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Abstract

Given a black box which will produce the value of a k-sparse multivariate polynomial for
any given specific argument, one may ask for optimal strategies (1) to distiguish such a polynomial
from the zero-polynomial, (2) to distinguish any two such polynomials from one other and (3) to
(uniformly) reconstruct the polynomial from such an information source. While such strategies are
known already for polynomials over fields of characteristic zero, the equally important, but consid-
erably more complicated case of a finite field K of small characteristic is studied in the present paper.
The result is that the time complexity of such strategies depends critically on the degree m of the
extension field of K from which the arguments are to be chosen; e.g. if m equals the number n of
variables, then 1) can be solved by k+1 and (2) as well as (3) by 2k + 1 queries, while in case m =1
essentially 2 logn-iog queries are needed.
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0 Introduction

The question of how to interpolate polynomials has a long history in mathe-
matics. The interpolation formulae by Newton and Lagrange for polynomials
in one indeterminate over fields of characteristic 0 of a fixed degree laid the
foundation of numeric interpolation. Many generalizations, e.g. allowing co-
efficients from finite fields and more than one indeterminate, related subjects,
e.g. the Chinese Remainder Theorem, and applications, e.g. various mul-
tiplication algorithms having better asymptotic behaviour than the school
multiplication method, have been studied.

In addition, the question of how to specify appropriate data structures to
store polynomials efficiently, plays an important role, wherever polynomials
occur in algorithms. The methods of sparse representation, i.e. representing
a polynomial. by a list of records containing a non-zero coefficient and the
corresponding exponent, or by straight-line programs - see [IM83] or [K85] -
proved to be very successful. In this context, the problem of finding conver-
sion algorithms from one representation to another, gave further motivation
to study interpolation of polynomials from a slightly different point of view.
Here, rather than the degree, the number of terms of a polynomial is of
importance.



Closely related to the interpolation problem is the somewhat easier prob-
lem to decide by appropriate evaluations in a minimal number of steps
whether a k-sparse polynomial in n indeterminates is the zero polynomial.
Here we assume the polynomial to be given by a straight-line program or,
more generally, as an oracle, i.e. a black box with as many inputs as there
are indeterminates and one output. For any evaluation point as input, it pro-
duces as its output the value of the polynomial at that point. Schwartz has
constructed a randomized NC-algorithm for this problem in [S80]. The cor-
responding interpolation problem was solved also by randomized algorithms
by Zippel [Z79] and Kaltofen [K85]. Unfortunately, for finite fields their re-
sults need strong restrictions on the degree of the polynomial, compare also
[BT83].

A crucial step for the construction of deterministic algorithms for these
problems was the work of Grigoriev and Karpinski [GK87] on finding match-
ings for bipartite graphs. They have developed a new deterministic method
for interpolating k-sparse determinants over fields of characteristic zero. Their
algorithm requires O(k?) queries to the oracle. In [T87] and [BT88] Ben-Or
and Tiwari employed their ideas to use n different primes po, ..., pn_y to
solve the ‘f = 07’-problem over fields of characteristic 0 using only k queries,
namely (p, ...,pl_,) for 0 i < k, and have designed an interpolation algo-
rithm over fields of characteristic 0, using only the 2k queries (pi, ..., pi_,),
0 <2 < 2k. The crucial point is that the uniqueness of the prime factoriza-
tion of integers allows an application of BCH-decoding techniques. A first
application was an algorithm for computing the sparse representations for all
k-sparse irreducible factors of such polynomials, see [KT88].

For the relevant notions and models of parallel computation, in particular
the notion of NC-algorithms and the notion of NC-reducibility, we refer to
[C85] and [KR88]. We shall say that a problem Y is NC-reducible to another
problem X, if the reduction can be computed by a class of uniform (nkq)°-
size and O(log'(nkq))-depth boolean circuits, for some integer [, using oracle
nodes for the problem X (cf. [C85)).

