Parallel Path-Consistency
Algorithms for
Constraint Satisfaction

Peter B. Ladkinl, Roger D. Maddux”
TR-89-045
August, 1989

Abstract

This paper concerns heuristic algorithms used for solution of Boolean ConstraintSatisfaction Problems, or CSPs [Mon74,
Mac77, Fre78 Mac87]. CSPs occur particularly in areas of artificial intelligence such as vision, temporal reasoning, and truth-main-
tenance systems. The most common form involves binary constraints and we consider properties of binary CSPs only (we shall omit
the adjective from now on). CSPs may be represented by labelled digraphs called binary constraint networks, or BCNG. Many
constraint satisfaction techniques operate upon BCNs. An important property of BCNs is that of path-consistency, which is used
extensively as a heuristic for solving CSPs (many classes of CSPs are NP-hard, e.g. {VilKau86]). Every BCN has a path-consistent
reduction, and it is known that algorithms for computing it are serial O(n>) in the number of variables [Mac77, Fre78, Ali83, MacFreSs,
MohHen86].

We have formulated CSPs and path-consistency comgutations in the framework of Tarski’s relation algebra, and give a brief
overview below (Tar41, LadMad88.2]. We give a parallel O(n” logn) algorithm for achieving path-consistency. We also give a class
of hard examples on which all algorihtms proposed so far, and possible parallelisations of them, take time 6(n?). This cffectively
constrains parallel path-consistency algorithms of the most common form (which we glorify with the name of reduction-type) within
a fairly narrow asymptotic range.

In the next section, we introduce the relation-algebraic formulation of CSPs. We formulate some algorithms in the following
section, ending with the O(n? log n) parallel %ath-consistcncy algorithm. In the final section, we describe the class of problems on
which the reduction-type algorithms take 6(n*) time.

L. International Computer Science Institute, Berkeley, California and Kestrel Institute, Palo Alto, California. Partially supported
by DARPA contract N00039-88-C-0099 to Kestrel Institute, administered by the U.S. Navy. The views and conclusions expressed
in this paper are those of the authors and should not be interpreted as representing the official policies, either expressed or implied,
of Kestrel Institute, or any agency of the United States Government.

2. Dept. of Mathematics, Iowa State University, Ames, Iowa.

Parallel Path-Consistency Algorithms for Constraint
Satisfaction

Peter B. Ladkin™
Kestrel Institute
3260 Page Mill Road
Palo Alto, Ca 94304
and
International Computer
Science Institute
1947 Center St.
Berkeley, CA 94704

Roger D. Maddux
Department of Mathematics
Iowa State University
Ames, lowa 50011

Extended Abstract

1 Synopsis

This paper concerns heuristic algorithms used for solution of Boolean Constraint Satis-
faction Problems, or CSPs [Mon7{, Mac77, Fre7s, Mac87]. CSPs occur particularly in
areas of artificial intelligence such as vision, temporal reasoning, and truth-maintenance
systems. The most common form involves binary constraints and we consider properties
of binary CSPs only (we shall omit the adjective from now on). CSPs may be repre-
sented by labelled digraphs called binary constraint networks, or BCNs. Many constraint
satisfaction techniques operate upon BCNs. An important property of BCNs is that of
path-consistency, which is used extensively as a heuristic for solving CSPs (many classes
of CSPs are NP-hard, e.g. [VilKau86]). Every BCN has a path-consistent reduction, and
it is known that algorithms for computing it are serial O(n3) in the number of variables
[Mac77, Fre7s, All83, MacFre85, MohHend6].

We have formulated CSPs and path-consistency computations in the framework of
Tarski’s relation algebra, and give a brief overview below [Tar41, LadMad§s. 2]. We give
a parallel O(n? log n) algorithm for achieving path-consistency. We also give a class of
hard examples on which all algorithms proposed so far, and possible parallelisations of
them, take time 6(n?). This effectively constrains parallel path-consistency algorithms of
the most common form (which we glorify with the name of reduction-type) within a fairly
narrow asymptotic range.

"The first author was partially supported by DARPA contract N00039-88-C-0099 to Kestrel Institute,
administered by the U.S. Navy. The views and conclusions expressed in this paper are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied, of Kestrel
Institute, or any agency of the United States Government.

