and subtraction
operations on the endpoints is now no longer finite within the interval [min, maa).
We need not be concerned with this unless we have a real need for real numbers
(one might even regard this lemma as providing a reason why real numbers should

be avoided here).

4 Interval Constraint Networks with Metric In-
formation

DMP have developed constraint satisfaction techniques for metric information using
the computations on the constraint structures described above. Our concern here is
to adapt these techniques for use with interval constraint networks. DMP and others
have pointed out that many common interval relations cannot be phrased in terms
of binary constraints upon the endpoints of the intervals [Mei89] For example,
the relation of disjointness between two intervals [a,b], and [c,d] is expressed by

10

b<c VvV d< aand there seems to be no simple way of phrasing this constraint
which involves only two of the endpoints. DMP may consider it a weakness of their
approach that it does not appear to handle those interval relations that are not
expressible with only two endpoint variables. We overcome some of the problems
by devising constraint networks that have constraints of two types. One type of
constraint is the qualitative interval constraint of Allen, and overlaid on top of
these is another set of constraints containing metric information of the sort DMP
consider, but on endpoints of the intervals.

4.1 Metric Interval Networks

We define a metric interval network, or MIN, as a constraint network where
the constraints P;; are pairs of constraints (S;;, T;;) where S;; is a metric constraint
involving four possible temporal ranges as explained below, and T}; is an Allen-type
interval constraint of the sort considered in [All83, LadMad88.2, LadMad89.1]. The
constraints S;; are combinations of metric constraints (as in DMP) between the
endpoints of intervals z; and ;. We use the variables fj, g, for the left and right
endpoints of the interval denoted by «;, as in [Lad88.1]. (Other logical notation in
this section is also as in [Lad88.1].) S;; i1s then a conjunction of some or all of the
constraints

(fi—=fi €RY) A (fi—gi €R%) N (9:i—f; €ER%) A (gi—g; €R')

L.e. any subset of these conjuncts may appear as the constraint S;;.

Let A be a MIN. Then the S;; form a DMP-type metric network with 2n variables
f1,915 f2y 925 -y fry gn With the range constraints as specified by the R¥;;. We call this
network the associated metric network of 4, or MN(A). We refer to an MN(A)
where all the R¥;; are convex intervals as a convex MN(A), and a MIN with a convex
MN(A) as a convex MIN. For the case of convex MINs, DMP show how the MN(A)
may be constructed in O(n?) time, by using the Floyd-Warshall all-pairs-shortest-
paths algorithm. Similarly, there is an associated qualitative interval network with n
variables obtained by considering only the constraints T;;. We call this the associated
Allen network, or AN(A). For cases where the AN(A) is pointisable [LadMad8$.2],
1t may be solved in serial O(n?), or parallel O(n? log n) time, by applying a path-
consistency algorithm, and then applying an O(n?) satisfaction algorithm to the
resulting path-consistent network (path-consistency is equivalent to satisfiability
for pointisable AN(A)s, although not for general AN(A)s) /LadMad88.2].

We say that a MIN is satisfied by a sequence (Ii,7y,l5,79,....., L. 7,) if the
assignment [fy « lj,g1 « r1, fo — lo, g2 — 12, fu & li,gn — 7] satisfics the
MN(A), and the assignment [z, «— (I,,m),a2 — (loyr2), ey — (I3, 13)]
satisfles the AN(A).

11

4.2 Solution Techniques For Convex MINSs

In this section we consider solving convex MINs. DMP show how to solve convex
MN(A)s, by calculating the minimal network associated with a given convex MN(A).
There are also techniques for approaching the solution of AN(A)s, although only in
some cases (namely pointisable AN(A)s) is it known that a solution may be found in
low polynomial time [LadMad88.2]. The major issue for MINs is how to integrate the
solution techniques of both MN(A)s and AN(A)s so that inconsistencies between the
qualitative and quantitative sides of the MIN may be discovered. Here, we formulate
the problems and the options, and indicate how one may obtain polynomial time
approximations to solutions. We conjecture that calculating complete information
from both sides is NP-hard in general.

For any convex MN(A) T, let MNR(T) be the minimal network representation
of T' (as defined in DMP). The minimal network representation in this case has the
property that any partial solution (i.e. an assigment to some of the variables that
satisfies the constraints on those varaibles alone) can be extended to a complete
solution of the network. In particular, each of the domains (unary constraints) is
feasible, that is contains precisely values of the variable that may participate in a
solution. However, it is not the case that any element of the cartesian product of
the feasible domains is a solution of the constraint graph. But it is the case that
any value of a domain that is consistent with partial assignments to the previous
variables may participate in a global solution which extends that partial assignment,
as shown by DMP, and see below.

