Accessing and Customizing
Services in Distributed Systems

Ralf Guido Herrtwich' and
Uwe Wolfgang Brandenburg2
TR-89-059
October 26, 1989

Abstract

In a distributed system, entities access services provided to them by other entities at
remote sites. While it may be unimportant to the service users which entities act as service
providers, they often have other requirements on the services they use. On the other hand,
service providers only have certain possibilities. Both the requirements and possibilities can
be described by means of quality-of-service parameters (QOSPs), which have to be determined
for each service session. In this paper we design a session establishment service (SES) which
takes QOSP values into account. The SES can be used for any kind of QOSPs since it uses
badness specifications as a uniform means to identify the usefulness of a certain QOSP value
to a service user, to determine the relative importance of single QOSPs, and to calculate the
overall quality of a service. Three kinds of QOSPs are distinguished: Static parameters do not
change as long as the service is available, dynamic parameters depend on the current state of
a service provider, and retrospective parameters result from evaluations of the service which
are obtained from previous service users. While some QOSP values are available per se others
can only be accomplished if the service provider schedules its resources appropriately. The

reservation of resources can be integrated within the SES. This is especially important for
real-time services.

1. International Computer Science Institute, Berkeley, CA.

2. National Research Corporation for Mathematics and Data Processing (GMD), Research Center for Open
Communication Systems (FOKUS), Hardenbergplatz 2, D-1000 Berlin 12

1. Introduction

Any well-designed software system has a hierarchical structure in which high-level system entities
make use of the services provided to them by lower-level entities. It is a general problem to reconcile
the needs of the service users with the possibilities of the service providers. This problem becomes
especially important in distributed systems, where modules are not statically linked together, but
achieve cooperation in a more dynamic way, giving each entity some autonomy about the degree to
which it relies on outside functions and to which it offers its own functions to other entities. Here,
mechanisms to identify and to access services at run-time are needed. These mechanisms have to be
flexible (since they should be appropriate for all kinds of services), dynamic (since the availability of
services will vary), efficient (since they are needed before the actual service can be used), and yet
transparent (since the users should only be concerned with the service itself).

RPCs are a method for service access which has some of these properties [1]. Yet, the only criterion
for selecting a server in the RPC model is the name of the procedure. If more than one server is able
to execute the procedure it can be chosen at random. For many applications, this random choice will
not be appropriate because they have certain requirements on the kind of service provider they use.
These applications need some higher degree of control about the service provider selection. In this
paper we present a scheme which enables service users to specify their requirements in a way which is
independent from the service to be used. This specification is taken into account when the service pro-
vider is selected.

While our description here is focussed on the method and not on its implementation, the reader should
note that the mechanisms presented have been designed for two systems which are intended to support
distributed applications:

e The DASH Project at the International Computer Science Institute and the University of California
at Berkeley develops a system to support distributed continuous-media applications including digi-
tal video and audio [2].

e The Research Center for Open Communication Systems at the National Research Corporation for
Mathematics and Data Processing (GMD) in Berlin investigates mechanisms to support the
cooperation of autonomous systems. Part of this work is the BERCIM Project which is concemed

with supporting the control of technical processes within a computer-integrated manufacturing
framework [3].

In both areas each single distributed application will have highly different requirements, many of
which result from the real-time dependencies in these applications. Therefore, it is essential in both
systems that an application is able to adjust the functions provided by its supporting system according
to its specific needs.

2. Service Sessions

System entities have to know the interface of a service to be able to use the service. This interface
consists of the unique name of the service, the names of its different service elements and a
specification of their options and parameters. The same service may be offered by different service
providers. Sometimes service providers offer services which are slightly different from each other.
E.g., one service provider may offer a matrix print service while the other offers a laser print service.
Both services have the same service elements and can be operated in the same way. What differs is
the quality of the printout being produced.

If two services are almost identical, it is more efficient to manage their differences than to manage two
entirely different services [4]. These differences are described for each service by a set of quality-of-
service parameters (QOSPs) [5]. Before a service can actually be used, the requirements of the ser-
vice user and the possibilities of the service provider are negotiated in terms of QOSPs. Once both
parties have agreed on a common set of QOSP values, they have established a service session in
which they use service elements the semantics of which are determined by the chosen QOSP values.
We can use a familiar example to illustrate such a session establishment:

Imagine, you want to make a hotel reservation for your holiday in a far-away country by phone.

