An Efficient Parallel Algorithm
for the 3MIS Problem

Elias Dahlhaus' and Marek Karpinski2
TR-89-052
September 1, 1989

Abstract

The paper considers the problem of computing a maximal independent set in hyper-
graphs (see [Karp, Ramachandran 88] and [Beame, Luby 89]). We present an efficent
deterministic parallel algonthm for the case when the maximal cardinality of any hyperedge
is 3. The algorithm works in O(log n) parallel time with O(n + m) processors on a CREW
PRAM and is optimal up to a polylogarithmic factor.

1. Department of Computer Science, University of Bonn

2. Department of Computer Science, University of Bonn, and International Computer Science Institute, Berkeley,
California. Supported in part by Leibniz Center for Research in Computer Science, by the DFG Grant KA 673/2-1,
and by the SERC Grant GR-E 68297.

0 Introduction.

Given a hypergraph H= (V, H) with H a collection of subsets of V. The
Maximal Independent Set Problem (cf. [KR 88|, [BL 89]) in a Hypergraph
(HMIS) is the problem of finding an inclusion maximal subset ¥’ C V' such
that for no hyperedge h€ H, h C V' (called a mazimal independent set of
H). Generally a set V' C V is called independent iff for no he H,hCV".

While efficient NC algorithms for the maximal independent set problem
restricted to graphs are known (see [KW 84], [GS 87|, [Lu 85]), the fast
parallel solution for the HMIS remains open. Here we present an eflicient
NC algorithm for HMIS restricted to hypergraphs H= (V, H) such that
each h € H has cardinality at most 3, shortly 3MIS.

This algorithm uses similar ideas as [GS 87]. We refer also to [BL 89],
where a probabilistic parallel algorithm for 3MIS is also presented.

In the first section we give the necessary terminology of the paper. The
second section formulates the main result. The third section describes the
global strategy. We describe a coloring of the vertices such that each color
forms an independent set. The fourth section explains, how to unify two
such colors. The fifth section shows, how to compute a "large enough”
independent set. The sixth section gives a correctness analysis of the algo-
rithm and the last section of the paper gives the complexity analysis of the
algorithm.

1 Notation.

By a hypergraph we mean a pair H= (V,H) such that H is a set
of subsets of V. V is the set of vertices and H is the set of hyperedges.

2

The maximal size of a hyperedge h € H is called the dimension of H. For
example graphs are hypergraphs of dimension two.

An independent set of a hypergraph H= (V, H) is defined as a subset
V' of V such that no hyperedge h € H is a subset of V' (cf. [KR 88]). Note
that in the case of graphs this notion of an independent set coincides with
the usual notion of an independent set.

By a maximal independent set we mean an inclusion maximal indepen-
dent set.

In the whole paper n will denote the number of vertices n = #V, and
m the number of hyperedges, m = #H.

Since we consider only hyperedges of dimension 3, each hyperedge can
be described by a data structure of size O(n + m).

The computation model used in the paperis a CREW PRAM ([KR 88]).
We assume, that an arithmetic operation on two numbers of length k needs
O(log k) time and O(k) processors. (Since we operate here only on numbers
of length O(log n) the processor exponent of an arithmetic operation is not
relevant for a processor analysis of the whole algorithm).

2 The Main Result.

We shall prove the following

Theorem: There exists an algorithm to compute a maximal indepen-
dent set in hypergraphs of dimension 3 running in O(log* n) parallel time
and O(n + m) processors on a CREW-PRAM.

We note that the algorithm is optimal in processor-time product up to
a logarithmic factor.

3 Global Description.

We shall adopt the technique of [GS 87] to compute at each step an
independent set C such that for W(C) := {z |Ihe€H h\C =z} the set
CUW(C) has cardinality at least ""91 -, where k is the number of vertices
of the hyperedge in the actual step. Afterwards W(C)U C is deleted from

the vertex set.

In the whole algorithm we have to repeat this procedure O(log? n) times
(until only one vertex remains).

Also to compute such a set C, we proceed similarly as in [GS 87], that
we have disjoint independent sets Cj,...,C, and compute an edge coloring
on the complete graph of {C;...C,}. We select a color with the smallest
"loss’ and paste the independent sets C;,C; together which are joined by
an edge of this color.

4 Pasting two colors C;, C; together.
Given a hypergraph H= (V, H) and a set {Cy...C,} of colors.
1. Let Cj := C;\{z|3heHRCCUC; A hNC;={z}}
(Set of vertices z of C;, whose addition to C; make C;U{z} dependent)
2. Let €7 :=C;\{z|3h€ HRC C;UC! A N C; = {z}}
3. Set Cy; = C{UC] (C;; is independent).

Lemma: C;; is independent.

Proof of the Lemma: Let h be some hyperedge of H such that h C
C; U C;. Since h has a cardinality of at most 3, k N C; or AN C; has a size
of at most one. In the second case the z € kN C; does not belong to C.