To illustrate our approach to transferring consistency information between the
MN(A) and the AN(A), consider the constraint

To — 21 € [5,7]
This constraint is equivalent to the conjunction of the two constraints
Ty3—1T1 29D

.’1?2——5'31ST

both of which imply the qualitative constraint
Ty 2 T
On the other hand, a constraint of the form
fy—iy & [=1,1]

may be factored into
Iqg—1I; 2 -1

To—21 <1

which is consistent with both of the qualitative constraints
T2 2 Ty

Ty <1

and so provides no qualitative information on the ordering of z; and z,. The proof of
minimality by DMP shows that we may pick any value for z; satisfying the domain
constraint on z;, and then any value for z, satisfying the constraint z, —2; € [-1,1],
and may then extend this assignment to a solution. Hence there are solutions of the
MN(A) in which 2z, > 2; and solutions in which z; < z;. However, choice of one
of these qualitative orderings for z; and 2, might affect choices of values for later
variables and therefore could constrain the ordering of later variables beyond what
the explicit ordering in the minimal network demands. So not all these sequential
choices may be independent of previous ones. This leads to the following definition.

We define the qualitative constraint form QC(A) of an MN(A) 4 to be
the disjunction of all orderings z;, Rzi, A ... A zi,_ Rz, where R is cither
<, = or <, which are the ordering of a solution to A. (As a shorthand, we may
write such an ordering as x;, Rz, Rz, R....Rx; _, Rz;,). The object is to compute a
formula equivalent to QC(A) for A the MN(A) of a MIN T, and then to combine
this information with the AN(A), using the tramslation methods between interval
formulas and point formulas of [Lad88.1]. However, as we have noted, QC(4) may
be hard to compute.

The technique suggested by the example given above doesn’t compute QC(A)
as we noted. It computes an approximation to QC(A) which we make precise with
the following definitions. We define the associated constraint y;; of a metric
constraint x; — ; € [a,b] to be z; > z; if ¢ is positive; z; > z; if a is 0; 2; < 2; if b
is negative; ; < z; if b is 0; and NIL if a is negative and b is positive. We define
the weak qualitative constraint form WQC(A) to be the conjunction

Y21 A 31 N i Un1 N Y32 VAN A Ynn-1

(where we omit the constraint if is is equal to NIL). WQC(4) is easy to compute.
It follows easily from the definition that it is O(e), where e is the number of edges
in the network.

Clearly, considered as formulas, QC(A) = WQC(A) so WQC(4) may be used
as a filter for approximating QC(A). A filter is a formula which implies, but is not
necessarily implied by, a formula of interest [Smi88/. Filters are logically weaker
than the formula of interest. Filters are generally easy to compute, whercas the
formula of interest (QC(A) in this case) may be relatively hard to compute. They

13

are used in order to prune the problem space. They are effective in so far as they
are logically ‘not much weaker’, and in so far as it is easy to compute them.

WQC(A) is easy to calculate, requiring linear time in the number of constraints,
i.e. O(e) where e is the number of edges. There is a translation between endpoint
constraints of the form occurring in QC(A) and WQC(A) and interval constraints
of the form appearing in AN(A)(A). The translation is given in [Lad87.5, Lad88.1],
and we reproduce it below.

4.3 Information Passing From Points to Intervals

However we compute approximations to QC(4), we may translate the computed
endpoint constraints into interval constraints, and conjoin them with the constraints
on the respective edges in AN(A), using the translation above. We call this new
qualitative network an augmented AN(A), AGAN(A). This qualitative network
may be solved, or approximated, using known techniques such as those in [All83,
VilKau86, Lad 87.5, Lad 88.1, LadMad88.2, vBeCoh89]. A solution, or approx-
imate solution, of the AGAN(A) involves an atomic network [LadMad88.2] or a
disjunction of atomic networks (except for techniques involving the minimal network
[Mon74, vBeCoh89]). It will be seen from the way that these constraints are used in
augmenting the metric constraints that disjunctive constraints are not much help,
since they engender combinatorial explosion in the same way that a crude scarch for
atomic reductions of a constraint network does. One approach to this is to restrict
attention to certain classes of networks that admit of easier solution methods. We
consider this further in a later section.

