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Abstract

A read-once formula is a boolean formula in which each variable occurs at most once.
Such formulas are also called #-formulas or boolean trees. This paper treats the problem of
exactly identifying an unknown read-once formula using specific kinds of queries.

The main results are a polynomial time algorithm for exact identification of monotone
read-once formulas using only membership queries, and a polynomial time algorithm for exact
identification of general read-once formulas using equivalence and membership queries (a
protocol based on the notion of a minimally adequate teacher[1]). Our results improve on
Valiant’s previous results for read-once formulas [18]. We also show that no polynomial time
algorithm using only membership queries or only equivalence queries can exactly identify all
read-once formulas.
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1 Introduction

The goal of computational learning theory is to define and study useful models of learning phenom-
ena from an algorithmic point of view. Since there are a variety of real-world learning problems,
differing in the kind and quality of information available to the learner and the performance re-
quirements on the learner, one would expect a corresponding variety of useful models. For example,
it seems unreasonable to expect a single definition to model learning usefully both at the neuron
level and at higher cognitive levels.

Stimulated by Valiant’s seminal paper [18], much recent research has focused on exploring
definitions of “efficient learnability.” Valiant’s paper addressed the question of which syntactically
defined classes of boolean formulas can be efficiently learned.

The primary criterion of efficient learnability introduced by Valiant was that of polynomial
time distribution-free approximate identification of concepts from randomly chosen correctly clas-
sified examples, which has subsequently received a great deal of attention. However, Valiant also
considered other sources of information about the unknown concept, which he termed “oracles.”
He defined three specific types of oracle: “necessity”, “relevant possibility”, and “relevant accom-
paniment”.

Valiant showed that monotone disjunctive normal form formulas can be approximately iden-
tified in polynomial time from random examples and the necessity oracle. He also showed that
general read-once formulas can be identified by a polynomial time algorithm using all three of
these oracles and no random examples. In this case, the identification is “exact”, that is, the final
formula is exactly rather than approximately equivalent to the unknown formula.

Read-onge formulas are a natural special case to consider in studying the learnability of boolean
formulas. Any boolean formula can be efficiently represented as an AND/OR tree with its leaves
labelled by literals, but in the case of a read-once formula, no two leaves are labelled by literals of
the same variable. This means that if we start with an assignment of truth values to the variables
and change the value assigned to one variable X;, any other changes must be at nodes along the
path from the root to the (at most one) leaf containing an occurrence of X;. This contrasts with
the case of a general boolean formula, in which several paths may be simultaneously affected by a
single change. The specificity of this effect suggests a potentially greater ease of learnability.

Given this initial intuition, the following negative results are surprising. Pitt and Valiant [15]
show that if RP # NP, then there is no polynomial time algorithm to learn even monotone read-
once formulas from examples in the distribution free model. In this case, the restriction that the
hypothesis of the learning algorithm be represented as a read-once formula is essential to the proof.

If instead we consider the problem of predicting the value of the formula on randomily chosen
examples (see [16] for definitions), a potentially easier problem, the reductions given by Kearns,
Li, Pitt, and Valiant [12] show that monotone read-once formulas are no easier to predict in
the distribution free model than general boolean formulas. Kearns and Valiant [13] have shown
that prediction of general boolean formulas in the distribution free model is as hard as certain
cryptographic problems, for example, factoring Blum integers. Thus, it seems that we must move



away from the distribution free model in order to exploit the special properties of read-once
formulas.

Angluin [2] has proposed studying the notion of polynomial time exact identifiability of concepts
using various types of queries (or oracles, in Valiant’s terminology.) Two types of queries seem to
be particularly interesting: membership queries and equivalence queries.

In a membership query, the learning algorithm proposes a particular example, and the reply is
a correct classification of the example according to the unknown concept. In an equivalence query,
the learning algorithm proposes a hypothesis in a specified hypothesis language, and the reply is
either “yes” or a counterexample. The answer “yes” signifies that the hypothesis is equivalent to
the unknown concept. A counterexample is a particular example that is classified differently by
the unknown concept and the proposed hypothesis, and thus is a witness of their inequivalence.
The choice of which counterexample to present in response to a given equivalence query is assumed
to be arbitrary — a successful learning algorithm must work no matter which one is chosen.

To illustrate these queries, imagine a student attempting to learn the concept of “the main
verb in an English sentence.” In attempting to grasp this concept, the student may ask the teacher
a question of the form “Is ‘enter’ the main verb of ‘Abandon hope, all ye who enter here?”” This
is a membership query, and the correct answer is “no”.

However, an equivalence query seems a bit suspect here — the student is required to produce a
complete description of his or her current hypothesis about the concept of “the main verb in an
English sentence,” and then the teacher is required to determine whether it is correct or not, and
come up with a counterexample if not. In fact, it seems downright hopeless.

The example itself suggests a more practical alternative — the teacher can test the student by
giving a collection of examples and requiring the student to classify whether they are instances
of the concept of “the main verb in an English sentence.” If the student misclassifies any of the
examples, then this example serves as a counterexample to the (never explicitly stated) hypothesis
of the student about the concept. If the student classifies enough examples correctly, the teacher
may be content to assume that the student’s hypothesis is “sufficiently correct.”

One possible formal analog of this is to use the distribution free model of Valiant to supply the
“testing” portion of this example. In particular, a learning algorithm that uses equivalence queries
and membership queries and achieves exact identification may be transformed into one that uses
randomly drawn examples and membership queries and achieves approximate identification in the
distribution free model, with a moderate increase in computational cost [1, 2]. The idea is to
replace each equivalence query with a sufficient quantity of randomly drawn examples, checking
that the hypothesis classifies each one correctly. If so, the equivalence query is answered “yes” and
with high probability the hypothesis is approximately equal to the unknown concept. If not, the
equivalence query is answered with the incorrectly classified example as a counterexample.

Littlestone [14] demonstrates another possible efficient transformation of a learning algorithm
that uses equivalence queries and achieves exact identification. If the setting is to predict the
classification of each of a sequence of examples, receiving the correct classification after each
prediction, then a learning algorithm that uses equivalence queries and achieves exact identification



can be transformed into a prediction algorithm that in the worst case makes no more errors of
prediction than it would have made equivalence queries. In this case, instead of an equivalence
query, the current hypothesis is used to make predictions. As long as it predicts correctly, the
hypothesis is retained. If it makes an incorrect prediction, the misclassified example serves as a
counterexample to the current hypothesis. This case clearly could admit membership queries with
appropriate definitions.

Thus a polynomial time exact identification algorithm that uses equivalence and membership
queries can be transformed into either of these two types of more “practical” algorithms. And
in these cases, the specter of the difficulty of the learner specifying and the teacher verifying a
complete and formal hypothesis is dispelled.

This paper considers the complexity of exact identification of both read-once formulas and
monotone read-once formulas. We note that general (i.e. not necessarily monotone) read-once
formulas cannot be exactly identified in polynomial time with membership queries alone. We
give a polynomial time algorithm for exact identification of monotone read-once formulas using
membership queries. We prove that equivalence queries alone are not sufficient to exactly identify
even monotone read-once formulas. We give a polynomial time algorithm for exact identification
of general read-once formulas that uses both membership and equivalence queries. We also present
a polynomial time algorithm for exact identification of general read-once formulas using a relevant
possibility oracle. The algorithm is an improvement of Valiant’s polynomial time algorithm because
it uses only one of the three oracles that Valiant’s uses. Some of the results in this paper appeared
in a preliminary form in [5] and [9]. Angluin [5] and Hellerstein and Karpinski [9] independently
discovered polynomial time algorithms to exactly identify monotone read-once formulas using
membership queries. '

The problem of exact identification using only membership queries can be viewed as a problem
of interpolation using a “black box” input oracle. Thus, the algorithm that we present for exact
identification of monotone read-once formulas using only membership queries can also be viewed
as an efficient interpolation algorithm for this class of boolean formulas from a (black box) input
oracle. Corresponding results for interpolation of boolean polynomials (formulas over the basis of
AND and XOR) over small extensions of finite fields have been proved by Grigoriev, Karpinski,
and Singer [7].