In our paper we consider these problems for k-sparse multivariate poly-
nomials over finite fields with essentially no restriction on the degree of
the polynomials. Sections 2 and 3 are devoted to the ‘f = 07'-problem.
In Theorem 2.4 test sets in extension fields GF(¢™) of GF(q) are con-
structed for any given m, the asymptotic behaviour of their cardinality being
O((n/m)'8*) = O(k'°&("/m)) for small m. If the degree of the extension field
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equals the number of indeterminates, we find a test set of cardinality £+1 in
Theorem 2.3 which is proved to be optimal in case n = 1 in section 3. If we
consider the cases m > 1 we assume to have oracles which accept inputs from
GF(g™). Of course this amounts to the case where the base field is already
GF(q™), but the local degrees of the polynomials under consideration are
bounded by gq.

In the next section various lower bounds for the necessary number of
queries are determined. We show that z}i’(? 5 (’:) is a lower bound for the
important case where no proper field extensions are allowed, which turns out
to be optimal for the field with two elements, see Corollary 2.6 and Theorem
3.2.

Section 4 is devoted to the interpolation problem. As an application of
the results of section 2 and section 3 we describe a method to construct test
sets A which distinguish any two given k-sparse polynomials. However, we
do not know whether these test sets contain enough elements such that a
non-adaptive interpolation algorithm can be derived. Even less do we know
whether such an algorithm can be found in NC.

Finally, we shall show that 1 + 2k — L&%—AJ evaluations over GF(q")
enable us to reconstruct f, where f € GF(q)[Xo,...,Xn_1] is 2 polynomial
satisfying degy (f) < ¢ for all 7. Furthermore, this algorithm shows that the
problem to interpolate over GF(¢") is NC-reducible to the problem of discrete
logarithms, see [COS86]. To do this we combine three tools in order to recover
f: generalized Newton identities, uniqueness of the g-adic representation of
the exponents of non-zero elements in GF(q") with respect to a primitive
element, and finally, the Frobenius automorphism y — y9 of GF(g") which
keeps fixed all elements of GF(q).

In [GKS88] closely related problems have been studied by Grigoriev,
Karpinski and Singer. There it was shown that for given n, k and ¢ one
can find test sets for the ‘f = 07’-problem of order k(1 + (n — 1)(2) ), pro-
vided that one works over a slight extension field GF(¢™) of GF(q) with
m = 2log,(kn). Furthermore an NC-interpolation algorithm is developed in
this situation. This contrasts in a rather intriguing way to our lower bound
z:}l_?g= K (':) for the number of necessary queries in case m = 1.

Our results may have applications in the area of learning algorithms for
the case of boolean formulae, given with respect to the basis (AND, XOR),
and more generally for polynomials over GF(gq), which we would like to



investigate in a subsequent paper (for the case of basis (AND, OR, NOT)
see, e.g. [A88]).

The Interpolation Algorithm of our Section 4 as well as the NC-Inter-
polation Algorithms of Grigoriev, Karpinski, and Singer [GKS88] has been
implemented in the Computer Algebra System Scratchpad II by Thorsten
Werther in the Summer of 1988 at the IBM Heidelberg Scientific Center. Our
algorithm compared favourably with [GKS88] in efficiency for small values
of the products nk.

1 INotation

The most general setting of the questions we are interested in are the follow-
ing ones: For any two sets X and Y and any subset P C X of mappings
from Y into X one may ask for minimal test sets A of ¥ which will allow
to distinguish different mappings in P. Hence we define

B(P):={B|BCY, Vf,g€P,f#g, 3be B (f(b) # g(b))}
and for f € P we define

AP, f)={A| ACY, Vg€ P\{f} Ja€ A (g(a) # f(a))}

and

o(P, f) := min{#A| A € AP, f)}.

If X = K is an arbitrary field and P a linear subspace of KY, then
¢(P,0) = dimP, hence for arbitrary P we conclude ¢(P,0) < dim spangP.
Therefore, w.l.o.g. one may restrict one’s attention to those subsets P C K'Y
which span the whole space KY.