4.4 Incorporating the Qualitative Solution in the Metric
Constraints

Given a solution, approximate solution, or class of solutions to the AGAN, we may
now translate back the interval constraints on the variables to endpoint constraints
using the translation schemes in [Lad87.5, Lad88.1]. We give the translation, for
completeness, below. These solutions form a filter for solving the M N(A), in the
following manner. Atomic networks are pointisable, and so may be translated into
conjunctive constraints on endpoints, using the scheme below. Constraints between
each pair of endpoints may be calculated from these constraints by using transitivity.
The derived qualitative constraint between interval z; and interval z; translates
into possibly four constraints on the endpoints, which are conjunctive and therefore
partially specify a linear ordering of the endpoints. These constraints may then
be used to prune the metric constraints on z; and zj, in, say, the following way.
Recall that the metric constraints on z; and z; are a collection of up to four metric
constraints involving the four variables f;, g;, f;, 9;- Suppose one of the constraints

14

18, say,
fi—g; €[-5,7]

and the derived qualitative constraint on f; and g¢; is f; > g¢;. Then the metric
constraint may be further pruned to yield

fi—g9; €(0,7]

which is the part of the metric constraint consistent with the derived qualitative in-
formation. If the derived constraint were f; < g;, then the derived metric constraint
would be

fi —g; € [_5: 0)

Similarly, for a derived qualitative constraint f; > g;, the derived metric constraint
would be

fl'_g.f € [O:T]

and mutatis mutandis for f; < g;. Although the half-open interval is not exactly
of the form considered by DMP, constraint satisfaction involving half-open inter-
vals may be implemented by considering the constraint to be the closed interval
fi —g; € [0,7] and annotating the constraint with the information that f; # g;.
The annotation can be incorporated into any satisfaction routine for the metric
information, e.g. as in DMP. The routine that DMP use to show that the minimal-
path-distance network is indeed the minimal network representation of the metric
constraint network builds a solution in the following way. Suppose without loss
of generality that values ay,.....,a;_y for variables yy,.....,y;_; have been picked,
that are consistent with the mutual constraints on yi,.....,y;_1. Any value of ¥;
may then be used to extend the partial solution, provided it is within the range
R = [maz(a; — dij : j < i),min(aj+d;; : 7 < i)]. When such a value is picked,
one should additionally check all the annotations y; # y; for j < i. Suppose that
Yiy» -~ ¥i, have such annotations. Then any value in the range R ~ {a;, ..., a;, } may
be used for y; (where ~ is the set-difference operator), and consistently extended
to a solution which incorporates the inequality annotations also.

The qualitative information obtained from solving or partially solving the AGAN
may be incorporated back into the M N(A) in time O(e), as is easily seen from the
exposition above, and the translation scheme below.

5 The Translations

5.1 Definitions and Notation

For the purposes of this section we shall consider qualitative constraints on intervals
in a network as formulas in a first-order logical language for the purposes of giving

15

the translations. The language contains a binary relation symbol for each of the
fundamental thirteen binary relations on intervals. A complete axiomatisation of
a first-order theory which has the ‘same’ models as the algebraic formulation (in a
sense explained there) may be found in [LadMad89.1]. So considering constraints
as formulas is just another (sometimes convenient) way of looking at the setup, and
has provably all the ‘same’ properties. The disjunctive constraints typically found
as edge constraints in a network are obtained by taking disjunctions of some of the
thirteen relations. So an edge between, say, z; and z; with ¢ < 7 has a constraint
that can be represented in this manner as P(z;,z;), and the formula P(z;, z;) is
equivalent to Gy, (zi,z;) V V G, (i, z;), where Gy,Gy,, are the predicate
symbols corresponding to those fundamental relations that are disjoined to form
the constraint P;;. We shall employ this method of talking about the constraints
throughout our presentation of the translations and information-passing between
the metric and qualitative parts of the MIN.

As well as the formulas themselves, we shall need to interpret them over a
domain. We use the standard notations of model theory to describe the domains we
are interested in (the rational numbers and the intervals over the rationals for the
two types of constraints we have). We use notation consistent with that in [Lad87.5]
and [Lad88.1]. We use RAT to denote the structure of the rational numbers with
the natural ordering, (Q, <). We use INT to denote the structure of the intervals
over the rational numbers with the twelve fundamental relations (equality is the
thirteenth) (INT(Q), Gy,, G12), The domain INT(Q) consists of all pairs of
rational numbers (a,b) with a < b (the intervals over the rationals). As we use
the notation (I,7) to denote the interval whose left endpoint is I and whose right
endpoint 7, we shall use the notation i; and ip to denote the left, respectively the
right, endpoint of the interval 2. Thus it is a truism that ¢ = (i1, ig).

