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Abstract
We show that the following two conditions are equivalent:

1) The existence of pseudorandom generators.

2) The existence of a pair of efficiently constructible distributions which are computationally
indistinguishable but statistically very different.

KEYWORDS: Computational Complexity, Randomness, Algorithms.

1. International Computer Science Institute, Berkeley, CA, visiting from CS Department Technion, Haifa, Israel.

This research was supported by grant No. 86-00301 from the United States - Isracl Binational Science Foundation,
Jerusalem, Israel.



miln 11

T UG

.
. u'l

'
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ABSTRACT --- We show that following two conditions are equivalent:
1)  The existence of pseudorandom generators.

2) The existence of a pair of efficiently constructible distributions which are computationally indistin-

guishable but statistically very different.

KEYWORDS: Computational Complexity, Randomness, Algorithms.

1. INTRODUCTION

A fundamental notion in complexity theory is that of probability distributions which are computation-
ally indistinguishable. This notion originates from the pioneering work of [Goldwasser, Micali 82] and was
presented in full generality in the fundamental work of [Yao 82]. Loosely speaking, two probability distribu-
tions are computationally indistinguishable if no efficient algorithm can "tell them apart". Namely, the output
distribution of every efficient algorithm is oblivious of whether the input is taken from the first distribution or

from the second distribution.

Clearly, every two distributions which are statistically close are also computationally indistinguishable.
Using a counting argument one can show that the converse does not hold [Goldreich, Krawczyk 89]; namely,
there exist two distributions which are statistically very different yet are computationally indistinguishable.
However, these distributions are not efficiently constructible. A fundamental question in this area is whether
there exists two efficiently constructible distributions which are computationally indistinguishable, yet statist-
ically very different. In the sequel we refer to a positive answer to the above question as to the non-triviality
of computational indistinguishability.

The existence of pseudorandom generators, introduced and developed by [Blum, Micali 82] and [Yao

82], imply the non-triviality of computational indistinguishability. A pseudorandom generator is an efficient
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(deterministic) algorithm which stretches short seeds into longer output sequences such that the output distri-
bution on a uniformly chosen seed is computationally indistinguishable from a uniform distribution. It is
easy to see that the pseudorandom output distribution and the uniform distribution constitute a non-trivial
case of computational indistinguishability.

We conclude that the existence of pseudorandom generators is a sufficient condition for the non-
triviality of computational indistinguishability. In this note we prove that this condition is also a necessary
one. Namely, the non-triviality of computational indistinguishability implies the existence of pseudorandom

distribution.

The notion of false entropy, introduced by [Impagliazzo, Levin, Luby 89], plays a control role in our
proof. This notion constitutes a special case of two efficiently constructible distributions which are statisti-
cally different yet computationally indistinguishable. We first show that the non-triviality of computational
indistinguishability implies the existence of false entropy and conclude by employing a result of
[Impagliazzo, Levin, Luby 89] which states that the existence of false entropy implies the existence of pseu-

dorandom generators.

2. FORMAL SETTING

For a formal setting we consider sequences of probability distributions (called ensembles) instead of

single probability distributions.

Definition 1: An ensemble X = (X, }, ¢ n is a sequence of random variables each ranging over binary strings.

(Sometimes we omit n € N from the notation.)

Definition 2: An ensemble X =(X,} is polynomial-time constructible if there exists a probabilistic

polynomial-time algorithm, S, such that X, =S5 (17). (On input 1* algorithm S has output distribution X,, .)

Definition 3: Two ensembles X = {X,} and Y = (¥, } are said to be statistically different if there exists a

constant ¢ > 0 and an integer N such that forall n 2N

> IProb(X,, = &) — Prob(¥, =0)| > Xl‘
a

4

The ensembles X = (X, } and Y = (Y, } are statistically close if for every ¢ > 0 there exists an integer N
suchthat foralln >N



-

c

3 | Prob(X,, = &) — Prob(¥, = a)| < ni
a

Two ensembles which are not statistically close are not necessarily statistically different. Statistically
close ensembles constitute an uninteresting case of polynomially indistinguishable ensembles (see Definition
4).