Direct dialing is impossible, so the operator will have to assist you. Unfortunately, you only remember

the first letter of the name of the hotel your friends recommended. Hence, you call the operator and

tell him that you would like to call a certain town in a certain country. You would like to speak to the

assistant manager in a hotel the name of which starts with *“H"". The operator first determines the

phone number of the hotel by scanning through the Yellow Pages of your planned destination. Unfor-

tunately, he finds two hotel names starting with ‘““H”’. You remember that your friends mentioned that

this was the only hotel with a swimming-pool. Since the operator is very friendly, he offers you to find

out the right hotel. He also asks about your requirements for the connection, e.g., if you would like to

have an immediate connection at higher costs during business hours or if he should schedule the con-

nection for the early evening hours. If you want an immediate connection the operator puts you on

hold and calls the hotel. If he is able to get a connection he first checks if it is the right one and then

asks to be connected to the assistant manager. If the assistant manager answers the phone the operator

will put your call through and the connection is established. You may now use it for any service avail-

able from the assistant manager.

Session establishment between processes in a distributed system involves the same steps and can be
accomplished in a similar way. A session establishment service (SES) takes the place of the phone
operator. Just as the number of the operator has to be known to all telephone customers, all system
entities have to know the address of the SES. This address, however, is the only service address they
need to know. All other addresses can be obtained from the SES.

The SES accepts a session establishment request by a user. In this request the user specifies the ser-
vice it wants to access and its desired QOSP values. The SES will select a service provider according
to this specification. To determine potential service providers the SES may make use of a Yellow-
Pages service (YPS) as described in [6] and [7]. Every service provider registers its services with the

B

YPS. Part of this registration is the definition of QOSP values available from this particular service
provider. The service provider will only be able to specify values for those QOSPs which are static
and do not change throughout the time the service is available. A typical example of a static QOSP is
the printer used by a certain print server. Values of QOSPs which are dynamic depend on the current
state of the service provider and may change. They cannot be determined when the service is
registered but only when a session is established. An example of a dynamic parameter is the time it
takes the service provider to process a certain service request.

The selection of potential service providers obtained from the YPS is based on the service name and
the static QOSPs. The main task of the SES then is to find one service provider within this group
which can fulfill the requested values for dynamic QOSPs. The SES has to contact the service provid-
ers on behalf of the service users since it cannot determine the QOSP values available itself. Once an
appropriate service provider is found, the session can be established. For this establishment, the ser-
vice user may also submit values of parameters and options which serve to adjust all service elements
of the service. E.g., it may specify a verbose option for the service which causes detailed information
about each execution of a service element to be generated later. These values, however, are merely
forwarded to the service provider and do not influence the result of the session establishment. We will
neglect them in the following,

3. User Requirements

Every session establishment starts with a request by the service user. In this establishment request, the
user names the service it wants to use and specifies the set of QOSP values it desires to obtain from
the service provider. If the user does not specify a value for a certain QOSP it is either up to the SES
or the service provider to choose an appropriate value. By this, transparency can be achieved. In
many cases, the user will be satisfied with more than one QOSP value, although the degree of its satis-
faction may vary. Many users will rather use a service of poorer quality than to obtain no access to a
service at all. Hence, for each QOSP the user can specify

e a set of acceptable values and
e a metric according to which values shall be chosen if more than one value is available.

The metric determines the usefulness of a QOSP value to the service user. It can be implemented in
different ways. One good way is to assié;ﬁ an integer number to each value determining the badness
of this value (similar to [8]). Consider the following example: In a network service four different lines
are available which have transmission rates of 2400, 4800, 9600 and 19200 baud, respectively. The
user may want to keep the fast line available in case some other urgent communication needs occur.
The 4800 baud line will suit the application best, but if it is not available the selected line should
rather be fast. These requirements can be reflected in the following selection of badness values:

2400 baud badness = 1000
4800 baud badness =0
9600 baud badness =200
19200 baud badness = 4000
other values badness = 10000

The example shows that a metric does not need to be linear, although in most cases it will rather be
defined by means of a function than by enumerating single values. E.g., to get a value x as close to0
the optimum value Xop: 28 pOssible one can specify

badness (x) =100 (| x—xop |)

Since any function can be used to specify badness values, even complex requirements as in [9] can be
expressed easily.