Several learning problems have been shown to have polynomial time solutions using equiva-
lence and membership queries. Some examples are exact identification of deterministic finite state
acceptors [1], exact identification of monotone DNF formulas [2], and exact identification of brack-
etted context free languages described by deterministic bottom-up tree automata [17]. In each of
these cases there is a proof that no polynomial time learning algorithm is possible that uses only
membership or only equivalence queries [2, 3, 4]. To this list we now add read-once formulas.



2 Preliminaries

2.1 Boolean functions and formulas

Let n be a positive integer. The boolean n-vectors is the set B, of vectors {0,1}". The itk
component of the boolean vector z is denoted z[z]. For two boolean vectors z and y from B, we
define ¢ < y if and only if for each i = 1,...,n, z[i] < y[i].

A boolean function of n arguments is any function from B, to {0,1}. A boolean function f
of n arguments is monotone if and only if for any z and y from By, if z < y then f(z) < f(v).
Boolean functions will be represented using boolean formulas.

The variable set V;, is defined to be {X;, Xo,...,X,}. A literalis a variable X; or its negation
=X;. Xiis a positive literal, - X; is a negative literal. The set of literals over V,, is denoted L,. A
subset L of L, is consistent if and only if it does not contain any variable and its negation.

Boolean formulas over the variable set V,, considered here are assumed to be over the basis
A , V, and =, denoting boolean AND, OR, and NOT, respectively. The constant function 1 is
denoted T and the constant function 0 is denoted L. The size of a boolean formula is the number
of occurrences of variables that it contains. The boolean formulas considered in this paper are
assumed to be in a standard form in which the gates have arbitrary fan-in, the AND and OR
gates are arranged in alternating levels, and negations only occur next to the variables. Every
boolean formula can be transformed into this standard form by combining gates, and by applying
De Morgan’s Laws. A boolean formula in this form can be represented as a rooted tree whose
internal vertices have at least two children and are labelled with AND or OR (in alternating levels),
and whose leaves are labelled with literals.

A vector € B, is interpreted as an assignment to the variables in V,,, and assigns a value of
0 or 1 to every boolean formula over V,, in the usual way. If V is any subset of V,, 1y denotes the
vector that assigns 1 to every element of V and 0 to every element of V, — V. Similarly, Oy is the
complement of 1y — it assigns 0 to every element of V' and 1 to every element of V - V.

A boolean formula is monotone if it does not contain any occurrence of =. A monotone
boolean formula represents a monotone boolean function, and every monotone boolean function
can be represented by a monotone boolean formula.

A boolean formula is read-onceif and only if it contains at most one occurrence of each variable.
Read-once formulas are also called u-formulas or boolean trees. Note that the size of a read-once
formula over V;, is at most n. A boolean function is read-once if and only if it can be represented by
a read-once formula. One can show that the read-once formula representing a read-once function
is unique up to tree isomorphism.

Let f be a boolean function of n arguments. A consistent set of literals .S C L, is a minterm
of f if for every vector z that assigns 1 to every literal in 5 we have f(z) = 1, and this property
does not hold for any proper subset 5’ of S. A consistent set T of literals is a mazterm of f if for
any assignment y that assigns 0 to all the literals in T we have f(y) = 0, and this property does
not hold for any proper subset 7" of T' (Note: Other definitions of minterm and mazterm are



sometimes used in the literature).

2.2 Properties of read-once formulas

Let f be a non-constant read-once formula. Consider the tree that represents f. If v is a vertex
of the tree, I(v) denotes its label, either AND, OR or a literal. Since f is read-once, no two leaves
are labelled with literals of the same variable. We sometimes use the label of a leaf to denote the
leaf itself.

For each vertex of the tree there is a unique path to the root. An ancestor of a vertex v is any
vertex w on the path between v and the root, including v itself. A descendant of v is any vertex
of which v is an ancestor. For any pair of vertices v and w in the tree, there is a unique vertex
farthest from the root that is an ancestor of both v and w, called their lowest common ancestor
and denoted lca(v,w). If v and w are distinct vertices in the tree then lca(v,w) is an internal
vertex and {(lca(v,w)) is either AND or OR.

If f is 2 nonconstant read-once formula that is the AND of subformulas fi,..., f, then § is a
minterm of f if and only if it is the union of 5y,..., Sk, where S; is a minterm of f; for each i. T
is maxterm of f if and only if it is a maxterm of f; for exactly one value of i.

Similarly, if f is a nonconstant read-once formula that is the OR of subformulas fi,..., f,
then T is a maxterm of f if and only if it is the union of T, ..., Tk, where T} is a maxterm of f;
for each i. § is minterm of f if and only if it is a minterm of f; for exactly one value of .

The following pair of lemmas characterize the subsets of minterms and maxterms of f in terms
of the labels of the pairwise lowest common ancestors of the elements of the subset.

Lemma 1 Let f be a nonconstant read-once formula, and let S’ be a set of literals. Then S’ is a
subset of a minterm of f if and only if every literal in S’ occurs in f and for every pair of distinct
literals Y and Z in §', l(lca(X,Y)) = AND.

Lemma 2 Let f be a nonconstant read-once formula, and let T' be a set of literals. Then T” is a
subset of a minterm of f if and only if every literal in T' occurs in f and for every pair of distinct
literals Y and Z in T', I(lca(X,Y)) = OR.

Proof of Lemma 1. The proof is by induction on the structure of the formula f. If the formula
[ consists of a single literal Y then the conditions of the lemma reduce to: § is a minterm of f if
and only if S is {Y'}, which is correct.

Suppose f consists of the AND of subformulas f;,..., fi, where the characterization of the
lemma holds for all the subsets of minterms of the formulas f;. If S’ is a subset of a minterm
of f, §' is the union of sets 5},...,5} where S! is a subset of a minterm of f; for each i. Let Y
and Z be distinct literals in §'. If they both occur in some S, then by the induction hypothesis,
{(lea(Y,Z)) = AND. And if Y and Z occur in distinct S! and S%, then lca(Y, Z) is the root of f,
which is labelled AND. In either case, {(lca(Y,Z)) = AND.



Conversely, suppose 5’ is a set of literals that all occur in f and for each pair ¥ and Z of
distinct literals in §’, I(lca(Y,Z)) = AND. Let S! be the intersection of S’ and the literals that
occur in f;. Then 5} is a set of literals that all occur in f; and is such that for every pair of distinct
literals Y and Z in S}, {(lca(Y,Z)) = AND. Thus by the induction hypothesis, S! is a subset of
a minterm of f;, and S’ is a subset of a union of a set of minterms for the formulas fi,s0 §'is a
subset of a minterm for f.