Definition 4 [Goldwasser, Micali 82, and Yao 82]: Two ensembles X = {X, ) and ¥ = {Y,} are polynomially
indistinguishable if for every (probabilistic) polynomial-time algorithm, A, and every ¢ > 0 there exist an
integer N suchthat foralln 2N

I Prob(A (X»)=1) — Prob(A (¥, )=1)| < ni

Definition 5: An ensemble X = {X, }, c N is called uniform if there exists a function /: N —= N, such that for
every n and every e {0,1}/®):  Prob(X,=a)=27®), If I(n)=n, for all n, then X is call the uniform
ensemble. The uniform ensemble is denoted by U = {U, }. Namely, for every ate {0,1}": Prob(U,=0c)=2"".

Definition 6 [Yao 82]: An ensemble X = (X, } is called pseudorandom if it is polynomially indistinguishable

from some uniform ensemble.

Definition 7 [Blum, Micali 82]: A deterministic polynomial-time algorithm G is called a pseudorandom gen-

erator if the following two conditions hold
1) Foreveryse (0,1} : IG(s)l > Is|.

2) The ensemble {G (U, )}, e N is pseudorandom.

Theorem: The following two conditions are equivalent
1)  There exists a pseudorandom generator,

2)  There exists a pair of polynomial-time constructible ensembles which are statistically different yet poly-

nomially indistinguishable.



3. PROOF OF THE THEOREM

To see that condition (1) implies (2), let G be a pseudorandom generator, and { :N—N be a function so
that {G(Upn)}nen and {Uin)}n e N are polynomially indistinguishable. Clearly, G (U,) must concentrate on
strings of length ! (n) (i.e. Prob(1G (U,)I=l(n))> 2!3) and hence /(n) can be computed with very high pro-
bability in poly(n)-time. Namely, there exists a probabil'istic polynomial-time algorithm L such that
Prob(L(1*)=1(n)) > 1-27". Let Y, be uniformly distributed over L (1*). ThenY =(Y, } is polynomial-time
constructible and satisfies Prob(Y, € {0,1}'®)) > 1-2~" and Prob(Y,=0lY, € {0,1}/®®)) =2-1() for every
ae {0,1}/®). Hence {G(U,)} and {Y,} satisfy condition (2).

To see that condition (2) implies condition (1) we use the notion of false entropy introduced in

[Impagliazzo, Levin, Luby 89].

Definition 8: A polynomial-time constructible ensemble F = (F,} is called false entropy if there exists a
polynomial-time constructible ensemble D = {D, }, such that F and D are polynomially indistinguishable

and D has higher entropy than F. Namely, there exists a constant ¢ > 0 and an integer N such that for all

nz=N
Ent(D,) > Ent(F,) + HLC

where Ent is the entropy functional assigning each random variable X its entropy

—Y Prob(X =0r)-log,Prob(X =o).

The proof follows immediately from the subsequent two lemmas.

Lemma 1: Let {X,]} and (¥, ]} be a pair of ensembles as in condition (2) of the Theorem. Then there exist a

false entropy ensemble.

Lemma 2 [Impagliazzo, Levin, Luby 89]: If there exists a false entropy ensemble then there exists a pseu-

dorandom generator.



3.1 Proof of Lemma 1

A construction which proves the lemma is obtained by letting F,, =(0,X,) with probability 1/2 and
F, =(1,Y,) with probability 1/2. The ensemble {D,} used to demonstrate that (F, ) is false entropy is
D, =(B X,) with probability 1/2 and D, =(B,Y,) with probability 1/2, where B is uniformly distributed
over {0,1} independently of all other random variables. It is simpler, however, to verify the validity of the

more complex construction given below.