We shall abuse notation occasionally in referring to the rational numbers Q
when we mean RAT, and the rational intervals INT(Q) when we mean INT. For
assignment, in defining satisfaction of formulas by sequences of model elements, we
use the notation e.g. [z; « l1,2z2 « l3,....., 2o « [;] to denote the simultaneous
assigment of the model element ; to the variable z;, for 1 <7 < n, and we say e.g.
M =dla e iz Dy yZn « [1] to mean that M satisfies the formula ¢ with
free variables amongst 2y, .., 2, under the assignment [z, «— I}, 2, «— I, yZn — 1],

The thirteen fundamental interval relations are denoted P, M, 0, D, S, F,

P~ M=,07,D~,5",F~ and Id(L) for precedes, meets, overlaps, during, starts,
finishes, their converses, and the identity relation on INT(Q), respectively (the
notation Id(U) denotes the identity relation on a set U, i.e. {(z,z): z € U},
and L is the set of intervals on Q, i.e. {(z,y): z,y € Q A z < y}. Notice
conincidentally that L is also the binary relation of < on Q, an element of the point
relation algebra on Q) [All83, LadMad89.1).

When defining the translations and noting their properties, we shall use vari-

16

ables f;, ¢; for (intended) right and left endpoints of intervals, and variables e; for
intervals (i.e. in interval formulae). It is intended that the variables f;, ¢; shall
correspond to the right, respectively the left, endpoints of the interval variable e;.
So if in particular we state a property of a formula ¢(f;, g;) under an assignment
[fi « I,gi « r], we shall expect to be concluding things about a ‘corresponding’
interval statement 1(e;) under the assignment [e; « (I,)], and vice versa. This is
a piece of bookkeeping that we hope aids the statement and the understanding of
the translations.

5.2 From Points to Intervals

We provide a syntactic translation from formulae in the language of points to for-
mulae in the language of intervals, that preserves satisfaction in the following sense.
Consider a formula ¢ in the language of the rational numbers with order, (Q, <),
in the variables fi, g1, .., fa, gn, and suppose the assignment [f; « l;,g1 « 71, f2 —
l23,92 — r2,....fn — ln,gn « 7] satisfies the formula ¢ over the rational numbers
(i.e. in terms of model theory, if we let o denote the assignment, (Q, <) = ¢[a]).
We define a formula ¢! in the language of the intervals over the rationals such that
the assignment [z, « (li,r1),22 — (lo,r2),....,z3 « (I3,73)] satisfies ¢! in
INT. So in terms of model theory, if § is this assignment, we are saying that
INT(Q) = ¢![B]. The translation {}! has this property for all first-order formulae
in the respective languages, as was shown in [Lad88.1, Lad87.5], but we shall only
need it over a boolean subset of the language here.

We define the translation {}!. Any atomic formula of the language of RAT is
of the form z < y or £ = y, and we shall consider correspondences for all possible
assertions involving a primitive relation and rationals iz, g, 71, Jr that are endpoints
of intervals ¢, j. We shall use the notation i(R; + Ry +.... + R,)j to assert that the
interval 7 is in one of the relations R, to j (equivalent to (Ri(¢,7) V Ra(i,j) V
..... v Ry(i,).

It is easy to check the truth of the following statements connecting atomic truths
about elements of RAT with disjunctions of atomic truths about elements of INT:

o ir<jL & i(P+ M+ 0+ F- + D7)j

oir<jr & i(P+ M+ 0+ S+ D)j

eif<jp & i(P+ M+ O+ IdL)+ S+ F + D)j
e ip<jL & iPj

sir=j, & (S + IdL) + §7);

17

eip=jp & i(F + Id(L) + F7)j

ei,=jp & 1M~ j

eip=J, & 1My

It is also easy to convert these equivalences into assertions about formulas and
satisfaction relations. First, we define a translation —' from atomic formulas ¢ in

the language of RAT into formulas ¢! in the language of INT.
We use the small roman letters, some with superscripts,

St

pldio3m933f}pv}d :‘O '.Fm !S 3f

to denote the twelve primitive predicate symbols in the language of INT.

We shall assume, in the list below, that m # n, since the cases where m = n
are either simply true or false (e.g. f, < g, is true and f, = ¢, false) under any
assignment. The list of corresponding formulas ¢ and 1) in the languages of RAT
and INT respectively are:

o If ¢ =(fm < fn) then
451 — (P(ﬁm,eﬂ) Vv m(emaen) \ O(Bm:en) v fu(eﬂl:leﬂ) Vv dv(enuen))

o If = (g < g.) then
¢' = (p(em, €n) V Mm(emyen) V 0(em,€n) V 5(emsen) V d(em,€n))

o If 9 = (fm < gn) then
¢' = (p(em; €n) V M(em, 0) V 0(€m;) V S(€myn) V €m =€, V Flem,en) V
d(em,en))

o If ¢ = (gm < fn) then ¢! = p(em, €n)

o If ¢ = (f = fa) then
¢! = (s(em,€n) V em=¢€x V 5 (em,€n))

o If (1:6 = (gm = g,l) then
' = (flemyen) V em =€n V = (em,€n))

e If ¢ = (fm = gn) then

ﬁbf = mV(ema 311)

o If ¢ =(gm = fn) then
qi:t = m(em,en)