For the last case, suppose f is the OR of subformulas fi,..., fi, where the characterization of
the lemma holds of the subsets of minterms of the formulas f;. If §' is a subset of a minterm of f,
then S’ is a subset of a minterm of f; for some i, so all the literals in §' occur in f; and for every
pair Y and Z of distinct literals from §’, {(lca(Y,Z)) = AND.

Conversely, if §”is a set of literals that occur in f and for every pair ¥ and Z of distinct literals
in §', I(leca(Y, Z)) = AND, then in particular all the literals in S’ must occur in a single f; (for
otherwise two of them would have the root of f, labelled OR, as their lowest common ancestor), so
by the induction hypothesis, 5’ is a subset of a minterm of f;. Hence § is a subset of a minterm

of f. Q.E.D.

The proof of Lemma 2 is dual. These two results have the following easy consequences. Let
f be a nonconstant read-once formula. Every literal that occurs in f must be an element of both
a minterm and maxterm of f. If Y and Z are distinct literals that occur in f then {Y,Z} is a
subset of a minterm of f if and only if I(lea(Y,Z)) = AND, and {Y, Z} is a subset of a maxterm
of f if and only if lea(Y,Z) = OR. Therefore, a minterm and a maxterm of f contain at most
one literal in common.

Moreover, it is well known that a minterm and a maxterm of any boolean function contain at
least one literal in common. The proof is simple. Suppose S and T' are respectively the minterm
and maxterm of a function, and S and T contain no commeon literals. Then we can set the literals
in § to 1 which forces the value of the function to be 1, and at the same time set the literals in
T to 0, which forces the value of the function to be 0, a contradiction. We have now proved the
following lemma.

Lemma 3 A minterm and a mazterm of a read-once formula contain ezactly one literal in com-
mon.

Karchmer et al. [10] have given an elegant combinatorial characterization of read-once formulas
from which Lemma 3 follows, but the derivation above provides some additional insight.

2.3 Identification with queries

The learning criterion we consider is that of ezact identification. There is a read-once formula f
over V;, called the target formula, and the goal of a learning algorithm is to halt and output f (or
a formula with isomorphic tree representation). The learning algorithm is started with the value
of n and may gather information about f by means of various types of queries.



In a membership query, the learning algorithm supplies a boolean n-vector z and receives in
return the value of f(z).

In an equivalence query, the learning algorithm supplies a read-once formula A and the reply
is either “yes”, signifying that A is equivalent to f, or a counterezample, consisting of a boolean
n-vector £ such that h(z) # f(z). The choice of which counterexample to supply when & is not
equivalent to f is assumed to be arbitrary. In particular, the learning algorithm must work as
advertised no matter which choices of counterexamples are made.

- Ina relevant possibility query, first defined by Valiant [18], the learning algorithm specifies a set
S' of literals from L, and the reply is “yes” if S’ is a subset of a minterm of f and “no” otherwise.

2.4 Model of computation

Our model of computation is the random access machine (RAM) of [6] augmented to allow for
queries. We describe the augmentation in some detail, since we want to reflect accurately the
set-up time for queries in our bounds. A random access computer is essentially a unit-cost random
access machine in which each register is of length klogn bits for some constant k. The model is
polynomially related to log-cost RAMs. Running times will be bounded as a function of n, the
number of possible variables, which is given as an initial input to a learning algorithm.

In order to incorporate queries into this model of computation, we introduce a new unit cost’
instruction for each permitted type of query. In particular, for membership queries we introduce
an instruction that specifies two registers W; and W;. The n consecutive registers beginning with
Wi are each required to contain either 0 or 1 and are interpreted as representing a boolean vector
z of length n. The result of the instruction is to place in the register W; the value of f(z) for the
target function f.

For an equivalence query we introduce another type of instruction that specifies three registers
Wi, W;, and W;. The contents of W; must be a positive integer [, and the | consecutive registers
starting with register WW; are taken as representing a read-once formula g in some reasonable
encoding with the property that O(n) registers are sufficient to encode any read-once formula over
Va. The result of the instruction is to place in Wy the value 2 if g is equivalent to the target
function f. Otherwise, the n consecutive registers beginning with W} are assigned 0’s and 1’s
representing a counterexample vector z.

For a relevant possibility query, we introduce a third type of instruction, which specifies three
registers W;, W;, and Wy. W; is required to contain a positive integer /. The ! consecutive pairs
of registers beginning with W; are interpreted as a list of ! literals, where the first register in the
pair gives the sign of the literal, and the second gives the index of the variable in V,,. The result of

the instruction is to place a 1 in register W if the specified set of literals is a subset of a minterm
of f, and a 0 in W, otherwise.



2.5 The procedures Findmin and Findmaz

Let f be a nonconstant monotone read-once function over V;,. Let V C V,, be such that f(1y) = 1.
Then V contains a minterm of f, and there is a simple procedure, Findmin, to find a minterm of i
contained in V' using O(n) membership queries to f and time O(n). The method is a greedy search,
removing as many variables from V' as possible while preserving the condition that f(1y) = 1.

Suppose the variables of V' are {X;,,...,X;,}.
Findmin

1. Set Vp = V.

2. For j=1 to k do:

(a) Set U; = Vj_1 - {Xy,}.
(b) If f(1y,) = 1 then set V; = U; else set V; = V;_;.

3. Output V4.

We claim that ¥ is a minterm of f. Note that for each j = 1,...,k, V; is a subset of V;_q,
and X;;, € Vi if and only if f(U;) = 0. Note that f(1y,) = 1 and this condition is preserved at
every step, so f(ly,) = 1.

Suppose for some proper subset § C Vi, f(lg) = 1. Let Xi; be an element of V} not in S.
Then § is a subset of V;_;, and therefore a subset of U; = V-1 = {X;;}. Thus, 15 < ly,, and
since f is monotone, f(lUJ) = 1. But this means that X, is not in Vg, a contradiction. Thus V;
is a minterm of f.

We describe the implementation of Findmin to support our claim that its running time is
O(n). The input is a list of indices 7 of elements X; of a set V' C V, such that f(1y) = 1. Initially,
Findmin constructs a representation of the vector lv in n consecutive registers in memory, which
takes time O(n).

Then, for each index ¢ of an element X; € V, Findmin changes the it register in the repre-
sentation to 0, and does a membership query with the resulting representation of a vector. If the
reply is 0, it restores the value of the it register to 1, and if the reply is 1, it does nothing. There
are at most n iterations of this process — each one takes one membership query and constant time.

The final vector is converted back into the list of indices where it is equal to 1, which takes
time O(n), and this list is returned. Thus, using time O(n) and at most n membership queries,
Findmin finds a minterm of f contained in V.

A dual procedure, Findmaz, takes a set V of variables such that f(0y) = 0 and returns a
subset T of V' such that T is 2 maxterm of f, using O(n) membership queries to f and time O(n).



3 The minterm graph of a read-once formula

Let f be a read-once formula. Let L’ denote the set of literals that occur in f. The minterm graph
of f is the undirected graph whose vertex set is L’ and whose edge set consists of all (Y,Z) such
that ¥ and Z are distinct literals in L’ and {Y, Z} is a subset of some minterm of f. Alternatively,
for all Y and Z in L', (Y, Z) is an edge if and only if {(lca(Y, Z)) = AND.

The mazterm graph is defined dually as the graph with vertex set L’ and edge set consisting
of all those (Y, Z) such that Y and Z are distinct vertices in L’ and {Y, Z} is a subset of some
maxterm of f. Thus, for all ¥ and Z in L', (Y, Z) is an edge if and only if [(lca(Y,Z)) = OR.
Clearly the maxterm graph of f is the complement of the minterm graph.