In this note we consider the following special case: For a finite field GF(q)
of prime power order ¢ the ring of (polynomial) maps from ¥ := GF(g)"
into X := GF(q) is isomorphic to GF(q)[Xo, - .., Xn-1], the polynomial ring
in n indeterminates, modulo the ideal generated by X§ — Xo,..., X7, —
Xn_1. We thus may identify the elements of XY with the polynomials f €
GF(q)[Xo,...,Xn-1] satisfying degx.(f) < ¢ for all <.

Let P#(q) denote the set of all such polynomials f which in addition are
k-sparse, i.e. the positive integer k is an upper bound for the number of



non-zero coefficients of f. For given ¢ we want to discuss upper and lower
bounds for the number

ck(g) = ¢(P,0)
where P consists of all polynomials in PZ(g), considered as maps from

GF(q)" into GF(q). In this case we also write A(g) for A(P,0) and Bg(q)
for B(P). More generally, for given ¢ and m we shall consider

ck(g,m) = c(pm: 0)

where P, again consists of all polynomials in PP(q), but now considered as
maps from GF(¢™)" into GF(q™). In this case we also write A}(g,m) for
A(Pr,0) and B}(q,m) for B(Pp).

2 Test Sets and Upper Bounds

To derive upper bounds for ¢f(g,m) by constructing evaluation sets in AP (g, m)
the following observation appears to be crucial.

Lemma 2.1 Letn =n;+ng, A}! € Af!(q,m) and AP € AP2(q,m) for all
ki-ky < k. Then Uk, k< AR X L‘: is a member of Ak(q,m)

Proof. Consider 0 # f € Pg(g) as a polynomial in the indeterminates
Xny -y Xn-1 With polynomial coefficients in GF(g)[Xo, ..., Xn,-1]. The cor-
responding number k; of non-zero terms of f is of course bounded by &, one
of the k; non-zero polynomial coefficients, say fs, has at most & := | £ &)
terms. Hence there exists an eIement a® € A}' such that fa(af®) # 0.
Consequently, f(a(®), Xnyye..Xn-1) is a non-zero kz -sparse polynomial in 7y
indeterminates for which we can find an a® € AP? with f(a®,a®) #0. a

Corollary 2.2 For an arbitrary improper partition n = (7g,...,ms_1) of 1,
ie. mENand DiZjmi=n —inshortn En—andforals <k Zet/-!_:i be
an arbitrary set from A% (q,m). Then Ungurg sy it AR X ATE X Lo x ATo1
is @ member of A%(q,m).



Obviously, corresponding results also hold for arbitrary ground fields of ar-
bitrary characteristic. Corollary 2.2 will be used in conjunction with the
following result.

Theorem 2.3 Let f € GF(q)[Xo,...,Xn-1] be a k-sparse polynomial, k >
2, satisfying degy.(f) < g, for all i, and let w be a primitive element of
GF(q"). Then f is the zero-polynomial if and only if £(0,...,0) = 0 and
i f—] f(w"'?o,w"‘fl,...,w""""l) =0, for ell i satisfying0 <i <k andq )i in
case © > 0. Any set consisting of one element which has no zero components
s a test set for the case k = 1.

Proof. If f € GF(q)[Xo,...,Xn-1] satisfies degx.(f) < g for all 7, then f

is a GF(q)-linear combination of the ¢" monomials X := X§°-...- X7,
where « ranges over all maps in q* := {0,...,q — 1} {O-n-1};
f= ) X"
acqt

Now assume f(0,...,0) = ¢(o,..,0) = 0 and f; =0 for all 7 satisfying 0 <i < k
and g [ ¢ in case 1 > 0. By the properties of the Frobenius automorphism
we have

fia=(fi)H1<j-q<k
and hence f; = 0 for all ¢ satisfying 0 < ¢ < k. The mapping
2\ {(0,---,0)} » GF(g") \ {0}

defined by
Qui= ] o™

0Lv<n

is bijective since 0, = w(X®4"), 5o from the g-adic expansion of the exponent
we can recover a. Let A be any k-subset of g™ \ {(0,...,0)} containing the
support supp(f) := {a:cq # 0} of f. Then

fi= 3  efi=) 0

aeqm\{(0,...,0)} a€EA

for all 0 < 2 < k. Thus we obtain the following matrix equation
(2% )osickaea * (ca)aea = (fi)ogick-
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The k-square matrix () is 2 non-singular Vandermonde matrix since the
§lo are pairwise different. Hence f is the zero-polynomial. The case k =1 is
clear. o

