The Asynchronous PRAM:
A Semi-Synchronous Model

for Shared Memory
MIMD Machines

Phillip Baldwin Gibbons’
TR-89-062
December 11, 1989

Abstract

This thesis introduces the Asynchronous PRAM model of computation, for the design and analysis of
algorithms that are suitable for large parallel machines in which processors communicate via a distributed, shared
memory. The Asynchronous PRAM is a variant of the well-studied PRAM model which differs from the PRAM
in two important respects: (i) the processors run asynchronously and there is an explicit charge for synchronization,
and (ii) there is a non-unit time cost to access the shared memory.

Many new algorithms are presented for the Asynchronous PRAM model. We modify a number of PRAM
algorithms for improved asymptotic time and processor complexity in the Asynchronous PRAM. We show general
classes of problems for which the time complexity can be improved by restructuring the computation. We prove
lower bounds that reflect limitations on information flow and load balancing in this model. Simulation results
between the Asynchronous PRAM and various known synchronous models are presented as well.

We introduce a post office gossip game for studying the inherent synchronization complexity of coordinat-
ing processors using pairwise synchronization primitives. Results are presented that compare the relative power
of various such primitives. These results and techniques are used to reduce the amount of synchronization in
Asynchronous PRAM algorithms.

Furthermore, we discuss a programming model based on the Asynchronous PRAM. We introduce the
notion of a semi-synchronous programming model, a model for repeatable asynchronous programs. Repeatable
programs, in which the output and all intermediate results are the same everytime the program is run on a particular
input, greatly simplify the tasks of writing, debugging, analyzing, and testing programs.

Finally, we discuss hardware support for the Asynchronous PRAM model. In particular, we present a
cache protocol suitable for the Asynchronous PRAM and a new technique for barrier synchronization.

1. International Computer Science Institute, Berkeley, CA.






The Asynchronous PRAM: A Semi-Synchronous Model
for Shared Memory MIMD Machines

Copyright (© 1989

Phillip Baldwin Gibbons

A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor

of Philosophy in Computer Science in the Graduate Division of the University of California

at Berkeley.






Acknowledgments

First of all, I would like to thank Dick Karp, my research advisor, for his encouragement
and direction in my research. I am grateful for the many hours Dick spent listening to my
work in progress and reading drafts of my papers. His quick mind and knowledge of the
field was invaluable in helping to clarify my thinking, simplify my proofs, and extend my
results. Dick ha.s'encoura.ged me throughout and, despite the many demands on his time,
has always been available to discuss my work.

I thank the other two members of my thesis committee, Umesh Vazirani and Bob Solovay,
for their interest in my work, their helpful comments, and their willingness to put the time
and energy into serving on my committee,

I thank Jorge Sanz for his enthusiasm for my work, his interest in my professional future,
and our many enjoyable technical discussions. Jorge encouraged me to become a student of
all aspects of parallel computation and to address problems in software and hardware, in
addition to theory. It has been a pleasure to work with Jorge.

I had the pleasure of working with Danny Soroker for my entire graduate career. Danny
shares my interest in combining the theoretical with the practical in parallel computation.
I have benefited greatly from his technical comments, his advice and his friendship. Much
of chapters one, five, and six of this thesis resulted from discussions with Jorge and Danny.

David Anderson has been a constant source of encouragement. I thank David for many
technical and non-technical discussions, his support for my work, and his help in revising
papers.

This work has also benefited from interesting discussions with Bob Cypher, Tsahi Birk,
Edith Cohen, Melanie Lewis, Vijaya Ramachandran, and Gary Miller.

I am grateful to John Wilkes, Steve Muchnick, and Mike Sipser for their encouragement
early in my graduate school years. These three were tireless in their efforts to assist me in
my research as a new graduate student.

I have enjoyed my contacts with the professors, students, and staff at Berkeley, especially
with fellow students Luigi Semenzato, Valerie King, Yanjun Zhang, Lisa Hellerstein, Sally
Floyd, Alice Wong and Marshall Bern.

Finally, I would like to thank my wife, Linda Moya, for her advice and support these

past years (and for many years to come).

This research was supported by the International Computer Science Institute, Berkeley,
California, by the IBM Almaden Research Center, San Jose, California, by an IBM pre-
doctoral fellowship, and by IBM Micro grant #442427-57449.






Contents

Introduction

1.1 Introduction and Terminology - . - . -« « v v v v v ottt

1.2 Bottlenecks in Large Scale Parallel Computing . ... ............
1.2.1 Latencytoglobalmemory . . . . .. v v v v v v v v v i
1.29 Contentlon . . .. i 0 685536855 s @ anend v rh iy
1.2.3 Synchronization overheads. . . . . . ... ...............
1.2.4 Asynchronous communication . . . .. ... ... .. ... ...