Karchmer et al. [10] have shown that if f is nonconstant, then a read-once formula for f may
be recursively constructed from the minterm graph of f as follows. If the graph of f consists of a
single literal Y, then the literal Y is itself a read-once formula for f.

Otherwise, one of the following two cases occurs.

1. The minterm graph of f is disconnected. Then f is equivalent to the OR of the formulas
f1,.-., fi obtained by recursively processing the connected components of the minterm graph

of f.

2. The maxterm graph of f is disconnected. Then f is equivalent to the AND of the formulas

fi;- -+, fi obtained by recursively processing the connected components of the maxterm graph
of f.

It follows from the above construction that from the minterm graph for f a read-once formula
equivalent to f can be constructed in time O(n2) by repeatedly applying depth-first search to find
connected components.

This time bound can be improved to O(n?) using a trie to store the rows of the adjacency matrix
for the minterm graph, and an updating scheme to restore the trie after successive deletions of
equal rows.

4 Using the relevant possibility oracle

The relevant possibility oracle may be used to construct the minterm graph of f. For each literal
Y € Ly, one query to the relevant possibility oracle with the set {Y'} determines whether the
literal Y occurs in f.

Then let L' denote the set of literals that occur in f. For each pair ¥ and Z of distinct literals
in L', query the relevant possibility oracle with the set {Y, Z}. The reply will be “yes” if and only
if (Y, Z) is an edge in the minterm graph. Thus, with O(n?) relevant possibility queries we may
construct the minterm graph of f. By the results of the preceding section, a formula equivalent to
f may then be obtained in time O(n?).



Theorem 4 There is a learning algorithm that ezactly identifies any read-once formula over V,,
in time O(n?) using O(n?) relevant possibility queries.

This improves upon the algorithm of Valiant [18]. However, it is hard to imagine situations
in which relevant possibility queries are directly answered by the environment. As we argued in
the introduction, algorithms that use membership and equivalence queries are potentially more
applicable. The subsequent sections concern algorithms that use just these two types of queries.

5 Membership queries and monotone read-once formulas
The main result of this section is the following.

Theorem 5 There is a learning algorithm that ezactly identifies any monotone read-once formula
over V,, in time O(n®) using O(n?) membership queries.

Thus in the case of monotone read-once formulas, membership queries alone suffice for efficient
exact identification. The algorithm -has two parts. In the first part, the algorithm generates
minterms and maxterms and uses them to determine the set V' of variables on which f depends.
In the second part, the maxterms generated in the first part are used to determine the label of the
lowest common ancestor of each pair of variables in V.

5.1 Finding the variables that occur in f

Assume f is nonconstant. The method of finding all the variables appearing in f is to start with V
set to the variables in a single minterm of f and then to perform a closure operation to guarantee
that every variable in V' is contained in at least one minterm and one maxterm composed of
variables of V. The following lemma shows that this suffices.

Lemma 6 Let f be a nonconstant read-once formula. Suppose L is a nonempty set of literals such
that for every Y € L, Y is contained in a minterm of f that is a subset of L and in a mazterm of
[ that is a subset of L. Then L is the set of literals that occur in f.

Proof. The method is induction on the structure of read-once formulas. In the base case, f
consists of a single literal Y. Since {Y'} is the only minterm and the only maxterm of f, the
nonempty set L must be {Y'}.

Suppose now that fis the AND of the subformulas fi, ..., fx and the assertion of the theorem
holds for each f;. Let L be a nonempty set of literals such that for every ¥ € L, Y is contained in
a minterm of f that is a subset of L and in a maxterm of f that is a subset of L. Let L; be the
intersection of L with the literals occurring in f;.
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Since L is nonempty, it contains at least one literal Y, and ¥ must be contained in a minterm
S of f that is a subset of L. Since the root of f is labelled AND, S is the union of minterms for
the formulas f;, so each L; is nonempty.

Now consider any literal Z € L;. Since L; C L, Z is contained in a minterm S’ of fand a
maxterm T’ of f such that §' C L and 7' C L.

Since the root of f is labelled AND, S’ consists of a union of minterms for the formulas f;,
and in particular, Z is contained in a minterm for f; that is a subset of I;. Also, T" consists of a
maxterm for f; for exactly one value of j. Since T contains Z and Z occurs in f;, T must be a
maxterm for f;. Hence, Z is also contained in a maxterm for f; that is a subset of L;.

Thus, for each ¢, L; is nonempty and for each literal Z € I;, Z is contained in a minterm of
fi that is a subset of L; and in a maxterm of f; that is a subset of L;. Thus, by the induction
hypothesis, L; consists of the literals occurring in f;. Since this is true for each i, L is the set of
literals occurring in f.

For the case in which f is the OR of subformulas fi,..., fi, we argue dually. Q.E.D.

It is simple to find a single minterm of f. f is nonconstant and monotone, so V;, contains a
minterm of f. Therefore, executing Findmin(V;,) will produce a minterm § of f. Given 5, we want
to implement the closure operation defined above. The implementation of the closure operation
depends on the following fact.

Lemma 7 Let f be a monotone read-once formula over V,,. If S is a minterm of f containing
the variable X;, then (V, — §)U {X;} contains a mazterm of f, and any such mazterm contains
Xi. Dually, if T is a mazterm of f containing X;, then (V —-T)U {X;} contains a minterm of f,
and any such minterm contains X;.

Proof. If § is a minterm of f containing X; then the vector that is 1 on § — {X;} and 0
elsewhere assigns 0 to f. Thus (V, — §) U {X;} contains a maxterm for f.

By Lemma 3, every maxterm of f contains exactly one literal in common with §. (V,,— SHU{X:}
contains only one element of 5, namely z. Therefore any minterm of f contained in (V, — §)U {X;}
must contain z.

The argument is dual for the case of a maxterm containing X;. Q.E.D.

The following algorithm implements the closure operation described in Lemma 6. Given a
membership oracle for a nonconstant monotone read-once formula f over V,, it finds the set V of
variables that occur in f. In the process, for each variable X; in V/, it generates a minterm m(i]
and a maxterm M([:] containing X;.

Findvars
1. Initialize mi] = M[i]=0fori=1,...,n
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2. Set V = § = Findmin(V,). For each X; € V, set m[i] = §.

3. While there exists X; € V such that exactly one of M[i] and m[i] is 0, do:

(a) If M[z] = 0 then set T = Findmaz((V, — m[i])U {X;}), set V = VUT, and for each
X;eT, set M[j]=T.

(b) If m[:] = 0 then set § = Findmin((V, — M[i]) U {X;}), set V = V U S, and for each
.XJ' € 9, set mL}] = 5,

The correctness of the Findvars algorithm follows from Lemmas 6 and 7. Each call to Findmin
and Findmax makes O(n) membership queries. The body of step (3) of Findvars is executed at
most 2n times, so the total number of membership queries performed by the algorithm is O(n?).
The body of step (3) can be implemented to run in time Q(n), so the entire algorithm can be
implemented to run in time O(n?).

5.2 Testing the lca of pairs of variables in f

The procedure of the preceding section finds the set V' of variables that occur in f, and, for each
X; € V, a minterm and a maxterm of f containing X;. To construct the minterm graph of f, we
need to determine the label of the lowest common ancestor of X; and X for each pair of distinct
variables X; and X; in V. If we have a maxterm that contains both X; and X;. then we know
that the lowest common ancestor of X; and X; is an OR. Otherwise, we use the following fact.