The test set given in the last theorem is an element of A}(g,n) and hence
ct(g,n) < 14+k—|(k—1)/q]. To state the main result of this section we need
the following test sets T*(g,m). Let m < n and let w be a primitive element
of GF(¢™), then the elements of T?(g, m) can be constructed as follows: Split
the n-tuple in blocks of length m, the last one possibly being shorter. The
p-th block is either a zero- block (0 ,0) or equals (w*? W™ ... wH™ )
for an i = 4, such that 1 < i < & w1th g // i ori=0. In the non-zero
case such a block is called an exponent-i-block. In addition the following
condition has to be satisfied:

2#zero—blocks . H (I + 1)#cxponcnt—i—blocks < k.
0<i<k

Corollary 2.2 and Theorem 2.3 together imply:

Theorem 2.4 Let f € GF(q)[Xo,...,Xn-1] be a k-sparse polynomial, k >
2, satisfying degy.(f) < q for alli. Then f is the zero-polynomial if and only
if it vanishes at all elements of T7'(q,m).

Proof. Use the partition 7 := (m,...,m,m;) of n with m; < m in Corollary
2.2 and choose the test sets Az a.ccorchng to Theorem 2.3. Note further that
the occurence of a block of zeros implies that the corresponding &, is at least
2 while in the other cases it is at least 1 + i,,. o

Corollary 2.5 We have

#TP(q,1) = 3 (”)

K=(Agrgal JER
270+52.3%3 . (q-1)"9—-1 <k

and therefore
cr(q) £ #T¥ (g, 1)
as well as

ci(g,m) < #T (g™, 1).



Note that #T(g,1) £ (n- (g — 1))l°& 5, More precise estimates can be
derived from Ch.10, §11 in the book by MacWilliams and Sloane [MS72].

In [GKS88] it is shown by Grigoriev, Karpinski and Singer that ¢f(g,m)
S kl4(n- 1)(’;)), once m satisfies ]‘7‘7-(:;_—11)'] -1>(n- 1)('2‘), this is
certainly true for m > 2log (kn). Using their results instead of Theorem
2.3, the above method can be applied similarly to yield

ilom)s 2 (r§1)°H(H(m—l)(z‘(é)—(5-1)(551)))“,

o=(eay.,02,...)En 1<i<k
292,393 ....<k

where

m—_1 k
Mo :=ma.${ﬁ. X r?%(_(;r—:_l—):l -1> (ﬁ—l)( )}.
This result is interesting for n 3> ¢™/*k. |

In the next two corollaries important special cases are considered.

Corollary 2.6 Let f € GF(2)[Xo,...,Xn-1] be a k-sparse polynomial sat-
isfying degy.(f) < 2 for all i. Then f is the zero-polynomial if and only if
all f(a) =0 for all a € T{(2,1), the set of all elements from GF(2)" having
at most |logsk| zero positions. Hence cf(2) < Liog* (“)

Corollary 2.7 Letw be a primitive element in GF(q). Then the set {(1,...,1)}U
{a € GF(q)" : a, € {0,w} for one v and a, =1 elsewhere } is a test set to
decide whether a binomial is 0. Hence

" l+n, ifg=2
(Q)S{HZR, ifg#2°



3 Lower Bounds

In this section we determine lower bounds for c}(gq,m). As every k-sparse
polynomial can be split into a difference of a |k/2|-sparse and a [k/2]-
sparse polynomial, a set A € A}(g,m) has to contain an element where these
polynomials have different values. Hence the map

Pi}c!?}(q) - GF(qm)Al fr (f(a))aEA

must be injective. Therefore

#Pls2y(9) < #GF(q™)%,
that is
]_ Lk/'zJ qn :
m logq( Z ( ; ) (g=1)) £ ck(g,m).
1=0