1.3 Overviewofthe Thesis . . . . . . . ..ttt i it i it in e e s oe e e

Formal Definition of the Model

2.1 Timitationsof the PRAM <. o i v v oinosssavesdnmmsssows

2.2 Formal Definition of the Asynchronous PRAM Model ... ... ......
2.2.1 Computation costsin themodel .. ... ... ... ... .. ....
222 Afamilyofmodels . . . .. .. ... ... e

2.3 Comparison with Related Models . . . . .. ... ... ... ... ...

All Processor Synchronization: Algorithms and Lower Bounds
.t InEroduetion s v v oo s o w w on e R T B e B ¥ B G B F K e B W e e X

3.2 Preliminary LemMmas , « . oo o o fos 68 65 mm 65 5@ o b oo wie§h iy
BT PROACEUID. 5 w50 v i v s oo @ & b % 5 00 6 5 % B0 6 s % Deute % T G
322 Brent'sscheduling principle . . . w2 o v v v vr v b n s
3.2.3 Phase PRAM vs. Phase LPRAM . ... ... .. .. ... ......

3.3 Algorithms for Important Primitive Operations . . . .. ... ... .....
3.3.1 Alowerbound for summing . . . .. ... ... e e
332 TastFourier Transform o - oovococwvm ¢ o % 400 & ¢ 5 %o & a % 4 & o 5
333 Bitonicmerge . . ... ... . i ittt e e
334 Tt ranBifig . o o s o5 vov s 6w 5 500 o a5 e o 8 5w w & @ e e B
3.3.5 Multiprefix, integer sorting, and Euler tours . . . . . ... .. ....

3.4 Upper and Lower Bounds for Load Balancing . . . . ... ... ... ....

3.5 Comparisons with Synchronous Models . . . . .. ... ... .........

QW -1 D b e W =

10
10
13
14
15
16



4 Subset Synchronization: Algorithms and Lower Bounds
T s T e R L L T L LT

4.2 Post Office Gossip Problems . . . . .. ... ... . i i ii i ..
4.2.1 Thegossipmodel . . .o v v v viwmaviniiossewesy s e
422 Theexchange BTaPR . < . c .o ov s v s e oo da s oo v 6 omnns
4.2.3 Upper and lower bounds for gossip problems . ............
424 Adding communication delay to the gossipmodel . . . .. ... ...

4.3 Algorithms and Simulation Results . . . .. ... ...............
43.1 Subset LPRAM vs. Phase LPRAM . . .. ... ... .........
4.3.2 Algorithms for important primitive operations ... .........

4.3.3 Comparisons with synchronousmodels . . . . . ... ... ......

5 Semi-Synchronous Programming and Hardware Support
5.1 Introduction . . . . . . . ot i i e e e e e
5.2 Semi-Synchronous Parallel Programming . . . .. ... ... .........
5.2.1 Asynchrony and programming models . . ...............

5.2.2 Semi-synchronous programming models . ... ... .........
5.2.3 All processor synchronization vs. subset synchronization . . . . . . .
5.3 Hardware Support for Barrier Synchronization . ...............
5.3.1 Introduction and terminology . . . . ... .. ...,

5.3.2 Existing methods forbarriers . . ... ... ... .. ... ......
5.3.3 Global barriers for dancehall MINs . . .. ... ............
5.3.4 Selective barriers for dancehall MINs . . . . . ... ..........
5.3.5 Barriers for othernetworks . . ... ... ...............
5.3.6 Discussion . . . . ... . i e e
5.4 Hardware Support for Pairwise Synchronization . . . . ... ... . ... ..
5.4.1 A cache protocol forthemodel . .. ... ... ... .........
5.4.2 Cache support for synchronization . ... ...............

6 Discussion and Related Work

6.1 Imtroduction. . .. . . . . . . . .. ..
GLl Tarrstipachied « cvsn s s s s s v 95 L LT 4% KE T & 570
6.1.2 Target programming audience . . . . ... .. ... ..........

6.1.3 Target application domains . . ... ... . ... ... ........
6.2 The Case for Repeatable Programs . . . .. ... ...............

iv

51
51
53
54
55
56
67
63
68
69
71

74
74
75
75
76
77
78
78
79
86
90
94
99
100
104
110



6.2.1 Reasons for more structured models . . . ... ... ......... 119
622 Afourpointevaluation . ... ecessus mwrumamrsramenns 120