Lemma 8 Let f be a nonconstant monotone read-once formula over V,,. Suppose Ty is a mazterm
of f containing X; but not X;, and T, is a mazterm of f containing X; but not X;. Let R =
(Va —(T1 U T2)) U{X;, X;}. Thenlca(X;, X;) is AND if and only if f(1g) = 1.

Proof. Suppose f(l1g) = 1. Then there is a minterm § C R. By Lemma 3 every minterm of
f has exactly one literal in common with Tj, and exactly one literal in common with 7%. The set

R contains only one element of T7, namely X;, and only one element of T;, namely X;. Hence
X; € § and similarly X; € §, so lea(X;, X;) is AND.

Conversely, suppose [ca(X;, X;) is AND. Then there is a minterm § of f such that X; € § and
X; € §. Since X; € Ty, and a minterm and a maxterm of f contain exactly one literal in common,
§ is disjoint from T} — {X;}. Similarly, S is disjoint from T3 — {X;}. Hence, S is a subset of R,
and, since § is a minterm of f, this implies f(1g) = 1. Q.E.D.

Thus, given the set V' of variables occurring in f and for each X; € V, a maxterm M[i] of
f containing X;, we may compute the minterm graph of f by making at most one membership
query for every distinct pair of variables X; and X; in V. If M[i] contains X, or M[j] contains
X, then clearly lca(X;, X;) is OR. Otherwise, simply query the vector that is 1 on

(Va = (M[5]U M[j])) U { X, X3}
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and 0 elsewhere; lca(X;, X;) is AND if the reply is 1 and OR if the reply is 0.

Hence, with O(n?) additional queries, we can determine the minterm graph of f, and construct
f from its minterm graph in time O(n?) as in Section 3. However, the cost of setting up each of
the O(n?) membership queries in this phase is O(n), so the total running time of this phase is

O(n?).

5.3 The algorithm MM

The complete algorithm to learn monotone read-once formulas using membership queries is now
simple to describe.

MM

1. Use a membership query to test whether f(ly,) = 0. If so, output L.
2. Use a membership query to test whether f(0y,) = 1. If so, output T.

3. Use the procedure Findvars to find the set V of variables occurring in f, and for each X; € V,
a maxterm T; of f.

4. For each pair of distinct variables X; and X in V, if T; does not contain Xj, and T} does
not contain X;, then use a membership query to determine whether f(1g,,) = 1, where

Ri; = (Vi = (T: U T;))U {X:, X;}, and include an edge (X;, X;) in G if so.

3. Construct a formula g from the graph G using the procedure of Section 3 and output g.

Let f be a monotone read-once function over the variables V,. When MM is called with a
membership oracle for f, the first two steps determine whether f is the constant function L or
T. Otherwise, f is a nonconstant monotone read-once function, and step (3) finds the variables V/
that f depends on, and for each X; € V, a maxterm T; = M[i] of f containing X;.

Then step (4) constructs the minterm graph G of f and step (5) constructs and outputs a
formula g for the function f. By the previous analyses, the total number of membership queries
is O(n?) and the total time is O(n3). This concludes the proof of Theorem 5.

6 Using membership and equivalence queries

The main result of this section is the following.

Theorem 9 There is a learning algorithm that ezactly identifies any read-once formula over V,
in time O(n*) using O(n®) membership queries and O(n) equivalence queries.
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A simple adversary argument shows that no polynomial time algorithm can exactly identify
all the read-once formulas over V;, using only membership queries [2]. In the next section we show
that no polynomial time algorithm can exactly identify all the read-once formulas over V. using
just equivalence queries, so both equivalence queries and membership queries are essential to this
theorem.

6.1 Determining signs

Suppose f is an arbitrary read-once formula over V,, and we happen to know the set of variables
that occur in f and their signs. Then we can use the procedure MM as a subroutine to achieve
exact identification of f. This is because the value of f is a monotone function of the values
assigned to its leaves, and, knowing the signs of the literals, we can calculate the values assigned
to the leaves from the values assigned to the variables V,.

More precisely, for any y € B, define
(foy)e)=fzdy)

for all z € B,. Then it is not difficult to prove that (f @ y) is a read-once function, and a formula
for (f @ y) can be obtained from f by substituting =X; for X; for every i such that y[i] = 1.

The boolean vector z € By, is defined to be a correct sign vector for f if and only if for every X;
that occurs in f, X; occurs negatively if and only if z[i] = 1. The following lemma is not difficult
to prove.

Lemma 10 If f-is an arbitrary read-once formula over V, and y is a correct sign vector for f
then (f @ y) is a monotone read-once function.

Thus, we may formalize a modification of MM that learns an arbitrary read-once formula f
over V;, provided that a correct sign vector for f is given as input.

MMSigns

1. With boolean vector y as input, call MM. Each time MM makes a membership query, say
with vector z, reply with the value of f(z @ y), obtained by making a membership query to

f.

2. If MM returns the monotone formula g, then return the formula ¢’ obtained by replacing X;
with ~X; if and only if y[i] = 1.

By Lemma 10, if MMSigns is called with a membership oracle for f and a correct sign vector y
for f, it exactly identifies f in time O(n3) using at most O(n?) membership queries to f. Thus, if
we knew the signs of the variables occurring in f, we could identify f using membership queries.
However, initially we have no knowledge of the variables occurring in f or of their signs. The
following lemma indicates how signs of variables in f may be discovered.
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Lemma 11 Let f be an unknown read-once formula over V,. Suppose yo and y, are boolean
vectors such that f(yo) = 0 and f(y1) = 1. Then with at most n membership queries to f we can
determine the sign of a variable X; occurring in f such that yo[i] # y1[d].

Proof. Let k be the number of bit positions in which y; differs from y,. We transform yq into
y1 bit by bit, that is, we find a sequence of vectors zq, z1,...,2; such that zg = 5, zx = 31, and
z;41 differs from z; in exactly one bit position for j = 0,...,k — 1. By making at most k — 1
membership queries with z1,zo,..., we find a pair of vectors z; and z;41 such that f(z;) =0 and
f(z541) = 1. Let 7 be the bit position where z; and z;,; differ. Note that yo and y; must differ in
position i as well.

Now if z;[z] = 0 then X; must occur positively in f, and if z;[i] = 1 then X; must occur
negatively in f. To see this, note that X; must occur in f, and the value of f is a monotone
function of the values assigned to its leaves.

If the literal -~ X; labels a leaf, then changing the value of X; from 0 to 1 changes the value
assigned to the leaf from 1 to 0, so the value of f could not change from 0 to 1, since this would
not be a monotone change. Hence, if z;[i] = 0, then X; must occur positively in f. Similarly, if
z;[d] = 1 then X; must occur negatively in f. Q.E.D.

- Thus, if we can succeed in eliciting the “right” pairs of vectors yo and y;, we will learn the
signs of the variables occurring in f. This is where equivalence queries prove useful; the following
example is intended to provide some intuition.

Consider the initial state, in which nothing is known about f. Choose an arbitrary boolean
vector z and make a membership query to discover the value of f(z). If f(z) = 0, then make an
equivalence query with L. The reply will be either “yes” or a vector z; such that f(z;) = 1. If
f(z) = 1, then make an equivalence query with T. The reply will be either “yes” or a vector z,
such that f(zg) = 0.