Besides this trivial result our first aim is to show that in case m = 1 it
is not possible to decide the question whether a k-sparse polynomial is the
zero-polynomial knowing only polynomially many (in k¥ and n) evaluations.
We show that the number of necessary evaluations in this case is pseudo-
polynomial: Q(n'°6*) = Q(¥'%%") as long as k is substantially smaller than
2

Theorem 3.1 Assume A € AZ(q), that is, A is a test set of evaluation points
in GF(q)" which enables us to decide whether a k-sparse polynomial f €
GF(q)[Xa,...,Xn_1] satisfying degy.(f) < q for all i, is the zero-polynomial.
Then for every subset T C {0,...,n — 1} such that #T < |logok| the set A
contains an element o = (al,...,al_)) with T = {i : aT = 0}. Hence A
has at least E}I:g’ Kl (’:) elements, i.e.

% () sa0

i=0
Proof. For every subset T' C {0,...,n — 1} such that #T < |log,k| define a

polynomial
pr=[(XI" -1)- T X
i€T igT
These polynomials have the following properties:

10



1. pr is k-sparse.
2. pr(a) #0 if and only if {i:a; =0} =T.

The first property follows from 2#T < 2lloszk] < k. the second from the fact
that the zeros of X{~' — 1 are exactly the elements of GF(q) \ {0}. Hence,
to distinguish such a polynomial and the zero-polynomial, there has to be an
element aT, as claimed, in the set A. o

In case ¢ = 2 we may combine Corollary 2.6 and Theorem 3.1 to determine
c2(2) exactly:

Theorem 3.2

a@= 3 (1)

i=0 \?

We state the following important corollary which also can be interpreted

for the case of n-ary boolean functions with k terms with respect to the basis
(AND, XOR).

Corollary 3.3 Let f € GF(2)[Xq,...,Xn_1] be a k-sparse polynomial satis-
fying degx.(f) < 2 for all i and given by an input black boz oracle, then there
ezists an algorithm for deciding over GF(2) whether f is the zero-polynomial
using O(n'°6¥) queries to the oracle. The algorithm is optimal with respect to
the number of queries to the oracle taken by any (adeptive or non-adaptive)
algorithm for this problem.

The above result compares interestlingly with the lower bounds known
for boolean functions in different bases (cf. eg. [A88]). It proves also im-
posibility of polynomial time (or NC-)algorithms for the general sparse poly-
nomial interpolation with input oracles over finite fields without proper field
extensions (the lower Q(n'°¢k)-bound for the number of queries, works for ar-
bitrary finite fields GF(g), see Theorem 3.1). For the general framework on
computation with the input oracles the reader is also referred to [KUWS5).

The next result where upper and lower bounds coincide is the case n =
1 =imn:
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Lemma 3.4 . _
@)= {k+1q}, ifb22
4 1; ifk=1

Proof. (Compare the proof of Theorem 7 in [BT88]) If k = g, then indeed
cz(9) = g, since any map GF(gq) — GF(q) is in P}(q). If ¢ > k > 2 and
A C GF(q) has cardinality k, then if 0 & A the polynormal fi=X"1-11is
k-sparse and vanishes on A. If 0 € Athen f := [[;ea\(0}(X —a) is a non-zero
polynomial in GF(q)[X] of degree at most k — 1. Hence f and therefore also
X - f have at most k monomials and the latter vanishes on A. The upper
bound is given by Corollary 2.5. Finally, if k¥ = 1, one needs precisely one
evaluation to check whether f = 0 holds. o

The next result covers the case of binomials and the proof of the theorem
may give a hint about the difficulties which may arise while trying to prove
sharp lower bounds for k£ > 3.