6.2.3 Floating point computations and randomized programs . .. .. .. 122

6.3 Practical Evaluationof the Model . . . . .. ... ... ... ... ... ... 122
8:3.1 Explicit parallelfm o « v o o« 5 wom b v % foum b % % S ¥ @ B w0 ow 123
6.3.2 Word-level programming . . . . . ... ... .00 oL 123
6:3.3 Shared tBIDBEY « o & v 6 5 % = e & 5 5 wim w & a Sowi & B 4 @ om % B R 123
6.34 Semisynchronouis ..o .euvs v s v vos@van bosbs ooy 123
030 "Ewoelaval THBIOUIYS & s v w0 ook w2 B O K B % WK KK BN K B & 124
6.3.6 Explicit processor scheduling . ... .................. 126
6.3.7 Arbitrary pipelining . . . ... ... ... oo 127
6.3.8 Limited concurrent access . . . . . . . . . i v v bt st 128
6.3.9 Explicit cost measures . . « « v v o v v v vt e e e 128
6.3.10 Synchronous cost measures . . . .. .. ... st vt 129

6.4 Shared Memory vs. Message Passing . . .. ... ............... 129
7 Conclusions 132






List of Figures

2.1

3.1
3.2
3.3
3.4
3.5

4.1

5.1
5.2
5.3
5.4

Accounting for communication delay when broadcasting a value . . . . . . . 12
The Asynchronous PRAM with all processor synchronization . ... ... . 21
A butterfly graphon32mnodes . . . . . ... ... Lo 28
A bitonic merge computation . . . .. ... . ..o e . 31
A multiprefix computation . . . .. ... ... ... oo 35
Simulating a bounded-fanin circuit . . ... ... ... ... .. L0 L. 41
Applying the tree sharing algorithm to an example exchange graph . . . . . 63
Implementation of doubly-porous selective barriers . . ... ... ...... 93
The hypercube and the grid viewed as multistage networks . ... ... .. 97
The two caches for a networkmnode. . . . . . ... ... .. ... . .o 103
An example of the cachepolicy . ... ... ... ... ... ... ... 111

vi






Chapter 1

Introduction

1.1 Introduction and Terminology

Parallel computers are becoming an important component of the computing world. Com-
puters with many processors provide both a cost-effective way to achieve increased per-
formance over conventional computers and a means to overcome fundamental limits on
uniprocessor performance. In conjunction with these new machines and in anticipation of
future machines, considerable research effort continues in the areas of parallel algorithms,
programming support, machine architectures, and VLSI technology.

In this thesis, we introduce a new model, the Asynchronous PRAM, for the design and
analysis of algorithms that are suitable for parallel machines with hundreds to thousands
to millions of processors. We present many new algorithms on the Asynchronous PRAM,
as well as give evidence that supports the practicality of the model. In particular, we
argue that the Asynchronous PRAM supports an effective programming model for many
application domains, serves as a good basis for studying algorithms and complexity issues,
and can be implemented efficiently in hardware.

We begin by defining the terminology used in this thesis to describe parallel computers.

We view a parallel computer or multiprocessor as a network of processors, coprocessors,
memory banks, switches, and links. Each node of the network contains one or more switches,
which connect incoming links to outgoing links. As we shall see later, switches can be either
very simple or quite elaborate. For example, they may have buffers (input and/or output
queues) and an arithmetic unit (ALU). Some of the nodes of the network (possibly all)
contain processors, and some contain memory banks. Some may contain several processors
and/or several memory banks. For example, a node can contain a cluster of processors
that share a bus for their intra-cluster communication and a common coprocessor for their
machine-wide communication (e.g. [Gup89]). Each processor in the parallel computer has
a unique identification number that distinguishes it from all other processors.

Each external link in the network is used for sending messages between two switches re-



siding at distinct nodes, one or more bits at a time. Processor-to-processor and/or processor-
to-memory communication is accomplished by sending messages that are routed between
the source and destination nodes across links in the network, often passing through multiple
switches on the way. Typically, special coprocessors at each switch take care of interproces-
sor communication: both programmers and processors are relieved of the burden of routing
messages through the network, including handling the intermediate hops of messages trav-
eling to their destinations. The interconnection network is most often a member of a class
of networks of similar structure, e.g. delta networks, mesh networks, shuffle-exchange net-
works, or hypercube networks (see, e.g., [WF84] for definitions).

The memory banks that comprise the memory of the parallel computer can be grouped
according to their sharability and locality. Memory banks that can be accessed by all
processors comprise the shared (or global) memory. In contrast, memory that can be
accessed by only one processor is its private memory. Memory banks in the same node
as a processor comprise its local memory; other memory banks comprise its non-local
memory. (Note that a memory bank which is local to some processor can be part of shared
or global memory.) A processor typically has a fast, relatively small, private memory which
is local. The access time (latency) to a memory bank for a processor depends in part on
the delays of the links traversed and the number of hops in the path from the processor
to the bank. Thus different memory locations will have different access times for a given
processor. In particular, access to a local memory bank will be faster than access to a
non-local bank.