18

Now, ¢1, < jg is true in RAT iff RAT = (fm < gu){fm < 0,90 — Jr}, and
mutatis mutandis for the other atomic formulae. Similarly, in INT(Q), :(Ry + Rz +
v+ Rp)g i

INT |= (Ri(ems€n) V... V Rplem,en)){em — i,€n — j}
So, for example,
RAT |= (9m < gn){9m < ir,gn — jr}
A=
ir < JR
A=
i((P+M+0+S+ D)y

-
INT = (p(emyen) V m(em,en) V 0(€m;€n) V 8(€msen) V d(em, €n)){em — i, e, — 7}

=4

INT |= ' {em « i, e, — j}

and similarly for the other five types of atomic formulae in the language of RAT.

Hence, providing that the assignments of iz,1g, 7L, and jgr to fm, Gm, fa, and ¢n,
and ¢, j to em, e, are made in accordance with the convention (about the intended
correspondence of f,, ., €,), we may state a general lemma about the mutual sat-
isfiability of ¢ and ¢', whose proof follows immediately from the preceding consid-
erations. We call such a pair of assignments mutually acceptable. If o is a mutually
acceptable pair of assigments, let apsr be the part of @ in the language of RAT,
and aryt be the corresponding part in the language of INT.

Lemma 3 For every atomic formula ¢ of the language of RAT, for every mutually
acceptable pair of assignments «,

RAT |= ¢{apar} & INT |=¢'{arnr}

Now we have defined the translation ¢! of an atomic formula ¢ of the language
of RAT, we extend this translation to all of the Boolean formulae of the language
of RAT by the following clauses, which complete the inductive definition:

o If $ = (—v) then ¢t = (—ph).
o If ¢ = (1 A p) then @ = (! A pt).
o ¢ = (1 V p) then ¢! = (' V pt).

19

o If ¢ = (¥ — p) then ¢! = (! — pf).
We have the following extension of the lemma above:

Lemma 4 For every Boolean formula ¢ of the language of RAT, for every mutually
acceptable pair of assignments «,

RAT = ¢{arar} © INT = ¢H{ainr}

5.3 From Interval Constraints to Point Constraints

We provide a syntactic translation from formulae in the language of INT to formulae
in the language of RAT, that preserves satisfaction in the same sense as before.
Namely, consider a formula ¢ in the language of INT in the variables 24,,2n
and suppose the assignment [ty — (l;,71),29 — (lo,r2),.....xs — (I3,73)]
satisfies ¢ (i.e. INT |= ¢ under the assigment above). We define a formula ¢~ in
the language of RAT with free variables fi,g1,.., fn, gn, such that the assignment
[fi & liyg1 — 11, fa & I2,92 & 7oy fn & 11, gn — 11| satisfies the formula ¢~
over RAT. So in terms of model theory, we are saying that RAT |= ¢~ under the
assignment above.

If ¢ is an atomic formula of the form R(z,w), we define ¢~ to be the formula
ér(z,y,z',y'), where if z = e, then 2 = f, and y = ¢, and similarly if w = e,,,
then 2’ = f,, and ¥’ = ¢,» (we need not worry about variable clashes since all of the
formulas ¢r(z,y,2’,y’) are quantifier-free).

It was shown in [Lad87.5]that if INT |= ¢ where ¢ = R(z,w) then RAT |= ¢* as
defined above, and vice versa. We can extend this property to Boolean combinations
and quantifiers inductively. We may wish to do this since solving the AGAN may
not lead to an atomic formula on each edge, but in general may lead to an arbitrary
Boolean formula. The preservation condition on satisfiability actually holds true
for a translation of all first-order formulas, as shown in [Lad87.5], and we give the
tull translation here for completeness.

o If ¢ = (~%) then ¢* = (~).

If ¢ = (1 A p) then ¢* = (" A p).
If ¢ = (% V p) then ¢* = (° V p°).
If ¢ = (% — p) then ¢* = (4" — p°).

If ¢ = (Vz)ih and z = e, then ¢ = (VaWy)(z <y — *)
where z = f, and y = g,

20

o If ¢ =3z¢p and z = e, then ¢* = (zIy)(z <y A ¥*)

where z = f, and y = g,

The Boolean clauses just pass the translation through the Boolean connectives.
The idea of the translation is that, if an interval satisfies ¢ then its endpoints satisfy
tb*. The choice of variables is bookkeeping.