Let ¢ > 0 be such that for all sufficiently large n we have

3,1Prob(X,=a) - Prob(¥,=0) | > -nl—

Define f,, to be n%+! independent copies of X, , and )7,, to be n2¢+! independent copies of Y, . Clearly, {}?,., }
and {}7,,} are both polynomial-time constructible. Standard technique can be used to show that [f,,} and
{)7,,] are polynomial-time indistinguishable (e.g., consider "hybrids” Hi composed by i independent copies

of X, followed by n2*+—i independent copies of ¥,). X and Y are statistically very different; namely:

3" | Prob(X, =) — Prob(¥,, =) | > 1-27".
a

We now employ the above construction to X,, and Y, (instead of 10 X,, and ¥, ). Formally, F, equals (0.X,)
with probability 1/2 and (1,Y,) otherwise. D, equals (B ,X,) with probability 1/2 and (B,Y,) otherwise.
Clearly, F, and D, are polynomial indistinguishable while D, has higher entropy then F, (as the first bit of
D, is independent of the rest while in F,, the first bit is determined with very high probability by the rest).

Remark: An analogous argument can be applied directly to F, and D,. The first bit of F, can be

predicted with non-negligible advantage (rather than almost determined) from the rest.

3.2 Proof of Lemma 2 - Sketch

The proof originates from [Impagliazzo, Levin, Luby 89]. A sketch is presented here for sake of self-

containment.

Let F={F,} be a false entropy ensemble and D ={D, } the ensemble used to demonstrate this pro-
perty. Let S be a probabilistic polynomial-time algorithm satisfying S (1) =F, (such an algorithm exists
since F, is polynomial-time constructible). Let t(n) be a bound on the running time of §(17). We may view
S(1*) as selecting at random a sequence of {(n) bits, denoted r, and then evaluating f (r), where f is a

polynomial-time computable function. Let R, be uniform over {0,1}'(®), then F, = f (R, ).
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Suppose Ent(D,) > Ent(F,)+ -1, and let e(n)=Ent(F,). Shorthand t=1(n), e=e(n) and let

m =(n°-1)°M), Consider the following ensembles:
(D A f ) (rm), h(ry1.rm)
2) A fr)fms
(3) h,D,..Dy,s
where h is a randomly selected m -t — (m(¢t—e)-m?3-t) hashing function, r - - r,, are uniformly
selected each in {0,1}/, and s is uniformly selected in {0,1}™¢—¢)>""*1 (Ensemble (3) contains m
independent copies of D,.)
It is easy to see that the ensembles (2) and (3) are polynomially indistinguishable (as F = {f (R,)} and D are
polynomially indistinguishable). To show that the ensembles (1) and (2) are statistically close, observe that
for most sequences ry,r,....7,, the number of pre-images of f (r)-f (r2)-f (r,) is at least 2m¢—e>-m*1 (55
the average logarithm of pre-image size for each f (r;) is t—e and m independent repetitions of an experiment
are unlikely to deviate from the expectation by more than Vm times the maximal value). We conclude that
ensembles (1) and (3) are polynomially indistinguishable.
We now show that the entropy of ensemble (3) is greater than the number of random bits used in the construc-

tion of ensemble (1). The entropy of ensemble (3) is at least

Il +m(e + ) +mG—e)m®t = |h]+m tm— —mP

With a suitable choice of m (e.g. m =(2n°t)%) this is substantially more than |4 | +m+t which is the

number of bits used in the construction of ensemble (1).

Finally, applying a suitable hashing function on ensembles (1) and (3) yields a pseudorandom generator G .

Le.,
GW hirirm)=H b (h f (). L Tm)h(T1.rm),

where 4’ is a hashing function chosen from a suitable class. The output distribution of G is polynomially
indistinguishable from the distribution 4’4’ (h,D,...D,,s) and the latter is statistically close to a uniform

ensemble.
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