Either each processor fetches its own instructions from memory (a MIMD machine)
or all processors execute the same instruction, broadcast from a central control processor
(a SIMD machine). Examples of MIMD machines include the IBM RP3 [PBG+85], the
Intel iPSC [Sei85](AS88], Cedar [Gaj83], and the BBN Butterfly [BBN86|[LSB88]|. The
Connection Machine [Hil85] is an example of a SIMD machine. In a synchronous machine,
all the processors execute in lock-step, i.e. each processor executes its instruction ¢ before
any processor proceeds to its instruction ¢+1. In an asynchronous machine, the processors
are not constrained to operate in lock-step.

Parallel computers can be distinguished by whether they support a shared memory
or a message passing model of processor communication. A shared memory parallel
computer is one in which the processors communicate by reading and writing data words
to a global memory. The “messages” sent from a processor to 2 memory location (and back)
are short and simple, and the machine is streamlined accordingly. In contrast, in a message
passing parallel computer, the processors communicate by passing messages that can
have rich semantics (such as in an object-oriented programming style). The messages are
viewed as sent between processors, and they can be long and invoke complicated actions
(beyond simply loading and storing a data word). The similarities and differences between



the two models are discussed in more detail in section 6.4,

A parallel computer can be distinguished from a distributed system (e.g. a network
of workstations) in several ways. First, a parallel computer is packaged as a single machine,
whereas a distributed system is not so physically compact. User terminals and other pe-
ripherals may be at distant locations from the processors of the parallel computer, but the
distances between its processors, memory banks, and switches are at most several meters.
Second, interprocessor communication is implemented with less overhead in a parallel com-
puter. Hardware mechanisms are used to support the communication, without interference
by the operating system or other software mechanisms. In distributed systems, on the other
hand, interprocessor communication is over greater distances and between processors that
are potentially under different ownership domains. Thus communication in distributed sys-
tems is slower due to the overhead of dealing with issues of security, reliability, and failure
detection. Finally, because communication is relatively fast, there is a higher degree of
cooperation between processors working to solve a single problem. The processors commu-
nicate more frequently (the ratio of computing steps to communication steps is relatively
small) and messages can be short.

Throughout this thesis, we will discuss various models for parallel computers. We dis- -
tinguish between two potentially overlapping types of models for the parallel computer:

¢ Models of computation, which define the view of the computer presented to the

algorithm designer for estimating running times and comparing algorithmic choices
(e.g. the PRAM model [KR88]).

¢ Programming models, which define the view of the computer presented to the
application programmer for programming (e.g. the IBM EPEX model [DRGNPS86]).

1.2 Bottlenecks in Large Scale Parallel Computing

Three primary hindrances to effective large scale parallel computing are the latency to
global memory, contention in the network and at the memory banks, and synchronization
overheads. We add to these a fourth hindrance: asynchronous communication. The first
three affect the performance of the machine, and can limit the extent to which good speedup
is possible. The goal is that a machine with p processors will solve a problem p times faster
than a comparable uniprocessor. We believe that the fourth is just as important, since it
affects the usability/programmability of these machines and can have some performance
impact. In this section, we discuss each of these four bottlenecks in some detail.



1.2.1 Latency to global memory

In existing parallel machines and all machines of the foreseeable future, communication
between the processors takes considerably longer than an operation local to a processor.
In shared memory machines, the delay in accessing a non-local memory location can be a
serious bottleneck in programs for which a medium to high percentage of the instructions
involve non-local memory accesses [AI88]. There is hope that optical communication medi-
ums (e.g. [GLKA84][McA89]) will reduce the latency, but, even still, 2 communication step
is likely to take considerably longer than a local computation step. Furthermore, as the
number of processors increases, the latency must increase since the volume of the machine
increases.

This being the case, techniques are needed to help tolerate the high latency to global
memory. One such technique is to pipeline global memory accesses, i.e. to permit each
processor to have multiple requests to memory pending at the same time. If the average
latency in an otherwise empty network is ! machine cycles, then the goal is for a processor
to complete a batch of k global memory accesses in | 4+ k& cycles. In order to support this
type of full pipelining for all processors, a simple counting argument shows that the network
of the machine must have ! switches and links per processor. (There are k messages per
processor, each occupying a total of ! switches and / links, to be satisfied in [ + & cycles.
Thus a total of ki/(I + k) switches and links are needed [Cyp88].)

1.2.2 Contention

Contention occurs when two or more memory requests each attempt to use the same physical
resource at the same time. These conflicts occur in existing machines for the following

reasons.