Lemma 5 Let ¢ be a formula in the language of INT. Then
INT = d{ers « i1,..... ,En — In}

i

RAT E ¢*{fi «— (41)py s fro & (Gn)1y 91 — (31)Ry everey Gn — (in)R}

The proof of the lemma is to be found in [Lad87.5].

We now consider in more detail certain special cases of MN(A)s and AN(A)s
in which the information-passing techniques may be accomplished in feasible time.

6 Feasible Approximations

In this section, we discuss special cases of the general strategy for solving convex
MINs that may be feasibly solved or approximated. In particular, we consider the
special case where the AN(A) is pointisable [LadMad88.2].

6.1 From MN(A) to AN(A4)

The ideal information to pass from the metric constraints to the qualitative con-
straints is the information contained in QC(A4). QC(A) was defined as a formula
in rational order normal form RONF [Lad87.5], as a disjunction of orderings of the
variables f;, g;.

One might ask whether this is the most succinct form in which to pass informa-
tion to the AN. The answer is no, and to find the most succinct form is precisely
to compute the minimal disjunctive form that is equivalen to a given form, and we
conjecture that this is NP-hard. Another possibility is that some approximation to
the minimal form might be easily computable, and in this case it would be preferable
to pass this information on to the AN. Exponential time might still be required
to compute the QC(A) form from this, so we do not advocate the computation of
QC(A) in general as the means to pass the qualitative information from M N(A)
to AN(A). So although the QC(A) form might not be the appropriate way to pass

21

information to the AN, the information that needs to be passed is still logically
equivalent to the QC(A).

The technique we used earlier in the example computes the WQC(A). WQC/(A4)
is computable in linear time in the number of edges, and therefore is a reasonable
candidate for heuristic approximation to QC(A).

6.2 Pointisable ANs

Pointisable qualitative networks are those in which the network corresponds directly
to a single point algebra network with twice the number of nodes [LadMad88.2]. 1t
was shown that there are 187 qualitative interval constraints which are pointisable,
and hence any network in which each label is one of these is a pointisable network,
and vice verse. The importance of pointisable networks is that there is an O(n?)
satisfaction algorithm for path-consistent networks, giving an O(n®) algorithm for
satisfiability op. cit..

If the translation is performed, of a pointisable AN to its qualitative point
algebra equivalent (a linear time operation in the number of edges of the network),
then there is no need to perform the translations of the previous section between
the quantitative and the qualitative parts of the constraint network. The translated
network may employ the same variables f;, g; that have been used to define the
quantitative constraints. The translation is linear in the number of nodes and edges
of the original interval network [op. cit.], and the labels on an edge are from the
point algebra, consisting only of <, >, =, <, >,# 0 and 1, into which the constraints
from the QC(A), or its approximations, may be incorporated directly. Similarly,
there is no need to translate solutions to the qualitative network back into the
vocabulary of the quantitative network, to apply the earlier technique of using the
point orderings to prune the ranges, since the vocabulary is substantially the same.

In the case where we may expect the solution of the AGAN to involve pointisable
formulae, i.e. the solution consists of a reduction of the AGAN in which all labels
are pointisable relations, then the Boolean equivalents to the formulae are contained
in the appendix to [Lad88.2], and are also reprinted in [vBeCoh89]. There are 187
of them, and we do not reproduce them here. The pointisable relations are all the
relations between two intervals that may be represented as a conjunction of atomic
relations on the endpoints, and thus they are a suitable target for this stage of
the solution process. (Basically disjunctions either lead to exponential growth of
potential solution networks, in the case of exhaustive search, or to a reduction in the
information being passed on to the metric network. We observed this phenomenon
with the @QC and WQC constraints, in the case of the translation the other way).

We should note also that an AN that is not pointisable as stated may become so
when information from the qualitative network is incorporated, or when reduction

22

techniques are applied, so the techniques mentioned for dealing with pointisable
networks may be applicable at any stage as a qualitative network becomes pointis-
able.

6.3 All-Solutions Solutions

In the case in which it is desired to compute all solutions to a given constraint
network, then some of the above techniques become harder. The minimal network
corresponding to a convex metric network is still easily computable, but the minimal
network corresponding to even a point algebra network (the case of a pointisable
AN) may not be (as investigated in [uBeCoh89]). Much further work needs to be
done in this area.