Theorem 3.5 Let ¢ > 2 and let w be a primitive element of GF(q). Assume
A € A3(q), that is A is a set of evaluating points in GF(q)" which enables
us to decide whether a binomial f = o X+ cs XPsatisfying degy,(f) < q for
all i, is the zero-polynomial. Then A contains at least 2n + 1 elements in
particular we have

cz(g) =2n+1.
Proof. Assume a set 4 € A7(k) is given. We shall show that A contains n
elements a®) = (o, ...,a",),0 < 4 < n with the property
e =0 if and only if p=v.

Furthermore A contains n + 1 further different elements a™ n < i < 2n
having no zero components, i.e there exist 0 < () < g—1 such that a("+#) =

Wt ,0< 1< n,0 <v < n. We define

=X -1)- [ Xu€Pp(e), 0S v <.
uFv

12



These polynomials have the property
pv(a) #0if and only if a, =0,a, # 0 for p #v.

Hence the first assertion follows.

Now suppose that there are at most 72 < n elements with no zero components.
We shall construct a binomial that vanishes on A. For that purpose we
construct some & = (ag,...,@n-1) € {0,...,¢ — 2}" and some ¢ € GF(q)
such that o # (0,...,0) and a* := [[?=} @% = c for all elements a € A
having no zero components. We denote these elements and their exponents
with respect to w as in the theorem by a("*#),0 < g < & and d¥), If ¢ = w?

then the last condition is equivalent to
whmo e w?, 0 < ,u <t
which is equivalent to
(b,(f‘))o_gp<ﬁ,05p<n “(ow)ocven = (d,...,d)" over Zf(q —1)ZZ.
If the linear map
(Z/(a~1)Z)" ~ (Z/(a~ )Z)* defined by (ogucnosver

is not injective, then clearly there exists some non-trivial a for d = 0 sat-
isfying the above equation. If the map is injective and therefore bijective,
in particular n = f, then we may choose d = 1 and « as the unique and
necessarily non-trivial pre-image of (1,...,1). In any case

fi=Xo Xy e Xny - (X =)
will vanish on A. Hencein a set A € AJ(q) there are at least n 4 1 elements

without zero components. o

Let us finally remark that even in the case m = 1 our upper bound
#T(g,1) does not coincide with c(q), e.g. it can be shown that ¢3(3) < 32,
while #T(3,1) = 33. Nevertheless it appears to be very close to cf(q).
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4 Interpolation

We first solve the problem to distinguish two k-sparse multivariate polynomi-
als over GF(q). With the notation of Section 1 we have to construct elements
of B}(g,m). Fortunately, all the work is reduced to the construction of the
test sets in Section 2 by the following

Lemma 4.1 B(g,m) = A%(g,m).

Proof. Assume B € B}(g,m) and 0 # h € Pj.(q), then there exist polyno-
mials f, g in P2 (g) such that h = f—g. Furthermore, there exists some b € B
with f(b) # g(b), hence h(b) = f(b) — g(b) # 0 which implies B € A3 (q,m).
On the other hand assume A € A5 (¢,m) and f,g in PZ(g). Then h:= f—g
is in Pz (q). Furthermore, there exists an ¢ € A with h(a) # 0, hence
f(a) # g(a) which implies A € B}(g,m). o

It is also clear that the lower and upper bounds carry over at once. Let
us remark that for any A € A%, (g,m) the evaluation map

Ta: Pi(g) = GF(g™)*, f = (f(a)aea)
is injective. In particular there exist a left inverse
®4: GF(q™)* — PL(q).

However, it is by no means clear whether the construction of an algorithm
which represents some ®4 can be done uniformly for n, k, ¢ and m.

In the following theorem we construct a set of 1 42k — [_2;‘ 1] evaluation
points which enable us to reconstruct f in case m = n.

Theorem 4.2 Let f € GF(q)[Xo,...,Xn-1] be a k-sparse polynomial sat-
isfying degy,(f) < q for all 1, and let w be a primitive element of GF(q").
Then in order to construct f it suffices to know the values f(0,...,0) and
fi = fW?,0', ..., w""") for all i satisfying 0 < i < 2k and ¢ ,{ i. tior
all ¢ satisfying 0 <1 < 2k and q /1.