¢ There are many memory locations per memory bank, and each memory bank can

support only a constant number of accesses per cycle.

o Even if each memory bank is requested by exactly one processor, the paths to memory
can overlap. Since a link in the network can transmit only one message per cycle,

messages competing for a link are serialized.

e Furthermore, unless special combining networks (described below) are used, multi-
ple requests to the same location will be serialized. Unfortunately, such combining

networks are more expensive, more complex, and slower than regular networks [PN85].

A combining network is a network in which messages at a switch that are destined for
the same location are grouped together (combined) so that only one such message is sent on
to the next switch. Combining networks are used to reduce network traffic and avoid serial
bottlenecks when multiple requests are destined for the same location. The switches in the

4



network come in pairs: for each switch handling messages destined for the memory banks,
there is a dual switch for handling replies returning to the processors. As multiple requests
to read the same memory location travel on the way to the destination, each switch along the
way combines the messages and informs its dual switch. When a reply (to a read message)
returns from memory to the dual switch, the information saved for the dual switch is used
to broadcast the value to precisely those processors requesting it. Sophisticated combining
networks [PBG*85][Ran89] can perform operations on the data fields of the messages being
combined, e.g. sending on a message whose data field is the sum of the data fields in the
individual incoming messages. In some networks (e.g. [Ran89]), multiple messages that are
destined for the same location are guaranteed to be combined. In others (e.g. [PBG+85]),
the combining may or may not occur, usually depending on whether or not the messages
reach a common switch at roughly the same time.

Contention in the network can slow down the processors considerably. An oblivious
routing scheme is one in which the route of a message depends only on its source and
destination. Consider a network of n nodes in which each node has one processor, one
memory bank, and at most ¢ input links. Borodin and Hopcroft [BH85] proved that for
any deterministic oblivious routing scheme for the network, there is a set of n requests,
one per processor, which, due to contention in the network, will take Q(y/n/c*®) cycles
to reach their destinations. This lower bound holds even if no two processors request the
same memory bank and the largest distance between any two node is log, n links. The
two ways of avoiding this potential bottleneck are to use non-oblivious techniques and/or
randomization. Examples of non-oblivious schemes include routing-by-sorting (in which
the requests are sorted as part of the routing operation [CS88][NS81][RV87]) and adaptive
wormhole routing [NS89]. In this latter scheme, messages attempt to follow a shortest path
to their destinations. However, if an incoming message to a switch can not immediately
proceed along its shortest path, it may be routed along a longer path instead. Upfal [Upf89]
has developed a deterministic non-oblivious scheme, which is not based on sorting and has
provably good asymptotic performance. However, it requires a special network topology, and
the large constants of the running time make it impractical. Recently, Leighton and Maggs
[LM89] have improved Upfal’s scheme to make it considerably more practical. Examples of
using randomization include the Valiant and Brebner [VB81] scheme of routing first to a
random location and then on to the destination, the randomized sorting algorithm of Reif
and Valiant [RV87], and the use of random hashing.

In random hashing, a hash function mapping program addresses to shared memory
locations is selected at random from some fixed set of hash functions, and used to map
the program address space to the physical addresses in the machine. Random hashing
serves to scatter the locations in a random fashion across the memory banks, thereby

reducing contention in the network and at the memory banks. In multi-user environments,



minimizing this contention reduces the extent to which one user can slow down another.
Random hashing has also been used to obtain simple routing strategies with provably good
performance [Ran87]. However, computing a hash function for each access to memory may
be expensive, and the programmer can no longer exploit localities of reference and other
regularities of communication. Furthermore, in order to achieve the theoretical bounds,
the entire memory will need to be rehashed occasionally. An important open question is
whether techniques that use random hashing can be practical. Research on the proposed
Fluent machine [Ran89], which uses random hashing, will provide insight into this question.

1.2.3 Synchronization overheads

Interprocessor synchronization mechanisms include semaphores, shared locks, full-empty
bits, and barriers (see, e.g., [Din89] for definitions of these and other mechanisms). We
distinguish between two functions for synchronization primitives.

¢ Ordering. Synchronization primitives are used to enforce a predetermined ordering
between two sets of program events, e.g. that a particular write to a shared memory

location occurs ahead of a set of reads of the same location by other processors.

e Arbitration. Synchronization primitives are used to select a winner among proces-
sors competing for a shared resource, e.g. selecting which processor can increment a

shared counter among those trying to update it.

A particular mechanism can encapsulate both functions. For example, a shared lock is
first granted to one of the processors requesting it (arbitration) and then used to enforce
exclusive access to the data protected by the lock (ordering). The mechanism ensures that
the reads and writes of the protected data by the selected processor occur before the reads
and writes of any subsequent processor.

Another example of a synchronization mechanism/primitive is the implicit synchro-
nization associated with the lock-step execution of synchronous machines, especially SIMD
machines.