If f is nonconstant then with one equivalence query we have elicited a pair of vectors 3, and
y1 such that f(yo) = 0 and f(3;) = 1. By the above lemma, we can discover the sign of at least
one variable in f. The algorithm MEQ continues this process, using the procedure MMSigns as a
subroutine to identify a projection of the unknown function f for which the signs of the variables
are already known, and then an equivalence query to confirm that the projection is equivalent to
f or to elicit a previously unknown sign of a variable in f.

6.2 Projections of f

Let f be a read-once formula over V,. A partial assignment is a vector a from {0,1,*}™ The
defined set of a is the set of X; such that a[i] # . Each partial assignment a defines a map from
B, to By, as follows. Forall z € By, a/z is the vector y such that if a[¢] # * then yi] = a[i], and if
afi] = = then y[i] = z[i]. That is, a is used to assign values to the variables X; such that a[s] # *,
and z is used to assign values to the rest of the variables.
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Each partial assignment a induces a projection f, of f defined by

fa(z) = fla/z)

forall z € B,. It is not difficult to show that every projection of a read-once function is a read-once
function. Moreover, every variable that occurs in f; occurs in f with the same sign. Also note
that if a is given, we may simulate membership calls to f, using membership calls to f.

6.3 The procedure MEQ

The set W contains the variables whose signs in f have been learned. The procedure also keeps
track of their signs, in a vector zy such that zw[i] = 1 if and only if the sign of X; in f is known
to be negative.

MEQ

1. Let W =0 and zw([i]=0forall i = 1,...,n.

2. Do forever:

(a) Let a be an arbitrary partial assignment whose defined set is V,, — W.

(b) Call the procedure MMSigns with input vector zw, simulating membership queries to
the function f,, and let g be the formula returned.

(c) Make an equivalence query with g. If the reply is “yes” then output g and halt, other-
wise, let y be the counterexample.

(d) In this case, f,(y) # f(y), that is, f(a/y) # f(y), so use membership queries to find
the sign of some X; ¢ W. Add X; to W and set zw(i] = 1 if the sign of X; is negative.

Let f be an arbitrary read-once formula over V;,, and suppose MEQ is called with membership
and equivalence oracles for f. We will show that every time execution reaches step (2a), W and
zw have the following property:

1. For each 7 such that X; € W, X; occurs in [ negatively if zw{i] = 1 and positively if
xw[i] =0. :

Moreover, we will show that every nonterminating execution of the body of step (2) adds a new
element to W.

Property (1) is certainly true the first time execution reaches step (2a), since W is the empty
set and zw is the vector of all zeroes. Assume that property (1) is true before some execution of
step (2a). The partial assignment a chosen in step (2a) assigns values to all the variables not in
W, so f, is a read-once function such that every variable f, depends on is in W, and if X; occurs
negatively in f,, then zw[i] = 1 and if X; occurs positively in f,, then zw{i] = 0. Thus, when
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MMSigns is called with input vector zy and a (simulated) membership oracle for f,, it exactly

identifies f, in time O(n3) using O(n?) membership queries. Hence the formula g is equivalent to
fa in step (2b).

Clearly, if the equivalence query in step (2c) is answered “yes”, then MEQ terminates correctly.
Otherwise, the counterexample y has the property that g(y) # f(y). Since g is equivalent to f,
and fq(y) = f(a/y), this implies that f,(y) # f(v).

Thus in step (2d) we have two vectors, y and a/y, on which f takes two different values, so, by
Lemma 11, using at most » membership queries we can determine the sign of one variable X; in
f such that y[¢] # a/y[i]. Thus X; is in the defined set of a, and therefore X; is not in W. When
X; is added to W and zw is updated with the sign of X}, the values of W and zw again satisfy
property (1), and a new element has been added to W.

Thus, each nonterminating execution of the body of step (2) determines one previously un-
known sign of a variable in f, and when W contains all the variables occurring in f, the call to
MMSigns must return a formula g equivalent to f. Thus, MEQ must terminate correctly after at
most n nonterminating iterations of step (2). Hence, after at most n 4+ 1 equivalence queries, at
most O(n*) membership queries, and time at most O(n*), MEQ must exactly identify f. This
concludes the proof of Theorem 9.

The input to a subset query is a read-once formula g and the reply is “yes” if g logically implies
f. Otherwise, the reply is a vector z such that A(z) = L and f(z) = 0. A superset query is defined
dually, to test whether % is logically implied by f. Since one subset query with a conjunction
of n literals can be used to answer a membership query, and a pair consisting of a subset query
and a superset query can be used to answer an equivalence query, we have the following result,
independently proved by Hancock [8].

Corollary 12 There is an algorithm that ezactly identifies all the read-once formulas over V, in
time polynomial in n using subset and superset queries.

7 A generalization of this transformation

The transformation given in the preceding section of the algorithm MM into the algorithm MEQ
can be usefully generalized. In this section we prove a generalization that implies as a corollary that
the class of unate DNF formulas can be exactly identified in polynomial time using membership
and equivalence queries.

A boolean function f is unate if and only if for no variable X; does X; occur positively in some
minterm of f and negatively in some other minterm of f (The term unate is used in switching
theory). Every read-once function is unate, and every monotone boolean function is unate, but
there are unate functions that are neither read-once nor monotone.

Let f be a unate boolean function over V;,. The variable X; occurs in f if and only if a literal
of X; is an element of some minterm of f. If X; occurs in f, then the sign of X; in f is the sign
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of the literal of X; that occurs in a minterm of f. The vector y € B, is a correct sign vector for f
if and only if for every X; that occurs in f, y[¢] = L if and only if the sign of X; in f is negative.

Let M be a class of monotone boolean formulas. M is closed under projection if for every
formula f € M on V, and every partial assignment a € {0,1,+}*, there is a formula in M
equivalent to f,.

If f is any monotone boolean formula over V,, let U(f) denote the class of all formulas f’
obtained from f by selecting a subset V' of V, and replacing every occurrence of X; in f by -X;.
Note that all the elements of U(f) are unate. If M is a class of monotone boolean formulas,
let U(M) denote the union of U(f) for all f € M. Observe that if M is the class of monotone
read-once formulas, then U(M) is the class of general read-once formulas.

Theorem 13 Let M be a class of monotone formulas that is closed under projection, and suppose
that there is a polynomial time algorithm that ezactly identifies every element of M using mem-
bership and equivalence queries. Then there is a polynomial time algorithm that ezactly identifies
every element of U(M) using membership and equivalence queries.

Note that this theorem strengthens the transformation in the previous section by allowing
equivalence queries to be used in the identification algorithm for M.

Let A be a polynomial time algorithm that exactly identifies every formulain M using member-
ship and equivalence queries. As before, we can use A to identify an element f of U(M) provided
we know the signs of the variables that occur in f.

In particular, suppose f is a formula from U(M) over V,, and z is a correct sign vector for the
function represented by f. Then we can identify f using membership and equivalence queries with
A as a subroutine as follows.

Begin running 4. When A makes a membership query with the element z, return the value
f(z @ z), using a membership query for f. When A makes an equivalence query with the formula
g, make an equivalence query with the formula ¢’ obtained from g by replacing every occurrence
of X; in g by -X; if z[i] = 1. If the reply is “yes”, then return the reply “yes” to A. Otherwise,
the reply is a counterexample y such that g'(y) # f(y). In this case,

9y@2)=g(W)# fly)=(fD )y 2),

so return the counterexample y @ z to A. When A terminates with the formula g, terminate with
the formula ¢’ for (g & z).