In the next section, we introduce the relation-algebraic formulation of CSPs. We
formulate some algorithms in the following section, ending with the O(n? lag 1) parallel
path-consistency algorithm. In the final section, we describe the class of problems on
which the reduction-type algorithms take #(n?) time.

2 Relation Algebra and CSPs

We define binary constraint satisfaction problems, their associated networks, the con-
cept of path-consistency, and the most general path-consistent reduction of a network A,
MGR3(A). We give a general formulation of reduction-type algorithms for M GR5(A),
and obtain the parallel O(n? log n) algorithm.

Binary Constraint Satisfaction Problems

A binary CSP, or BCSP, is given by a formula (Pi(z1) A ...Py(zn) A Pia(ag,20) A
Pialay,83) K i A Pa_in(®n_1,2,)), where the P; and P;; are predicate symbols
representing constraints on the variables z;. The constraints are binary relations, i.e. sets
of pairs of objects from some domain. Thus we may freely use set-theoretic operations
such as union and intersection on these constraints, as we shall below, along with other
operations specific to binary relations. A BCSP is satisfied by finding values for the
variables which satisfy the formula. The unary constraints represent domain constraints
on values for each of the variables, and the binary constraints are usually of the form
Pij(zi,z;) = ((2i Byzj) V (e By 25)) where the R, are a fixed collection of
disjoint ‘basic’ relations over the domain of interest. For examples, and bibliography, see
the survey [Mac87]. A BCSP may be represented as a labelled digraph, called a binary
constraint network or BCN, where the nodes represent the variables, and the labels on
the edges represent the constraint between the variables at the head and tail. Unary
constraints are represented as edges with the same head and tail. See Figure 1 for an
example of a BCN (with only one edge between a given node pair). We shall always
consider a BCN to be a complete graph, with the universal constraint labelling the edge
between any pair of variables not otherwise constrained (the universal constraint is the
universal relation, which contains all pairs of values from the domain. See below). These
conventions are necessary for the definition and computation of path-consistent networks,
as we shall see.

2.1 Regular BCSPs

A BCSP is regular if there is only one constraint between a given pair of variables. A
regular BCSP may be represented as a BCN with a single directed edge between a given
pair of nodes. See Figure 1. For any BCSP there is an easily computable regular BCSP
with the same set of solutions. First we define the converse R~ of a relation R by
the equivalence 2R~y =4y yRz. Suppose a nonregular BCSP has both constraints
P;j(z;,2;) and Pj(z;,7;). Note that Pj(zj,2;) = (Pji)~(2i,2;), so we may replace
both constraints by the single constraint R(z;,z;) where R is a symbol for the relation
(PN Py). It is trivial to show that {a,b) € P;; and (b, a) € Pj; if and only if {a,b) € R. (if

the reader will forgive the terminological abuse of identifying a relation with its symbol).

. Py3 i3

Pro(z1,22) A Pis(z1,23) A Pra(e1,24) A Pas(22,23) A Poy(22,24) AN Pia(23,24)
(No unary constraints are shown)

Figure 1: A regular BCN in 4 variables

Thus the new BCSP is both regular, and has the same set of solutions as the original BCSP.
Henceforth we shall assume that the BCSPs are all regular, and use the conventions that
P;; appears as a constraint if i < j, and that the constraint on the edge [7,7] with 7 > ¢
is (P;)~.

2.2 Normal BCSPs

A BCSP is separated if no constraint on any pair of variables is the identity relation.
To every BCSP corresponds a separated BCSP with the same set of solutions, using the
following algorithm. Suppose P;; is the identity relation, and { < j. Omit the constraint
Pij(z;, ;) and replace every pair of constraints (where & > 7) Pi(2i,) and Pj(z;, zx)
by the single constraint R(z;,zx), where R is a symbol for the relation (P 0 Pj) (and
mutatis mutandis for the cases k < i and ¢ < k < j). It is straightforward to show how
solutions to the new BCSP and solutions to the old BCSP are related by simply copying
values for z; as values also for z;. A BCSP is normal if it is regular and separated. We
use the same terminology for BCNs.