14



Proof. Assume that f € GF(q)[Xo,...,Xa 1] satisfies degy.(f) < ¢ for all
¢. Then we have

‘We use the notation of the proof of Theorem 2.3. In addition we can assume
that

f(ol v }0) = C(O,...,O) =3 0?

otherwise we construct f — £(0,...,0).

For any subset A of g™\ {(0,...,0)} containing supp(f) we denote by e;(A)
the z-th elementary symmetric polynomial in # A indeterminates, evaluated
at (a)aca. Now substituting Q,, o € A, for X in the polynomial

#A
I[ (X —Qp) =3 (-1)*4ega_j(A) - X7 € GF(g")[X] (1)

BeEA ‘ " 3=0
yields the generalized Newton identities [MS72, p. 244]

#A ,
0=73 (-1)"egs j(A)0, a€A

j=0

Fixing an ¢ (0 £ 7 < ¢"), multiplying the equation corresponding to a by
a2, and summing over all @ € A results in the following system of equations

#4 _
0=> (-1 egs_j(A)firjy 0<i<q™

i=0

As eg = 1, for an arbitrary superset A of supp(f) the equations for 0 <7 <
# A are equivalent to the matrix equation
(firiogiiera - (—1)*4~7 ega-j (A))055<# 4= ~(firpadogicaa.  (2)
The matrix (fit;)ocij<#a equals (92))Da(Q)¢, where Dy = diag((ca)aea)
is a #A-square diagonal matrix, see [LN83, 9.48, 9.49]. Hence the cardinal-
ity k of supp(f) equals the rank of the k-square matrix (fi+;)oci jek; fur-
thermore, (fi+j)og; i<z 15 non-singular and we can calculate the polynomial
Maesupp() (X — Qa) from (2) and (1) for A = supp(f). Finding 2ll the roots
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gives {Q,:a € supp(f)} which enables us to recover supp(f). The solution
of

(2% )ogickaca - (Ca)aca = (fi)ogick-

gives the complete polynomial f. This proves the theorem. o

Now we present and analyze the algorithm, which can be derived from
the last theorem.

Interpolation Algorithm., Let f € GF(q)[Xo,...,Xn-1] be a k-sparse
polynomial satisfying degy,(f) < g, for all i; 2k < ¢™.

INPUT: Oracle for f.
step 1. Take a primitive element w in GF(q").

step 2. Ask the oracle for the 1 + 2k — ]_-2-’-%‘—1J values f(0,---,0) and f;,
where 0 <t < 2k and ¢ [t in casei > 0.

step 3. For all 0 < ¢ < 2k which satisfy i = ¢*-4p, 1 < 5, § maximal,
calculate f; = ch(q ) ~

step 4. Determine k, which is the rank of the matrix ( fiti)o<ij<k.

step 5. Solve the equation (fit;)oc; ik - ((— l)k‘Jek (supp(f))ogici =
(fk+|)0<s<k

step 6. Find all the roots Q,, a € supp(f), of the polynomial
Tho(~1)Feg_;(supp(f)) - X'.

step 7. Calculate the discrete logarithms with respect to w of the Q,
and their g-adic expansions to get supp(f).

step 8. Solve the system of linear equations (}))
(fs)os.qc: for A:= SuPp(f)

OUTPUT: (Ca@)aesupp(s)-

0<i<k, acA * (Ca)aca =

Once a primitive element w is given, we compute the rank of the k-square
matrix (fi4;) within O(k*9) arithmetic processors and O(log? k) parallel time
[M86]. The same bounds are valid for step 5. We use [G84] and [GS86] for
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factoring the univariate polynomial of step 6. This costs O(log? k) parallel
time and roughly the same number of processors as above. Step 7 heavily
relies on the problem to calculate discrete logarithms, see e.g. [COS86).
Step 8 is of O(k*®) size and O(log? k) parallel time.

With respect to the number of queries the algorithm is optimal in case n =
1 and 2k < q. To see this let A be a subset of GF(g) with at most 2k
elements. Then similar considerations as in the proof of Lemma 3.4 enable
us to construct two different k-sparse polynomials which coincide on A.
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