The values of different QOSPs may depend on each other. E.g., the user of a network service may
either be satisfied with a long message delay and a large packet size or a small delay and a small size,
but it would not like any other combination. Enumerating these dependencies separately for each set
of QOSPs would be very troublesome and inefficient. Since the badness is a metric which can be used
for any kind of QOSP, it can be used to determine the overall quality of a certain service. A service
can be considered unacceptable if the sum of all single badness values exceeds a certain limit. This
overall badness limit may be specified when the user asks for the service session to be established.
By choosing appropriate badness values, the different QOSPs can be assigned different weights in cal-
culating the overall badness. If a QOSP value cannot be chosen under any circumstances, it is
assigned a badness value exceeding the overall badness limit. In the example above, the overall limit
could be set to 5000 to avoid the selection of any other line.

In its request the service user may already specify the service provider it wants to access. [t may also
specify a set of potential providers, e.g., by stating a domain [10] in which the service provider shall
be located. If a system is organized in different domains service users will in many cases want to
access a service provider in their own domain or in the domain closest to them. E.g., a print server
should be located closely to avoid long ways to fetch the printout. For the selection of service provid-
ers, the user may again specify a metric according to which they shall be chosen. Hence, the name of
the service provider is a QOSP itself.

Most QOSPs can be hidden from the service user when establishing a service session. In many cases,
the user is not interested in the actual values of QOSPs, but rather in the functions an entire set of
values stands for. E.g., a user may need a network service to transfer video data. In this case, the
attribute video should be the only value by which the service user states its requirements. The SES
internally transforms this value into the appropriate set of QOSP values.

4. Service Provider Selection

The SES is represented on each host by an SES agent which handles session establishment requests
for all service users on this node. To each SES agent a description of all possible services is available
which contains a specification of the QOSPs of these services. These descriptions enable the SES
agent to check and complete the request obtained from the service user.

The SES agent may confine the QOSP selection by the user according to specifications by the local
system administrator. The possible reasons for this confinement are manifold: The user may not be
fully aware of the facilities provided by the underlying system, e.g., the user may specify to use a
19200 baud line although there is no such line available. It is also possible that a certain QOSP selec-
tion is unfair to other users of the host, e.g., by monopolizing the network connection, or that a user is
not entitled to make a certain selection. The SES agent can never select QOSP values outside the
selection and overall badness specified by the service user. It rather has to reject the request for ses-
sion establishment in this case.

After having confined and completed the service request according to its local regulations, the SES
agent forwards the request including the values of all static QOSPs, but excluding the metrics, to the
YPS. The YPS will then retum a list of all service providers which are able to accomplish the desired
service and the requested QOSP values. It will also determine if a service provider specified by the
service user actually fulfills the desired QOSP values. The SES agent will then contact the potential
service providers to determine the available values of dynamic QOSPs. Having obtained this informa-
tion it will apply the metrics given by the service user and select the best service provider available. It
will inform all service providers which were not chosen that they can free any resources which they
might have reserved already for the new session. It then submits the address of the service provider to
the user, and the session is established.

If users only want to inquire about the availability of a certain service before actually establishing a
service session, the same mechanisms can be used. However, we see no reason to provide such a ser-
vice in addition to the actual session establishment because the values of dynamic parameters might
change if no immediate reservation is made. On the other hand, a user may immediately close a ses-
sion if its only interest was in the availability of the session. Leaving the selection of the service pro-
vider up to the user not only diminishes transparency, but may also render resources of service provid-
ers unavailable for some time until the service user has made its decision. In general, we believe that
control functions which can affect other system entities should not be assigned to user processes. If it
is really necessary to do so, at least, a timeout mechanism should be used to control the reply of the
user.