The run time costs associated with synchronization in parallel computers can be signif-

icant due to the following five reasons.

e Synchronization may be frequent. In order to ensure that the processors are doing
useful work and that shared resources are accessed in a consistent manner, synchro-
nization may be needed frequently for both ordering and arbitration. In synchronous

machines, synchronization occurs at each instruction.

o Processors are forced to wait. With ordering primitives, program events in the

second"ﬂ(i:é. delayed) set must wait for those in the first set to complete. If the first



set involves many processors, then all the processors involved in the second set must

wait for the last one in the first set.

e Synchronization mechanisms are a source of serialization. A set of requests
for a single resource are typically serialized, i.e. the requests are satisfied one at a
time.

¢ Arbitration typically involves concurrent access. Even in mechanisms where
all but one request for a particular resource is discarded, having multiple requests

directed to its arbitration hardware can lead to contention problems.

¢ Synchronization mechanisms can be slow. Synchronization can not be per-
formed without interprocessor communication. Moreover, a synchronization primi-
tive may consist of many steps, e.g. a barrier primitive involves synchronizing each
processor with all the others. (Synchronization barriers will be discussed in detail in

section 5.3.) Third, the arbitration process for a mechanism can be quite involved.

For these reasons, synchronization must be a primary concern of the designers of parallel
computers, parallel programming models, and parallel algorithms. Certain synchronization
mechanisms/primitives that are useful in the sequential or distributed worlds may not be
appropriate for large scale parallel computers.

1.2.4 Asynchronous communication

Most existing parallel computers are asynchronous machines. Asynchronous machines have
an advantage over synchronous machines in that they avoid making worst case assumptions
on instruction completion time in the presence of varying instruction times and clock skew.
Instruction completion times can vary due to network congestion, memory bank contention,
operating system interference, and the relative speeds of register vs. cache vs. local memory
vs. global memory access. Further variation arises due to the relative speeds of instruction
execution: an add is much faster than a floating peint multiply or a global memory access.

Asynchronous machines, however, present difficulties for hardware, software, and al-
gorithm designers not present in synchronous machines. Dealing with the complexity of
communication between many independent processors is a nightmare for programmers.
Programming and debugging are very difficult due to the subtleties of dealing with non-
deterministic orderings of events during program execution and a lack of simple, global
states. Any desired orderings among program events must be explicitly enforced, typically
through programmer-controlled shared locks and other synchronization primitives. Testing
the correctness of such programs is almost impossible, and proving their correctness can be
extremely difficult as well. Debuggers must be left on at all times [MC88][FLMC88], since

any bug that arises in one run of the program may not reoccur for thousands of subsequent



runs. Furthermore, there are difficulties in adequately analyzing the time complexity of
programs written in these models [CZ89]. Finally, in order to support efficient access to
shared synchronization variables, expensive combining networks are required.

We refer to this problem as the asynchronous communication bottleneck. In this
thesis, we argue for imposing a semi-synchronous framework for interprocessor communica-
tion on asynchronous machines. In particular, we support repeatable programs, in which
the output and all intermediate results are the same every time the program is run on a
particular input.

1.3 Overview of the Thesis

This thesis introduces the Asynchronous PRAM model of computation, a variant of the
PRAM model [FW78] in which the processors run asynchronously and there is an explicit
charge for synchronization. The model is motivated by concerns with each of the four
bottlenecks of the previous section.

The focus of this work is on synchronization in large scale parallel machines. In partic-
ular, the purpose of this work is to address the following open problems.

¢ Develop a model suitable for designing algorithms and writing programs for large scale
shared memory MIMD machines, 2 model good for both theory and practice.

¢ Design algorithms suitable for these machines for important problems.

¢ Study synchronization from a complexity theory standpoint, including the computa-

tional power of various synchronization assumptions.

o Investigate the implications to algorithms, programming, and hardware of imposing
a more structured framework for interprocessor communication on asynchronous ma-

chines. In particular, a framework in which programs are repeatable.

The outline of this thesis is as follows. Chapter 2 describes some of the limitations of
the PRAM model, and then formally defines the Asynchronous PRAM model. A family of
Asynchronous PRAMs are defined, varying in the types of synchronization steps and the
costs for accessing the global memory. Chapter 3 focuses on Asynchronous PRAMs with all
processor synchronization, in which all the processors synchronize at each synchronization
step. This chapter contains the bulk of the theoretical work. We modify a number of PRAM
algorithms for improved asymptotic time and processor complexity in this model. We show
general classes of problems (such as those in NC [KR88|) for which the time complexity
can be improved by restructuring the computation. In addition, we prove lower bounds
that reflect limitations on infore.ut:_.. uuw and load balancing in this model. Finally, we



have simulation results between the Asynchronous PRAM and various known synchronous
models. -

Chapter 4 focuses on the Asynchronous PRAM with subset synchronization, in which
processors can synchronize in sets of arbitrary size. We present algorithms, lower bounds,
and simulation results for this variant of the Asynchronous PRAM. We introduce a post
office gossip game for studying the inherent synchronization complexity of coordinating
processors using pairwise synchronization primitives. Results are presented that compare
the relative power of various such primitives.