Thus, there is a polynomial time algorithm ASigns that identifies every element f of U(M)
using membership and equivalence queries, provided it is given as input a correct sign vector for
f- As in the preceding section, we use this algorithm to attempt to identify projections of f for
which we know the signs; the major difference is that we must now handle equivalence queries
made by ASigns.

The algorithm AU to identify an element f € U(M) over V, works as follows. Let W be the
set of variables of known sign in f, and let zw be the vector that is 1 if and only if the sign of X;
is known to be negative. Initially W is the empty set and zw is the vector of all zeroes.
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AU chooses an arbitrary partial assignment a whose defined set is Vn- — W, and calls the -
procedure ASigns with the input vector 2. For each membership query of ASigns, say with
element y, AU returns the value of f,(y) = f(a/y), using a membership query to f.

If ASigns makes an equivalence query, say with formula g, we call the equivalence oracle for f
with formula g. If the reply is “yes”, then we output g and halt, since we have found a formula in
U(M) equivalent to f. Otherwise, the reply is a counterexample y such that f(y) # g(y)-

Using the membership oracle for f, we can compute f,(y). We know g, so we can compute
9(y).- I fa(y) # g(y), then we return y as-the counterexample to ASigns. Otherwise, we must
have f,(y) # f(y), so by Lemma 11 we can use at most n membership queries to f to determine
the sign of a variable X; in the defined set of a, that is, not in W. In this case, we add X; to W
and update its sign in z, give up the current simulation of ASignsand iterate the loop with the
new values of W and zw.

If we succeed in answering all the queries of ASigns, then it will return with a formula g that
is equivalent to f,. We make an equivalence query with g. If the reply is “yes”, then we output g
and terminate. Otherwise the reply is a counterexample y such that

f(y) # g(y) = faly) = fla/y),

so, as before, we determine the sign of a va.rla.ble X; not in W, add X; to W, update the sign of
X; in zw, and iterate.

The algorithm AU correctly identifies every element of U(M) over V;, using at most n calls to
the original algorithm A, at most one membership query for each equivalence query made by A,
and an additional O(n) equivalence queries and O(n?) membership queries.

Let M denote the class of monotone DNF formulas. Then M can be exactly identified in
polynomial time using membership and equivalence queries [2], and M is closed under projection.
Moreover, U(M) is the class of unate DNF formulas. Thus, as an easy corollary of the theorem
above, we have the following.

Corollary 14 The class of unate DNF formulas is ezactly identifiable in polynomial time using
membership and equivalence queries.

8 The insufficiency of equivalence queries

In this section we show that no polynomial algorithm can exactly identify all the read-once for-
mulas using only equivalence queries, even if the target formula is known to be monotone and in
disjunctive normal form. The proof is similar to the proof in [3] that there is no polynomial time
algorithm to identify all DNF formulas using only equivalence queries. That proof made use of
a certain combinatorial property of DNF formulas: every DNF formula is satisfied by an assign-
ment with “few” ones or falsified by an assignment with “few” zeroes. An analogous property for
read-once formulas is now proved.
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8.1 A bound on the sizes of minterms and maxterms

Lemma 15 Let f be any nonconstant read-once formula. Let mg(f) denote the minimum car-
dinality of any minterm of f, and my(f) denote the minimum cardinality of any mazterm of f.

Then mg( f)mz(f) < size(f).

Proof. This is proved by induction on the size of f. The base case is a formula f consisting of
a single literal. In this case, mg = mg = size(f) = 1, and the result holds.

Assume that the result holds for any nonconstant read-once formula of size at most ¢ — 1, and
let f be a nonconstant read-once formula of size t > 2. Then f is the conjunction or disjunction
of k > 2 subformulas fi,..., fi. Clearly, size(f;) <t —1foreachi=1,...,k.

Suppose f is the conjunction of fi,..., fx. Then a minterm for f consists of the union of a set
of minterms for the formulas f;, so

ms(f) = ms(f1) + ...+ ms(fi)-

A maxterm for f consists of a maxterm for any one of the formulas f;, so
mr(f) = min{m7(f1),...,m7(fi)}.
Since foreach i=1,...,k,

min{mr(ﬁ), . --,mT(fk)} < mr(fi),

we have
ms(f)mr(f) < ms(fi)mr(fi) + ...+ ms(fi)mr(fi).

By the inductive assumption, mg( f;)mp(f;) < size(f;) foreachi=1,...,k, so
ms(f)mr(f) < size(fi) + ...+ size(fi) = size( f).

The case of f being the disjunction of fi,..., fx is dual. Q.E.D.

Corollary 16 Let f be a nonconstant read-once formula of size n > 1 and let m = |\/n|. Then
[ is salisfied by an assignment with exactly m ones or is falsified by an assignment with ezactly m
zeroes.

Proof. Since n > 1, n — m > m. By the preceding lemma, f has a minterm or maxterm of
cardinality at most m.

Suppose f has minterm S such that |§| < m. Let P be the set of variables that occur positively
in §. Let @ be a set of m — | P| variables from V,, — §. Let z5 be the vector that assigns 1 to every
variable in P U@ and 0 to every other variable. Then clearly zg has exactly m ones and assigns
1 to every literal in 5, so f(zs) = 1.

The case of f having a maxterm of cardinality at most m is dual. Q.E.D.
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8.2 The target class of read-once formulas

Let m > 1 and let n = m?. Let H, be the class of all monotone read-once DNF formulas with
exactly m literals in each monomial. There is a one-to-one correspondence of elements of H, with
permutations of the n variables. That is, each element of H, can be imagined as the result of
taking a permutation of the variables and grouping them, in order, into m monomials of size m
each. Thus, |H,| = nl.

Each element of H,, is logically equivalent to those elements that can be obtained by permuting
the monomials and by permuting the variables within a monomial. Each element of H,, is logically
equivalent to (m!)™*! elements of H,. Thus, the elements of H, represent n!/(m!)™+! logically
distinct functions. Clearly, for m > 2, n!/(m!)™+1 > 2.

Suppose z € B, is a boolean vector with exactly m ones. Let P, be the set of variables X;
such that z[{] = 1. How many elements f € H, have f(z) = 1?7 In order to have f(z) = 1, one
of the monomials of f must contain exactly the variables in P,. There are m choices for which
monomial this is, and m! permutations of P, to constitute it. For the remaining n — m variables,
there are (n — m)! permutations giving the order in which they are placed in the remaining n — m
positions. Thus, there are )

m-m!-(n—m)!
elements f € H, such that f(z) = 1.

Suppose that z € B, is a boolean vector that contains exactly m zeroes. Let N, be the set
of variables X; such that z[{] = 0. How many elements f € H, are such that f(z) = 0?7 In order
to have f(z) = 0, each monomial of f must contain at least one element of N,. However, since
there are m elements of NV, and m monomials that contain disjoint sets of variables, this means
that each monomial of f must contain exactly one element of N.. There are m™ choices of one
place in each monomial for the elements of N, and m! permutations of N, by which they might
be filled. For the remaining n — m elements, there are (n — m)! orders in which to put them into
the remaining » — m places. Thus, there are

™.m!(n~-m)!

m
elements f € H, such that f(z) = 0.

The following bound will be used in the proof.

Lemma 17 For any constant C > 1 and for all sufficiently large integers m, if n = m? then

(m™-m!-(n - m))/n! < Cy/2r(m — 1)e=(m-1),

Proof. Let C' > 1 be given. Choose € > 0 sufficiently small that
(1+e?/(1-¢) <C.