2.3 Path Consistency

Given binary relations R(z,y), S(z,y), the composition R o S of the relations is defined
by

(RoS)z,y) % (3z)(R(2,2) & S(z,y))
So (a,b) € (Ro S) if and only if there is a value ¢ such that (a,¢) € R and (e,b) € 5.
Now, for any satisfying values ay, ..., a, for the variables z|, ...z, we must have, by this
definition, {e¢;,ax) € Py = (aj,) € Pijo Py, for any ¢,j. & < n. This necessary

condition may be used as a pruning technique to narrow down the potential choices of a;
and ay. '

We give the definition for BCNs. A BCN A4 is said to be 3-consistent ift for any
i,J,k < n we have Py C P;; o Pjx. It was shown in [Mon74] that 3-consistency is
equivalent to the seemingly more general concept of path-consistency, so we shall follow
standard practice and conflate the two notions. (Path-consistency says that the label on
any edge in the network is contained in the composition along any path beginning at
the tail of the edge and ending at the head. 3-cousistency is just path-consistency for
paths of length 2). The practical importance of pruning by path-consistency lies in its
O(n?®) complexity, and it has been widely used as a heuristic for satisfiability (which is
NP-hard in many cases), as we shall note below [Mon7/, Mac77, Fre?8, All83, MacFre85,
MohHen86, VilKau86].

A reduction A’ of a network 4 is a network with the same nodes such that the labels
on each edge of A’ are a subrelation of the labels on the corresponding edge of 4. There
is a most-general path-consistent reduction, M GR3(A), of any network A, i.e. a path-
consistent reduction such that any path-consistent reduction of 4 is a reduction of it
[LadMad88.2]. Tt follows that A and MGR3(A) have the same set of solutions. Most
path-consistency algorithms compute M GR3(A4), which may be accomplished in serial
cubic time [MacFre85, MohHen86]. We shall show that MGR3(4) may be computed in
parallel O(n? log n) time, and that there is a class of networks on which reduction-type
algorithms for MG R3(4) (which include all published algorithms, and all parallel versions
of them) take time O(n?).

2.4 Relation Algebras and BCNs

In [LadMad88.2], we showed that the appropriate framework for developing the theory of
BCNs is the relation algebra of Tarski., An algebra of relations is a collection of binary
relations over a domain D (which may be defined simply as the union of the differ-
ent domains of the relations) which is closed under the operations of sum (set-theoretic
union), product (set-theoretic intersection), composition, converse (both defined above),
and containing the empty relation (the empty set), the universal relation on D (the set
{{x,y) : z,y € D}) and the identity relation (the set {{z,2) : 2 € D}). These oper-
ations are needed for roughly the following reasons. A general constraint in a BCSP is a
sum of primitive relations; product is used in ensuring a BCSP is separated; product and
converse are needed for ensuring a BCSP is regular; product, converse and composition are
needed (as shown below) for computing MG R3(A); the universal relation is needed as a
constraint on variables not otherwise constrained (note the definition of path-consistency
requires that constraints on all possible pairs of variables be checked); if the empty re-
lation constrains any pair of variables, then the BCSP is unsatisfiable (the possibility of
this happening during the computation of MGR5(A4) is the cubic time hLeuristic for sat-
isfiability mentioned before); the identity relation is needed for identifying networks that
are not separated. We note further that the subset relation is definable equationally using
these operations, since (P C R) & (P =(PnNR)).

Strictly speaking, we use symbols to represent the relations in a BCSP, and therefore
we should use operations on the symbols which denote the corresponding operations on

the relations that the symbols denote. We shall use + for U, - for N, = for —, the semicolon
', for o, and 1, 0 and 1’ for the universal relation, empty relation and identity relation
respectively (these symbols are traditional in relation algebra). We shall henceforth use
these symbols in terms that label the edges of a BCN. Their denotations are the corre-
sponding actual relations. We shall also use the symbol < on terms for the partial order
given by the subset relation on the relations.

An algebra of relations may be generated from any collection of binary relations by
closing off under the operations in the usual manner. This algebra may be finite or
infinite, depending on the relations one starts from. (Finiteness of the algebra should be
distinguished from finiteness of the domain. There are many finite algebras with infinite
domains, although of course the converse is impossible). If the algebra is finite, then there
is always a collection of atoms, namely non-empty relations which are mutually disjoint.
and such that any other relation in the algebra is a union of some of the atoms. (This
follows from the fact that a relation algebra is a Boolean algebra with extra operators that
distribute over sum, along with standard facts about Boolean algebras). These atoms form
the primitive relations that many BCSPs are defined from. They are minimal non-zero
elements in the ordering < defined from the subset relation.