In chapter 5, we broaden our study of asynchronous parallel computation from the
strictly theoretical to the more practical issues of programming models and hardware. We
introduce the notion of a semi-synchronous programming model, a model for repeatable
asynchronous programs. We then present methods for supporting the synchronization prim-
itives of the Asynchronous PRAM efficiently in hardware, including a new technique for
barrier synchronization. A cache protocol suitable for the Asynchronous PRAM is pre-
sented as well. Chapter 6 evaluates the Asynchronous PRAM model and compares it to
related work. Finally, chapter 7 presents conclusions and areas for further research.

Preliminary versions of some of this work appeared in [Gib88] and [Gib89].






Chapter 2

Formal Definition of the Model

2.1 Limitations of the PRAM

The PRAM model of computation consists of a collection of p sequential processors,
each with its own private local memory, communicating with one another through a shared
memory. The processors execute in lock-step, although each processor does have its own
local program. A PRAM computation is a sequence of time steps, alternating between
three types of instructions: read, compute, and write. In a read step, each processor can
read one shared memory location into a private memory location. In a compute step,
each processor can execute a single RAM operation whose operands are in private memory,
storing the result in a private memory location. In a write step, each processor can write
the contents of one private memory location into a shared memory location. All three steps
are assumed to take unit time in the model. Although an idealized model, the PRAM has
proven to be a useful model for studying parallel computation (see [KR88] for a survey of
results). The model is simple and relatively easy to use: most of the details of interprocessor
communication, memory management, and synchronization are hidden in the model.

There are several difficulties that arise in mapping PRAM algorithms onto existing
shared memory MIMD machines. First, realistic MIMD machines have more limited com-
munication capabilities than the PRAM. The PRAM assumes that each processor can access
any shared memory location in one step. As discussed in section 1.2, realistic machines are
more limited in that (a) a shared, non-local memory access takes much longer than a local
operation, and that (b) further delays can occur due to contention in the network or at the
memory banks. Considerable research effort has been focused on finding efficient ways to
satisfy the simultaneous shared memory accesses of a PRAM read or write step on realistic
networks (e.g. [KU88][Ran87]). Despite the success of these efforts to minimize the con-
tention bottleneck, at least theoretically, the latency bottleneck remains. Recently, several
researchers have explored variants of the PRAM that take into account the high latency to
shared memory (e.g. [AC88]|[PY88]).
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Second, existing MIMD machines are asynchronous whereas the PRAM is a synchronous
model. Supporting a synchronous model, such as the PRAM, on an asynchronous machine
is inherently inefficient since the ability of the machine to run asynchronously is not fully ex-
ploited and there is a (potentially large) overhead in synchronizing the processors as part of
each instruction. For example, in Ranade’s scheme for simulating a PRAM [Ran87](Ran89],
each switch holds any shared memory accesses for an instruction until all shared memory
accesses of the previous instruction are finished with the switch. Thus there is a cost for
synchronization at each level of the network, even for instructions that do not require it.

Surprisingly, this important limitation of the PRAM has been largely ignored by the
theoretical community, even by those doing research into making the PRAM more practical.

With these limitations in mind, we introduce the Asynchronous PRAM model, a variant
of the PRAM model more suited to shared memory MIMD machines. In this new model,
accessing the shared memory will no longer be a unit time operation and the processors will
no longer execute their instructions in lock-step with each other. The time to read or write
a shared memory location on existing MIMD machines depends on many factors, e.g. the
distance from the processor issuing the request to the memory location itself. However, to
keep the model simple, we will use a single parameter d to quantify the communication
delay (i.e. latency) to non-local memory. This parameter is intended to capture the average
or median ratio of the time for a shared write operation to the time for a local operation.
Our second modification will be to permit the processors to run asynchronously and then
charge for any needed synchronization.

Both of these new features can have a large impact on algorithm design. Many examples
will be given after the formal model is defined. For now, we will present two examples. The
first will demonstrate the effect of considering the communication delay to memory; the
second will demonstrate the impact of explicitly charging for synchronization.

Consider the problem of broadcasting a single value in shared memory to all the proces-
sors. The EREW PRAM algorithm for this problem consists of fanning out copies of the
value in a binary tree fashion. This algorithm runs in O(dlogn) time when we account for
the communication delay to memory. (Unless stated otherwise, all logarithms in this thesis
are base two logarithms.) However, if d writes can be pipelined to complete in O(d) time,
then an improved strategy is to use a d-ary tree to fan-out the copies. At each level of the
tree, each active processor reads a copy of the value and makes d — 1 new copies (see figure
2.1). Each level takes O(d) time, so the total time is O(dlog, n).