7 Practical Use of the Approach

We have advocated the use of a time unit system, the TUS, for reasoning about real
intervals of time [Lad87.2, LadMad89.1]. The system represents units of time as a
sequence of nested units in the same manner as does a clock or calendar. We showed
in [op. cit.] that the TUS was indeed a countable model of the interval algebra and
thus is isomorphic as a structure to the pairs-of-rationals interpretation of intervals
(since the interval algebra is countably categorical). It would be unfortunate if our
approach needed to make use of substantial translations (e.g. as provided in [op.
cit./) in order to apply to the TUS. This is not the case, as we indicate here.
Lengths may be measured in the TUS as a multiple of units, for example 3 days,
5 years, 200 minutes. So the first modification to note is that all measures include
units which are basic units in the TUS. So every range has its accompanying unit,
and when calculations are performed amongst ranges, as in computing the minimal
distance network, account must be taken to ensure that the units are converted
into common units before a calculation is made. Since every constraint network is
finite, there is indeed a ‘least common unit’ for the range constraints (since all the
units are nested, it is the case that one is always an integral multiple of any other
or wice versa). We don’t advocate any specific method of maintaining these units
denominators since it seems to us to be just easy bookkeeping to do so.

Many of the metric constraints may take a different, more suitable, form in the
TUS. Metric constraints of the form g; — f; € R, for example, refer to the duration
of an interval in terms of the units in which R is expressed. The TUS also includes
the notion of the difference of two intervals (the length of the interval between them,
expressed in a suitable unit), and the overlap size of intervals. Using these notions it
1s an easy matter to express the other three types of constraints (i.e. f; — f;, fi — g;,
gi — f;). Hence the vocabulary of the TUS provides the hooks for implementing

23

DMP-type metric constraints directly, without the need to refer to points. For those
who wish to discuss the relative merits of point or interval formulations of temporal
reasoning, it may be useful to note that the discussion above shows that the DMP
approach to metric constraints does not force us to use a point-based formalisation
(as might have been thought). The TUS is purely an interval formulation, and the
metric constraints work just as well in the manner indicated above as they do with
points.

8 Further Research

The most obvious open questions arising from this work have to do with the QC/(A4)
and its equivalents. What is the complexity of relations between the QC(A) and
its minimal equivalents (which we’d prefer to compute). Are any of these equiv-
alent formulas feasibly computable from an arbitrary minimal distance graph (the
minimal representation of the metric network)? And finally, we have not provided
a completeness proof for our suggested procedure using the translation from metric
to QC(A), solving the AGAN, and passing the information back in the manner
we suggested to the metric network. There are many aspects to such a proof. For
example, it should be clear that the QC(A) is the information needed to add to
the AN - but we have not provided a proof. Similarly, suppose one were to pass
the QC(A) information to the AN, solve it (say, find the minimal network) and
pass all the possible orderings of endpoints (via the translation {}*) back to the
metric network in the form of prunings, do we then obtain a minimal network for
the whole problem (i.e. a network which contains only values for the nodes, and the
differences, which are extensible into a solution of the complete network, including
the qualitative constraints, and such that every such solution is contained in some
assigment of values from the nodes)? We have shown here only that a reduction of
the minimal network is computed by this technique.

On the implementation front, it also remains to incorporate these metric con-
straint solution techniques into the TUS using the approach suggested in the pre-
vious section.

9 Summary

We have shown how the metric constraint satisfaction techniques of Dechter, Meiri
and Pearl may be incorporated into an interval constraint satisfaction problem which
includes a qualitative component. Qur approach envisions a constraint network in
which both kinds of constraints appear between two nodes. The nodes are to be
interpreted by intervals, and the metric information between two nodes is captured
by a set of up to four metric constraints between four variables interpreted as the

24

endpoints of the nodes. We characterised the information that needed to be passed
from the metric constraints to augment the qualitative constraints, and although
we conjectured that the complete information in relevant form might be NP-hard
to compute, we suggested a suitable approximation that may be computed in linear
time in the number of edges. We showed how solutions from the qualitative com-
ponent of the network may be passed back to the metric component to compute a
reduction of the minimal network (and therefore a sound, if not complete, solution).

We noted that there is no real reliance on points in this approach, since the
endpoint constraints may all be phrased in terms of operations on intervals in the
time unit system T'US, which has only proper intervals, and no points, in it.

We concluded with a list of problems for future research.

25

Bibliography

All83 : Allen, J.F., Maintaining Knowledge about Temporal Intervals, Comm.
A.C.M. 26 (11), November 1983, 832-843.

AllHay88 : Allen J.F. and Hayes, P. J., Moments and Points in an Interval-
Based Temporal Logic, Technical Report TR180, Dept. of Computer Science,
University of Rochester, December 1987.

ChaKei73 : Chang, C.C., and Keisler, H.J., Model Theory, North-Holland, 1973.