If the session cannot be established it should be possible to obtain information from the SES about the
best QOSP values available. If service requirements resulted from the needs of certain processes, this
might not be very helpful, but if they were derived from specifications of a human user, this user
might reconsider his requirement specification. Unlike processes, people tend to bargain. Instead of

getting into the hassle of specifying the complete list of badness parameters, they rather present their
maximum requirements as the only possible values. Only if these requirements cannot be fulfilled
they might think about altematives. Of course, processes could be programmed to bargain, t00. In
this case, however, the information about their “‘retreat policy’’ would be available beforehand.
Hence, it could already be reflected in their initial session establishment request, avoiding the
inefficiencies of multiple interactions.

Obviously, the selection of the best available service provider described above can be very time-
consuming and inefficient. One the other hand, many service users will not need to be provided with
the best service possible. To select service providers more efficiently, the SES agent can apply certain
heuristics. It may first query the YPS only for service providers which allow those QOSP values
which have the lowest badness. Again, the different weight of QOSP values provides a clue about
their relative importance and can be used for these heuristics. Having obtained a list of service provid-
ers, the SES agent can contact one of them to see if it also accomplishes the requested dynamic QOSP
values. Once an appropriate service provider is found, a session is established with this provider.

This method may not provide the best choice but a reasonably good one. It is efficient and takes the
preferences of the service user into account. For efficiency reasons, we have assumed that values of
static QOSPs prevail against dynamic QOSPs, i.e. the best selection based on dynamic QOSPs is
likely to be a subset of the best selection based on static QOSPs. In case this assumption is not valid
or some service users really want to establish the best possible service session, a user can specify a
number of service providers which shall be contacted before one service provider is selected. E.g., the
users may determine that the best out of the first ten service providers found shall be selected. Obvi-
ously, the more service providers are contacted, the higher are the costs of session establishment. A
service user will only pay these costs if they are compensated by the service quality achieved.

There are even more ways to enhance the heuristics on which the selection of a service provider is
based. It is reasonable to assume that the values of dynamic QOSPs of some service providers do not
vary dramatically within a certain time interval. For these service providers, the recent dynamic
QOSP values can be stored by the SES in a database and serve as another criterion for selecting a ser-
vice provider to be contacted. A certain life-span can be assigned to dynamic QOSPs during which
the SES has not to renegotiate their values.

It is also possible that service users deliver an evaluation of the service provided to the SES after they
have closed the service session. E.g., they can inform the SES about the average queue length at a cer-
tain print server. By that, new QOSPs become possible which allow to consider previous experiences
of service users with certain service providers. Examples of such retrospective QOSPs are the relia-
bility of service providers or the degree to which the actual service quality corresponded to the nego-
tiated service quality. The collection of data to determine retrospective QOSPs can be hidden from
the service users by incorporating it into the procedures by which the service users access the service
interface. Once a service session is closed, this data is transmitted to the SES.

Retrospective QOSPs might also help to cope with the problem that claiming to provide a certain
QOSP value and really providing it are two different things. As one cannot prove that a certain func-
tion is provided unless one has access to all the software which is used for accomplishing it, one has to
be satisfied with a statement of quality. This statement, i.e. the submission of a certain QOSP value
by the service provider, can be seen as a guarantee. If a lack of quality occurs, at least it is clear
which system entfity is to blame and which programmer may be held liable.

Just as everyday warranties for a device are only valid as long as the device is used according 1o its
purpose, a guarantee given by the service provider will be limited to a certain behaviour of the service
user (see also [11]). It may also be restricted by the provider to accommodate other requests in the
future. E.g., the service provider may reserve the right to revoke the given guarantee if it has to fulfill
another service with a higher priority which is unknown at the time the guarantee is given. Any
guarantee becomes obsolete in the case of a hardware or software failure. It is also limited to actions
which affect the service quality, but are not under the control of the service providers. E.g., if an
operator changes the paper tray of the laser printer so that all of a sudden a guaranteed format is no
longer available, the service can no longer be provided.

5. Session Management

To establish a service session, the SES agent has to contact the service provider. For this purpose,
every single service has a session manager (SM) representing the service provider during the session
establishment. The SM first checks if the user is entitled to access the service. If this is the case, it
determines the values of dynamic QOSPs and submits them back to the SES. Some dynamic QOSPs
may depend on circumstances in the service environment beyond the control of any SM. The paper
format available from a print service that was mentioned above is an example of such a parameter.
The SM can only determine the values of these parameters and report them to the SES. The situation
is different if a dynamic parameter depends on the resources which are controlled by the SM itself, i.e.
which are assigned by it to different service sessions. If the SM schedules its resources in a fair
manner, all service user will eventually have their service requests executed. This might not be
enough for service users which have certain requirements on the performance of a service. Perfor-
mance QOSPs are important in two respects: They apply to all services, regardless of the function of
the service, and they are essential for all distributed real-time applications, which form an increasing
portion of all distributed systems.