By Stirling’s approximation to the factorial, we may choose m > 1 sufficiently large that for all
k> m,

(1 — )V2rk(k*/e¥) < k! < (1+ e)V2rk(kF/eb).
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Let n = m?. Then, since n > (n — m) > m, we have after some simplification,
(m™-m!-(n-m)!)/nl < Cy/2r(m - 1)(1 = m/n)*"™.

Using the fact that (1 — z) < e~%, we have

(m™.m!.(n-m))/n! < Cy/2r(m = 1)e~{m—1),

Q.E.D.

8.3 Equivalence queries do not suffice

Theorem 18 There is no polynomial time algorithm that ezactly identifies all read-once formulas
using equivalence queries, even if the target class is known to be monotone and in disjunctive
normal form.

Proof. Suppose to the contrary that A is a polynomial time algorithm that exactly identifies
all read-once formulas using equivalence queries. Let p(n) be a polynomial bounding the running
time of A. Let C' > 1, and let B(m) be the function defined by

B(m) = Cy/27(m — 1)e~(m=1),

Choose m > 1 sufficiently large that for n = m? we have
(m™-m!-(n—m)!)/n! < B(m),

(by Lemma 17) and also
n!(1 — B(m)p(n)) > (m!)™+1.

This latter is possible since for n = m?, B(m)p(n) — 0 as m — 0. Let n = m2.

Now consider the following adversary strategy. Run algorithm A with variable set {X,..., X,,}
until it makes an equivalence query or has run for p(n) steps, whichever comes first. If it makes
an equivalence query with the read-once formula g, then we answer as follows.

If gis T, the reply is “no” and the counterexample is the vector of all 0’s. If g is L, the reply
is “no” and the counterexample is the vector of all 1’s. Otherwise, g is a nonconstant read-once
formula of size at most n. By Corollary 16, since » > 1, there is a vector z such that z contains
exactly m ones and g(z) = 1, or z contains exactly m zeroes and g(z) = 0. In either case, the
reply is “no” and the counterexample is z.

Consider now the target set H,. We argue that after p(n) steps of A, at least two logically
inequivalent members of H, are consistent with all the replies given to equivalence queries. To
see this, note that each element of A, is a nonconstant read-once formula, so the counterexamples
given in response to T or L do not eliminate any elements of H,,.
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In case the counterexample is a vector z with m 1’s such that g(z) = 1, then we have argued
above that there are at most
' m-m!-(n—m)!

elements f € H, such that f(z) = 1. By our choice of m, since m < m™, this means that no more
than B(m)n! elements are eliminated from H, by this counterexample.

In the case that the counterexample is a vector z with m 0’s such that g(z) = 0, we have
argued above that there are at most

m

m™:m!. (n - m)!

elements f € H, such that f(z) = 0. By our choice of m, this means that at most B(m)n! elements
are eliminated from H, by this counterexample.

Thus, each counterexample eliminates at most B(m)n! elements from H,. Since H, initially
contains n! elements, this means that when A has run for no more than p(n) steps, there are at
least

n! = p(r)B(m)n! = nl(1 = p(r)B(m)) > (m!)™+!
elements remaining in H, that are consistent with all the counterexamples returned to this point.

Since each element of H, is logically equivalent to (m!)™+! elements of H,, this means that
at least two logically inequivalent elements of H, are consistent with all the replies to this point.
Hence, A must either run for more than p(n) steps, or it must fail to identify correctly at least
one of the elements of H,. This contradiction shows that no such A can exist. Note that the set
H, contains only read-once formulas that are monotone and in disjunctive normal form. Q.E.D.

9 Summary and open problems

Table 1 summarizes what is known of the computational difficulty of learning monotone and

arbitrary read-once formulas according to six types of learning protocols. Each entry is discussed
below.

The results of Pitt and Valiant [15] show that probably approximately correct identification of
monotone read-once is not possible in polynomial time if RP # NP. This depends on the fact that
the hypotheses output by the algorithm are constrained to be read-once formulas.

The results of Kearns, Li, Pitt and Valiant [12] show that there is a polynomial time reduction
of the problem of predicting arbitrary boolean formulas to the problem of predicting monotone
read-once formulas. The results of Kearns and Valiant [13] give a polynomial time reduction
of three apparently hard cryptographic problems to the problem of predicting arbitrary boolean
formulas. These results apply also to the problem of probably approximately correctly identifying
monotone read-once formulas using arbitrary polynomial time hypotheses.

Theorem 18 shows that there is no polynomial time algorithm that exactly identifies arbitrary
read-once formulas using equivalence queries, even if the target class is known to be monotone and
in disjunctive normal form.
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Type of Monotone Arbitrary
Learning Protocol Read-Once Formulas | Read-Once Formulas
Examples Oracle No (if RP # NP) No (if RP # NP)

Prediction = Boolean Formulas | = Boolean Formulas
Equivalence Only No No
Yes
Membership Only O(n?) queries No
O(n3) time
Yes Yes
Membership and Equivalence O(n?) queries O(n®) queries
O(n3) time O(n?) time
, Yes Yes
Relevant Possibility O(n?) queries O(n?) queries
0O(n?) time O(n?) time

Table 1: Existence of Polynomial Time Learning Algorithms

Theorem 5 shows that monotone read-once formulas can be exactly identified in time O(n?)
using O(n?) membership queries. A simple adversary argument [2] shows that there is no poly-
nomial time algorithm that exactly identifies arbitrary read-once formulas using only membership
queries.

Theorem 9 shows that there is an algorithm that exactly identifies arbitrary read-once formulas
in time O(n*) using O(n®) membership and O(n) equivalence queries. Of course, the algorithm
using just membership queries can be used in the monotone case when both equivalence and mem-
bership queries are available. This also implies a polynomial time algorithm to predict arbitrary
read-once formulas using membership queries.

Theorem 4 shows that there is an algorithm that exactly identifies arbitrary read-once formulas
in time O(n?) using O(n?) relevant possibility queries.

Using an information theoretic argument based on the number of monotone read-once formulas
over n variables, it is not difficult to show that any algorithm that exactly identifies all the read-
once formulas using just membership queries must make at least Q(nlog n) queries. The algorithm
MM uses O(n?) queries: it would be interesting to close the gap between these two bounds.

Hancock (8] has shown that read-once formulas and p-decision trees are identifiable in poly-
nomial time using constrained instance queries. (The result for read-once formulas was proved
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independently by Hellerstein and Karpinski [9], but presented in the context of projective equiva-
lence queries.)

The input to a constrained instance query is a partial assignment ¢ and a boolean value b, and
the reply is “yes” if and only if there exists an assignment z agreeing with a such that f(z) = 6.
Thus, constrained instance queries are very restricted kinds of subset and superset queries, so one
corollary of Hancock’s results is Corollary 12. It is not known whether constrained instance queries
can be used in general to answer membership and equivalence queries or vice versa, so the results
of this paper for general read-once formulas are incomparable with those of Hancock.

It is unknown whether general DNF or CNF formulas, or even Horn form CNF formulas (at
most one positive literal per clause), are exactly identifiable in polynomial time using membership
and equivalence queries.

Another open question is whether it is possible to speed up our algorithms by using random-
ization and parallelism. This question connects in an interesting way to the problem of finding
upper and lower bounds on random and parallel algorithms for learning a minterm of a monotone
read-once function using membership queries. Lower bounds on random and parallel algorithms
for learning a minterm of an arbitrary monotone function using membership queries can be derived
from the lower bounds for independence system oracles in [11].
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