DecPea88 : Dechter, R., and Pearl, J., Network-Based Heuristics for Constraint-
Satisfaction Problems, Artificial Intelligence 34, 1988, 1-38.

DeMePe89 : Dechter, R., Meiri, 1., and Pearl, J., Temporal Constraint Satisfac-
tion, Proceedings of the First International Conference on Knowledge Repre-
sentation and Reasoning (KR89), Morgan Kaufmann, 1989, pp 83-93.

Fre78 : Freuder, E.C., Synthesizing Constraint Ezpressions, Communications of
the ACM 21 (11), Nov 1978, 958-966.

Giis89 : Giisgen, H.W., A Universal Constraint Programming Language, Proceed-
ings of the 11th IJCAI, 1989, Detroit, Michigan.

GiisHer88 : Giisgen, H.W., and Hertzberg, J., Properties of Local Constraint
Propagation, Artificial Intelligence 36, 1988, 237-247.

HeMoTa?? : Henkin, L., Monk, D., Tarski, A., Andréka, H., and Németi, I.,
Cylindric Set Algebra, Lecture Notes in Mathematics, , Springer, 1977.

Lad87.2 : Ladkin, P.B., The Completeness of a Natural System for Reasoning
with Time Intervals, Proceedings of the 10th International Joint Conference
on Artificial Intelligence (Milano, Italy), Morgan Kaufmann 1987, 462-467,
also available as Kestrel Institute Technical Report KES.U.87.5.

Lad87.3 : Ladkin, P.B., Models of Azioms for Time Intervals, Proceedings of
AAAI-87, the Sixth National Conference on Artificial Intelligence, Morgan

Kaufmann 1987, 234-239, also available in a longer version as Kestrel Institute
Technical Report KES.U.87 4.

Lad87.5 : Ladkin, P.B., Constraint Satisfaction in Time Interval Structures I:
Convez Intervals, Kestrel Institute Technical Report KES.U.87.11, 1987.

Lad88.1 : Ladkin, P.B., Satisfying First-Order Constraints about Time Intervals,
Proceedings of the 7th National Conference on AI, (AAAI-88), 512-517, Mor-
gan Kaufmann 1988.

26

LadMad87 : Ladkin, P.B. and Maddux, R.D., The Algebra of Convez Time In-
tervals, Kestrel Institute Technical Report KES.U.87.2.

LadMad88.1 : Ladkin, P.B., and Maddux, R.D., Representation and Reasoning
with Convez Time Intervals, Kestrel Institute Technical Report KES.U.88.2,
also submitted for publication.

LadMad88.2 : Ladkin, P.B., and Maddux, R.D., On Binary Constraint Networks,
Kestrel Institute Technical Report KES.U.88.8.

LadMad88.3 : Ladkin, P.B., and Maddux, R.D., On the Parallel Complezity of
Path-Consistency Algorithms, preprint.

LadMad89.1 : Ladkin, P.B., and Maddux, R.D., The Algebra of Constraint Sat-
isfaction and Temporal Reasoning, submitted for publication.

Mac77 : Mackworth, A.K., Consistency in Networks of Relations, Artificial Intel-
ligence 8, 1977, 99-118.

Mac87 : Mackworth, A.K., Constraint Satisfaction, in the Encyclopedia of Artifi-
cial Intelligence, ed. S. Shapiro, Wiley Interscience 1987.

MacFre85 : Mackworth, A.K., and Freuder, E.C., The Complezity of Some Poly-
nomial Network Consistency Algorithms for Constraint Satisfaction Problems,
Artificial Intelligence 25, 65-74, 1985,

Mei89 : Meiri, L., and others, post-presentation discussion of DMP at KR89 con-
ference.

MohHen86 : Mohr, R., and Henderson, T.C., Arc and Path Consistency Revisited,
Artificial Intelligence 28, 1986, 225-233.

Mon74 : Montanari, U., Networks of Constraints: Fundamental Properties and
Applications to Picture Processing, Inform. Sci. 7, 1974, 727-732.

Smi88 : Smith, D.R., The Structure and Design of Global Search Algorithms,
Kestrel Institute Technical Report KES.U.87.12, 1988; also submitted for pub-
lication.

Tar4l : Tarski, A., On the Calculus of Relations, Journal of Symbolic Logic 6,
1941, 73-89.

vBeCoh89 : van Beek, P., and Cohen, R., Approzimation Algorithms for Temporal
Reasoning, Proceedings of the 11th IJCAI, 1989, Detroit, Michigan.

27

VilKau86 : Vilain, M., and Kautz, H., Constraint Propagation Algorithms for
Temporal Reasoning, Proceedings of AAAI-86, 377-382, Morgan Kaufmann,
1986.

28