We distinguish between two kinds of services: For real-time services reservations are made to pro-
vide them with the resources they need, while best-effort services are executed according to the capa-
city available. To determine if a guarantee can be given for real-time services, a worst-case analysis is
made, i.e. the maximum workload of all real-time service sessions is considered. In practice, the load
will be less heavy, leaving enough capacity for the best-effort services. In the remainder of this sec-
tion we concentrate on real-time services. Our description corresponds to the mechanisms used in the
DASH system to create network sessions for transmitting continuous-media data [12].

=

The performance of a service depends on the way the competition for resources among service ses-
sions is solved. No service session can be established if its requirements exceed the maximum
number of resources available to the service provider. This number, of course, is a static parameter
and will be checked before the service provider is even contacted. Let us assume that in no session
exclusive access to a resource is required for a longer time than it takes to execute a single service
request, i.e. that resources can be preempted between service requests. Then, the service provider can
multiplex its resources in time among the service requests of different sessions.

The parameters needed to determine the service performance are the same regardless of the service
considered. Whether an SM is able to give certain performance guarantees for a session s, depends on

¢ the maximum rate R, of service requests (requests/second),
¢ the maximum execution time T, of each request (seconds/request), and
e the deadline D; for the execution of service requests (seconds).

For the sake of simplicity, let us assume that all service requests of a service session can be handled in
the same way so that only one set of parameters for each session is needed. Of course, a more detailed
specification would be possible, but one can also simply establish different service sessions if requests
have different characteristics. Consider, e.g., a computation service in a process automation sysiem
where processes of fixed length are started periodically. One session is used for processes with an
execution time of 5 seconds which are started every 20 seconds. Another session is used for processes
which last 10 seconds and occur every 30 seconds. In each session, the previous process has to be
completed before the next one is started.

Periodical use of resources is typical for real-time applications, hence, the maximum rate of service
requests can easily be determined. It can, however, not be determined by the service provider, but has
to be stated by the service user when the session establishment is requested. All guarantees given by
the SM depend on this statement. If the execution time of a service request depends on parameters of
this request it might not even be possible for the service provider to determine the value of this param-
eter. In a distributed system, messages are used to transmit service requests. For some services it is
possible to determine the time of service execution from the maximum size of messages. E.g., the
time it takes to print a text is directly proportional to the size of the text. For other services, the time it
takes to execute a service request is not a function of the message size. In a computation service the
size of the process code provides no hint about the execution time of the process. Here, again, the ser-
vice provider has 10 rely on a statement from the service user; its guarantees are valid as long as the
information obtained from the user is correct. The service user can use monitoring tools like [13] to
determine the worst-case execution time.

Even in real-time applications, service requests may not be delivered at a constant rate. Users may
rather issue several requests at a time and then back-off for a while, obeying the maximum message
rate in the long run. For these service users a maximum burst size B, (messages) is given in addition
to the previous parameters [14]. Even if a service user causes bursts, deadlines are calculated as if the

~f=

regular message rate is obeyed. The service requests are considered to arrive ‘*ahead of schedule’’.
Assume, a burst of service requests b1, b2, ... b, (where n < B;) is received at time ¢g on a session 5.
For each request, the regular arrival time A (seconds) is defined as

A(b,) =to+Rs! (r-1) requests

(Note, that by allowing bursts we do not rely on the RPC property that a client is blocked during a
request. This property has been subject to debate in numerous papers, €.g. [15].)

If the SM has already given guarantees for other sessions no new session may be established the ser-
vice requests of which might violate the previous guarantees, unless the session to be established has a
higher priority than these other sessions and causes their abortion. A session may not be established if
it exceeds the overall capacity of the service provider. Hence, if § is the set of all sessions established
and the new session ¢, ¢ can only be established if

Yy R.T,<1

se§
holds. Sessions may only be established if each service request of any session can be executed before
its given deadline. If W; is the maximum waiting time (seconds) for each service request, the rela-
tion

T, +W; <D,
has to hold for all sessions seS.