3 Algebraic Path-Consistency Algorithms

In this section, we formulate algorithms for path-consistency using the algebra developed
so far. We give the general path-consistency algorithm in the form of a scheme, ignoring
details of the iteration, because our purpose is to obtain an asymptotic result for all
possible parallelisations. This scheme leads directly to the formulation as an algorithm
over relational matrices, which give the upper bound result.

A test for path-consistency is a test whether P;; < (Py ; Pyj) for every i, j,k < n.
The following facts were all shown in [LadMad88.2, LadMad88.8]. The following algorithm
scheme computes M GR3(4).

Path Consistency Algorithm: Given a BCN 4, Iterate until o more changes: For
every triangle (¢,k,j) in A: do Pj; « P;j - (Pix 3 Pij)-

The scheme allows iteration for a given triangle and enumeration over triangles to
be combined in any way, serial or in parallel. This computation may be stopped if the
label 0 ever appears on an edge, since the BCN is unsatisfiable, but we omit this minor
modification here. Published algorithms all seem to have this structure, with attention
paid to clever ways to enumerate the triangles. The computation of M GR3(A) may be
regarded as computing the greatest fixed point of the following sets of equations (i.e. the
collection of largest possible r;; satisfying)

rij < Py
rij = rij - [[(rie s 7a5)
K

where the symbol []; denotes the product taken over all k¥ < n. This observation leads
to the representation of BCNs by (n x n) matrices of relation symbols, where the matrix

]

M corresponding to the BCN A4 has entries M;; = P;j. We call such a matrix a relational
matriz. Relational matrix product and composition are defined by the following schemes

(jf 4 “'IIJU = ﬂfu » (_’1’.{!),“,'

(M ; ﬂ-f'),‘j = H M s (iu—!)kj

k<n

Define also the power M™ by the usual induction,
M!'=M,

MM = (M) M

So, for example, M? = (M ; M). Then the relational matrix corresponding to MGR3(A)
may be computed by the following algorithm

Matrix Reduction Algorithm: Repeat M «— M - M2 until M < M2,

The matrix algorithm gives to the upper bound result. However, the formulation in
terms of triangles is actually a more general scheme than the matrix formulation, since
implicit in the matrix algorithm is that the intermediate matrices should be computed,
whereas there is no such restriction in the triangle formulation. We refer to the triangle
formulation as ‘the scheme’.

Intermediate Normalisation We note in passing that it may be practically useful to
apply the normality algorithm at specific points during a computation of 3/ GR3(4). This
issue is tangential to our immediate concerns.

3.1 The Upper Bound Result

We first discuss the complexity of the multiplication step. The formal similarity of rela-
tional matrix composition to a normal matrix product leads to the estimate of parallel
O(log n) time for a single matrix composition calculation, by the usual argument. This
result for matrix multiplication would require up to n* processors. However, by a counting
argument due to Steve Omuhundro [Omo89], we may reduce the number of processors
to O(n), by ‘folding’ some of the computation, since the computation involves at most
O(n?) discrete operations. This means that the algorithmn is indeed practical, since it is
reasonable to require as many processors as we have nodes in the BCN.

Now we consider the iteration step. The reduction algorithm iterates if a label is
changed as a résult of the composition. Labels may change only to smaller labels in the
algebra, and since each label is a sum of atoms, it is easy to see that the number of such
smaller labels is bounded by the number of atoms if the algebra is finite, and is therefore
independent of the number of variables in the BCSP [LadMad88.2]. This bounds the
number of iterations on which a given label may change. There are n2 such labels, and
therefore the algorithm may proceed through up to O(n?) iterations, leading to a parallel
upper bound of O(n?logn) for the computation of MG R3(A). We don’t bother to analyse
the iteration more thoroughly, since our class of hard examples in the next section will
show that in some cases #(n?) steps are necessary.

4 A Class of Hard Examples

In this section, we give a class of hard examples for algorithms of the kind we have
been considering. First, we attempt to loosely classify the algorithms by discussing the
characteristics that make algoithms susceptible to the hard examples. We call these
algorithms reduction-type.