Therefore if h C C; U C’J‘, then A N C; has a size of at most one. But then
the z € h N C; does not belong to C;’.

4

End of the proof of the Lemma
The loss of ¢ and 7, denoted by I(%,5) = I(C;, C;) is #((C; U C;) \ Cy;).
W(C;) := {z ¢ C:|3IheH h\C; = {z} }

is the set of vertices, whose addition to C; generate a non independent set.
It is easily seen that

>o1G,5) < L #W(C).

The deciding step is computing an independent set such that

#(CUW(C)) = cologk

where k is the number of vertices.

5 Computing the independent set C.

1. Let |4 ={'01 ...'Uk}.
C;:={v;} foreachi=1,...,k; p=k.

2. Repeat logk times:

2.1. Color the edges of {[C;,C;] : 4,7 = 1,...,p} minimally such
that no adjacent edges have the same color:
If p is odd, color the edge [C;, C;] by i + j mod p;
if p is even, color [C;,Cj] for i, =1,--:p—1byi+ jmodp—1
and [C;, Cy] by 2imodp — 1 (see also [GS 87]).
Let D; be the set of [C;, C;] colored by . (Note, that in the case,
that p is even, we have ¢ := p — 1 colors and in the case of an
odd p we have p colors. It is easily seen that no adjacent edges
have the same color.)

2.2. Select a color D such that
Z{I(Oiso.‘i) : [C,Cj] € Di}

5

is minimal;

apply the pasting procedure of two colors for any [C;, C;] € Dy
and unify Cj; to a new color.

Decolor all vertices in C; U C; \ Cy;.

3. C is the remaining color.

6 Correctness Analysis.

Assume, for all colors in each step W(C;) < Tf':%
Then for each step

(p-1) (T{C,,G): [CnCileD}) < Y UCi,C))

i,7=1...p
< 2 W(C)
Cok
< =
log k
Therefore we can assume
> {UC;,C5): [Ci,C5] € Di} < ok
e ned log &
for some constant c;. But then at most ﬁ;’% -logk = cyk vertices are

decolored after leaving the repeat loop (Step 2.). Therefore C' must contain
at least (1 — cp)k vertices. This is a contradiction.

7 Complexity Analysis.

The computation model is the CREW PRAM.

. Computing W(C;) :

Let h = {(81,232,2:3} or h= {221, 32}.

For z; let C** be the C; such that z; € C;.

If C; appears #h — 1 times as some Cj, then the =, € b\ C; is set to
be in W(C;). This can be done by O(n + m) processors in O(logn)
time.

. Cifor i<j:

For h € H such that C; appears once delete kN C; from C;' (which
was initialized as C;).
That can be done by O(n 4+ m) processors and O(logn) time.

We get the same analysis for C‘_;" and j < 1.

The computation of the color of an edge {[C;,C;] : i,j = 1...p} needs
one processor and O(logn) time, since we only use an arithmetic
operation 4+ on ¢ and j, which are bounded by n (the lengths are
bounded by log n). (see [GS 87]).

Computing the losses of each coloring needs O(n + m) processors and
O(log n) time, since we only have to compute losses and colors of pairs
of old colors, where there are hyperedges contained in its union:

Let C. be the C; such that 2 € C;. Then we have to compute for
each hyperedge h and each pair z,y € h the losses and the colors of
[Cz, Cy]. The number of such [C.,C,] is bounded by 3n.

Selecting the color of smallest loss needs O(k) processors and O(logn)
time.

The repeat loop needs O(logn) time. Therefore computing the inde-
pendent set C needs O(log?) time.

The algorithm for computing C must be repeated log?n times to
compute a maximal independent set (compare also [GS 87]).
Therefore computing 3MIS needs O(n + m) processors and O(log* n)
time.

References

[BL 89]

[GS 87]

[KR 88|

[KW 84)

[Lu 85]

Beame, P. and Luby, M. Parallel Search for Maximal Indepen-
dence given Minimal Independence, Technical Report #TR-89-
003, International Computer Science Institute, Berkeley, (1989)

Goldberg, M. and Spencer, T. A New Parallel Algorithm for the
Maximal Independent Set Problem, 28th STOC (1987), pp. 161-
165

L]

Karp, R.M. and Ramachandran, V. A Survey of Parallel Al-
gorithms for Shared-Memory Machines, Research Report No.
UCB/CSD88/407, University of California, Berkeley (1988); to
appear in: Handbook of Theoretical Computer Science, North
Holland (1989)

Karp, R. and Widgerson, A A Fast Parallel Algorithm for the
Maximal Independent Set Problem, 16th STOC (1984), pp. 266-
272

Luby, M. A Simple Parallel Algorithm for the Maximal Indepen-
dent Set Problem 17*h STOC (1985), pp. 1-10