Let us assume, that scheduling for service requests is rate-based, i.e. every session gets a share of the
resources in a Round-Robin fashion depending on its rate, so that one service mquést can be executed
before the next request is received (considering its regular arrival time). By that, malevolent service
users sending requests at a higher rate than previously announced cannot obstruct well-behaved ser-
vice users. The worst situation for a request on session s would be that all sessions r issue requests at
their maximum rate and that all of these requests have to be processed before the request on session §
is executed. The request on s can arrive just after the system has started to execute the longest request
of all sessions. Let O =S5—{s} be the set of other sessions, then the maximum waiting time is
W= 5[] o) +pm

rel

If scheduling is deadline-based, the situation is slightly different. Let n = IS |, then we can define a
total ordering 51, §7, ... 5, Of sessions according to their increasing deadlines. (Sessions which have
the same deadlines are ordered arbitrarily.) The worst case for a service request on session s is that
service requests on all sessions with lower deadlines have to be processed. Let s; be the session con-
sidered. In this case O ={s; | 1< <i}. The same holds for laxity-based scheduling, only that ses-
sions are ordered according to DT .

So far, we have assumed that all service requests are executed sequentially and that they need the
resources of the service during their entire execution time. The following two examples illustrate that

<G

this assumption is not true for important services:

e A computation service on a multiprocessor is able to execute service requests in parallel. More than
one resource (here: a processor) is available for the service.

¢ In a network service, each message takes some time to propagate through the network until it is
delivered. The resource (here: a network module) can execute service requests although previous
ones have not been completed.

In a more detailed model, the maximum execution time of a service request consists of three com-
ponents:

¢ the maximum synchronous execution time ST, where only one service request can be executed,
e.g., to assign a processor in a computation service,

e the maximum asynchronous execution time AT,, where the service request can be executed in
parallel to a certain number N of other service requests (where N results from the resources avail-
able so that no competition between service requests occurs), e.g., to execute a computation on its
own processor, and

e the maximum propagation time PT,, where no resource is needed for the service, but the service
result still is not available, e.g., the time it takes a message to be forwarded through a network.

T, =ST, + AT, + PT;

ST, AT and PT do not need to be continuous. Unfortunately, in a worst-case scenario we cannot
assume that service requests arrive at times which allow them to be executed in parallel. At least, the
maximum waiting time is reduced by the propagation time:

We= Y ”R;‘R,‘[(ST, +AT,.)] + max (ST; +AT))

re0

The service elements of one service may make use of other services. The best example is the SES
itself: To be able to contact a remote SM, it has to make use of the network service. To access the
underlying services, the SM uses the SES — the establishment scheme is strictly recursive. Just as the
requirements on these underlying services may result from the parameters requested and the informa-
tion given by the original service user, the dynamic QOSP values of a service provider can depend on
the services it uses. If a service request in session s uses other service sessions r its execution time
consists of the accumulated execution times 7T, of these underlying services and an additional time T’
actually spend for intrinsic functions of the service itself, i.e.
XT, =XT,”+ Y XT,
re

where X specifies the kind of execution time (i.e. S, A or P) and @ is the set of service sessions §
uses.

To establish a session with a remote SM the SES has to contact the SM of the network service, too.
One session has to be established for sending service requests and one — if needed - for receiving

-10-

reply messages. Whereas in the traditional RPC model one request causes one reply, in a real-time
environment for continuous media, e.g., one service request to switch on a television channel causes a
continuous stream of reply messages. Hence, the session characteristics for request and reply mes-
sages can be quite different. While the SES agent of the service user installs a session for request
messages, we leave it t0 the SM of the remote service to establish the other network session. The SM
has more information about the QOSP values needed for this connection. Inside the network service,
again, it has to be tested if the requested QOSP values are available. A description of the methods
applied there can be found in [12]. A similar method is presented in [16] which takes a third kind of
network services with statistical properties into account.