Reduction-Type Algorithms Loosely speaking, we call an algorithm a reduction-type
algorithm if it computes M GR3(A) by successive intermediate reductions. Our discus-
sion here is somewhat vague, but important in that we need to note the characteristics
of algorithms that will be susceptible to the hard examples. Someday, someone might
invent a computation that is not equivalent to a reduction-type algorithm, but so far
published algorithms for M GR3(A) seem to be equivalent to reduction-type algorithms.
Since reduction-type algorithms must replace labels in the algebra by other labels in the
algebra, to every reduction-type algorithm there corresponds an instance of the scheme, in
the sense that there is some enumeration of triangles (with repetition) such that with that
enumeration the scheme passes through the same intermediate steps as the reduction-type
algorithm. Furthermore, the steps of a reduction-type algorithm that do not result in in-
termediate stages of the scheme may be omitted as superfluous, since one might as well go
to the lowest label necessitated by a given triangle-consistency check. We shall therefore
formally identify reduction-type algorithms with instances of the scheme for the purposes
of this paper. Reduction-type algorithms may be serial or parallel, and for practical pur-
poses parallelism can give great speedups in computations. For example, one may formally
assign a processor to each edge [i, j] of the BCN, which computes P;; «— P -[[¢(Pix; Prj)-
The speed of such a computation depends on the topology of the processor network, as
well as decisions concerning eager or lazy evaluation.

4.1 The 8(n?) Examples

In order to define the example networks, we first have to define the algebra of relations
which provides the relation labels for the networks. So, first we define a certain algebra of
relations A. We shall not present the relations explicitly, but instead give the atoms, the
converses of the atoms, and the compositions of atoms. This suffices to define to define
any relation algebra [Tar{1, LadMad88.1, LadMad88.2], and it does not matter to us what
the actual relations are, since our interest is in the hard examples they produce, not in
the relations themselves. We then define a class of matrices N for k any positive integer
which is a multiple of 5, all similar, with constraints from A, such that any reduction-type
algorithm passes through O(k?) intermediate networks while computing MGR3(Ng).

The Algebra A. The atoms of A are 1, 4, b, and c¢. Every atom is symmetric, i.e.
¢~ = z for every atom z. It follows from general relation algebra that every element in
the algebra must be symmetric. We define 0/, the diversity element, to be the complement

of I',i.e. (1')~ whichis e+ b+ ¢ in A. We define relation composition on the atoms thus:
a;b=bja=b;e=ce;b=0=a+b+e¢

bibi=igy pi=1

|

a; e=¢; a=0b+4¢
a;a=c " =1"4+a+b

Since converse and composition have been defined over the atoms, they are thus defined
over the whole algebra, since both of these operations distributes over sum [LadMad$8.2].
We shall need to know the following compositions. Firstly, (a+c);(at+e)>(c;e)=1,
since composition commutes with +. Similarly, from the table (a4¢);a=a; (a+¢) =
(a+b);(at+c)=(a+c);(a+b)=1,and (a+d); (a+d)=

The Examples Ni. Ny is defined as follows, for k a multiple of 5, say k& = 3m. The
nodes fall into 5 types of m nodes each, namely vy, ..., 00, W1y .ery Wiy T1sees Ty Ylyveey Ynin
21y .. 2n. The entries in Vi are

N(vi,wi)=a

N(vi,viq1) = a, i=1,...m=-1
Niwsa:) =6, i P
Nz =a, 12 Lo
N2 =@, o

Nz 0541) = a, i = Lyume=1

;\'r("-’i: 'Uj) =a+ e, hj=1..,m

1l
i

N(yi,vj)=a+e¢, 1,7
N(zi,vm) =a+e, t=.. .
N(z,v)=a+c, 12 Ly

For all other distinct nodes s,¢, N(s,t) = a + b, and for any node s, N(s,s) = 1. Figure
2 illustrates a way to think of an arrangement of the nodes. Not all the edges are drawn.
The horizontal edges shown, and the diagonal edge [vy, wy], are labelled with a. The z;
are each connected to vy with an edge labelled (a + ¢), as are the z; to vy, and the w;
and y; to each of vy, ...,vy. All other edges are labelled with (@ + b). We call a triangle
closed ([Mon74)) if it is path-consmtent as a subnetwork. There is precisely one nouclosed
triangle in the network, namely (v, v, wq). Closing this triangle changes the label on edge
[wy, vo] to a, making the neighboring triangle (wvg, v3, wy) now nounclosed, in an isomorphic
manner. The computation proceeds through the triangles, closing one triangle and in so
doing making a single neighbour nonclosed. Edges change from labels (a + ¢) to label
a, one at a time per iteration, so that at each intermediate state there is just one non-
consistent triangle, with two edges labelled a, and one edge labelled (a + ¢). The seed
triangle is {vy, vz, w;}, and the edges change in the following order.