6. Conclusion

We have presented a scheme for entities in distributed systems to adjust services according to their
needs and possibilities. This scheme is just another step towards more flexibility and autonomy in dis-
tributed systems. Its implementation is straightforward and in line with all other service implementa-
tions. Particular attention has to be paid to a proper description method of services and their QOSPs
in order to avoid excluding some services from being negotiated and to make the specification of
requirements easier for the service user. Standardization initiatives like [5] are helpful in this regard.

The user interface of handle sessions consists of only two procedures, one 1o create a session and one
to abandon it. An additional third procedure can be used to ease the renegotiation of QOSP values
should the requirements on an already existing session change. In addition to these procedures, the
service user has to provide an exception handler in case the service provider has to revoke its guaran-
tees. The service user does not have to deal with these mechanisms unless it decides to do so on its
own account. If the user has no specific requirements, sessions with default QOSP values can be esta-
blished implicitly whenever the user calls a service for the first time. Every user has as much
influence on the selection of service providers as it wants to.

Acknowledgements. We would like to thank Domenico Ferrari and David Anderson from the University of
California at Berkeley for helpful comments on an earlier draft of this paper.

References

(1] Birrell, A.D., Nelson, B.J.: Implementing Remote Procedure Calls, ACM Transactions on Computer Systems
2,1,39-59, 1988 ;

(2] Anderson, D.P., Ferrari, D.: The DASH Project — An QOverview, Report No. UCB/CSD 88/405, Computer
Science Division (EECS), University of California, Berkeley, January 1988

(3] BERCIM - Bericht zum 2. Meilenstein (Zusammenfassung), Deutsche Telepost Consulting GmbH,
DETECOM, BERKOM, Berlin, Mai 1989

[4] Robinson, D.C., Sventek, J.S.: Interface Trading Concepts, Report No. ST.15.01, ANSA Project, Cambridge,
August 1988

-11-=

[5] Methodology for the Specification Iof QOS Parameters, Draft, NETMAN — R1024, Deliverable 3, RACE
Project, February 1989

[6] Oppen, D.C., Dalal, Y.K.: The Clearinghouse — A Decentralized Agent for Locating Names in a Distributed
Environment, ACM Transactions on Office Information Systems 1, 3, 230-253, 1983

[7] Peterson, L.L.: A Yellow-Pages service for a Local-Area Network, Proceedings ACM SIGCOMM 87,
Workshop on Frontiers in Computer Communications Technology, Stowe, 235-242, August 1987

[8] Knuth, D.E.: The TEXbook, Addison-Wesley, Reading, 1984

[9] Tokuda, H., Wendorf, J.W., Wang, H.-Y.: Implementation of a Time-Driven Scheduler for Real-Time
Operating Systems, Proceedings IEEE Real-Time Systems Symposium, San Jose, 271-280, December 1987

[10] Sloman, M.S., Moffett,].D.: Domain Management for Distributed Systems, Proceedings Symposium on
Integrated Network Management, Vol. 1, Boston, Meandzija, B., Westcott, J. (Editors), North-Holland, May
1989

[11] Jomes, C.B.: Tentative Steps Toward a Development Method for Interfering Programs, ACM Transactions
on Programming Languages and Systems 5, 4, 596—619, 1983

[12] Anderson, D.P., Tzou, S.-Y., Wahbe, R., Govindan, R., Andrews, M.: Support for Continuous Media in the
DASH System, Report No. UCB/CSD 89/537, Computer Science Division (EECS), University of California,
Berkeley, October 1989

[13] Haban, D., Shin, K.: Application of Real-Time Monitoring to Scheduling Tasks with Random Executon
Times, Report TR-89-028, International Computer Science Institute, Berkeley, May 1989

[14] Cruz, R.L.: A Calculus for Network Delay and a Note on Topologies of Interconnection Networks, Report
UILU-ENG-87-2246, University of Illinois, July 1988

[15] Chang, C.-C.: REXDC - A Remote Execution Mechanism, Proceedings ACM SIGCOMM 89, Symposium
on Communications Architectures and Protocols, Austin, 106—115, September 1989

[16] Ferrari, D., Verma, D.C.: A Scheme for Real-Time Channel Establishment in Wide-Area Networks, Report
TR-89-036, International Computer Science Institute, Berkeley, May 1989

=12