[IUI.bg] wl, Uq] [.’L‘l U]

[?Jlsvd]:' wary [?}11 Ul]s [zla'vl]}
[wa, v1], .oy [wa, v4), [22, 4],

[y21 i‘-"4]1 ---1[5"2:'3]._]! [527 Ul]a

In the general case, replace 4 by m, and the number of edge-label changes is (2m(m +
1) —1). Thus there are (2m(m + 1) — 1) intermediate states, so path consistency for this
class of examples is 6(n?) for reduction-type algorithms, parallel or serial.

5 Summary

We have introduced an algebraic approach to binary Boolean constraint satisfaction prob-
lems, and have used algebraic techniques to obtain an algorithm which operates in parallel
O(n* log n) time on n processors, where n is the number of variables in the CSP. We
have also given a class of hard examples for CSP algorithms, on which algorithms known
so far, and all possible parallelisations of them (including ours) take time (n2). We have
also attempted to discuss characteristics of the reduction-type algorithms that make them
susceptible to the hard examples.

24 Y4
\
Wy Ly
<3 U3
\
wa T3
Z2 72
\
wy _ R
B) \
i I
{E51 va U3 Ty

All the lines shown are labelled with «.

All the z; are connected to vy (vertically), labelled (a + ¢), not shown.
All the z; are connected to vy (vertically), labelled (a + ¢), not shown.
All the w; and y; are connected to all the v;, labelled (« + ¢), not shown.
All edges not shown are labelled with (a + b).

Figure 2: The arrangement of Ny for m = 4

10

Bibliography

All83 : Allen, J.F., Maintaining Knowledge about Temporal Intervals, Comm. A.C.\.
26 (11), November 1983, 832-843.

DecPea88 : Dechter, R., and Pearl, J., Network- Based Heuristics for Constraint-Satisfuction
Problems, Artificial Intelligence 34, 1988, 1-38.

Fre78 : Freuder, E.C., Synthesizing Constraint Ezpressions, Communications of the
ACM 21 (11), Nov 1978, 958-966.

LadMad88.1 : Ladkin, P.B., and Maddux, R.D., Representation and Reasoning with
Conver Time Intervals, Kestrel Institute Technical Report KES.U.88.2, also sub-
mitted for publication.

LadMad88.2 : Ladkin, P.B., and Maddux, R.D., On Binary Constraint Networks,
Kestrel Institute Technical Report KES.U.88.8.

Mac77 : Mackworth, A.K., Consistency in Networks of Relations, Artificial Intelligence
8, 1977, 99-118.

Mac87 : Mackworth, A.K., Constraint Satisfaction, in the Encyclopedia of Artificial
Intelligence, ed. S. Shapiro, Wiley Interscience 1987.

MacFre85 : Mackworth, A.K., and Freuder, E.C., The Complezity of Some Polynomial
Network Consistency Algorithms for Constraint Satisfaction Problems, Artificial In-
telligence 25, 65-74, 1985.

MohHen86 : Molr, R., and Henderson, T.C., Arc and Path Consistency Revisited,
Artificial Intelligence 28, 1986, 225-233.

MonT74 : Montanari, U., Networks of Constraints: Fundamental Properties and Appli-
cations to Picture Processing, Inform. Seci. 7, 1974, 727-732.

Omo89 : Omohundro, S.M., personal communication, 1989.

Tar41 : Tarski, A., On the Calculus of Relations, Journal of Symbolic Logic 6, 1941,
73-89.

VilKau86 : Vilain, M., and Kautz, H., Constraint Propagation Algorithms for Temporal
Reasoning, Proceedings of AAAI-86, 377-382, Morgan Kaufmann, 1986.

11