Explicitly charging for synchronization can also have a large impact on the analysis of
an algorithm. Consider the problem of determining which node in a linked list is the head
of the list. The PRAM algorithm for this problem is simple.

11



TZXITXITXZITXIXTITXITXTIX TXXXTZTXXXZTXXXITXZXX

(a) | (b)

Figure 2.1: Accounting for communication delay when broadcasting a value. (a) The value
z is broadcast to 16 processors in a binary tree fashion. (b) The value z is broadcast to 16
processors in a d-ary tree fashion, where 4 = 4.

Head_of_list algorithm:

This algorithm determines which node in a linked list has no predecessor.
1. Each node in the list notifies its successor.
2. The node who is not notified is at the head of the list.

&

Pseudo-code for this algorithm is as follows.

Head_of_list program:
[*

inputs: A linked list of n nodes, where each processor is assigned to a node in the list.
outputs: The node at the head of the list is marked.
description: This program implements the algorithm described above. Mj,..., M, are
locations in the shared memory.
*/
for all processors ¢ in parallel do {
Mg = 0;

(1) if node ¢ has a successor j

M; = 1;
(2) ifM; =0

mark node ¢ as being the head of the list;

The Head_oflist algorithm runs in O(1) time on a PRAM with n processors. However,

if the processors run asynchronously and are subject to varying delays, then a processor
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may not know the progress of its fellow processors. Let processor h be assigned to the node
at the head of the linked list. In order for processor h to be sure that, indeed, no other
processor will be writing to shared location M}y, processor h must synchronize with all its
fellow processors before it can correctly test whether it is the head of the list. Without the
synchronization, processor h can not distinguish the case where there is no writer from the
case where the writer exists but has been delayed. Thus, in a model that charges, say, log p,

for synchronizing p processors, the running time is O(logn) when n processors are used.

2.2 Formal Definition of the Asynchronous PRAM Model

In this section, we formally define the Asynchronous PRAM model of computation.

The Asynchronous PRAM model of computation consists of a collection of p
sequential processors, each with its own private local memory, communicating with one
another through a shared memory. Each processor has its own local program. Unlike the
PRAM, the processors of an Asynchronous PRAM run asynchronously, i.e. each processor
executes its instructions independently of the timing of the other processors. Any desired
timing dependencies between processors must be explicitly incorporated into the programs
of the processors. There is no global clock.

A processor can issue up to one instruction per tick of its local clock. An instruction
completes after some unbounded, but finite, number of ticks.

There are four types of instructions.

¢ Global read. Read the contents of a shared memory location into a private memory
location.

¢ Local operation. Perform any RAM operation [AHU83] where the operands are in
private memory and the result is stored in private memory.

¢ Global write. Write the contents of a private memory cell into a shared memory

cell.

e Synchronization step. A synchronization step among a set § of processors is a
logical point in a computation where each processor in § waits for all the processors
in S to arrive before continuing in its local program.

The local program for a processor consists of a series of phases in which the processor
runs independently, separated by synchronization steps. All instructions for processors in
S prior to a synchronization step complete before any processor in S issues an instruction
from its next phase. The set 5 may not be known at the beginning of the phase, e.g. it may
be data dependent.
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Processors can read and write to the shared memory asynchronously, but no processor
may read the same memory location that another one writes unless there is a synchro-
nization step involving both processors between the two accesses. Likewise, two writes of
different values to a location by different processors must be separated by a synchronization
step among the two processors. Thus there are no race conditions possible in the model.
The varying delays for instruction completion do not affect the program computation. In
particular, if a program that obeys this synchronization requirement is correct when all

processors experience the same delays, then it is always correct.

2.2.1 Computation costs in the model

An Asynchronous PRAM program is correct only if it works regardless of any delays that
may occur. As argued in section 1.2.4, varying delays are to be expected in MIMD machines.
Nevertheless, these same machines are often tightly-coupled multiprocessors with regular
networks and identical processors. Thus a reasonable first approximation to the behavior of
one of these machines, for the purpose of measuring the cost of a computation, is to assume
that the local clocks all run at the same speed. Given very similar local programs, the
processors will progress through their programs at roughly the same rate. This motivates
the following accounting scheme for our model.

We will estimate running times of programs assuming a global clock and a fixed cost
for each instruction, independent of the processor. In particular, a local operation at a
processor takes unit time. The cost for a global read or write instruction depends on the
variant of the model, as will be described in section 2.2.2. A synchronization step among a
set S of processors costs B(z), a nondecreasing function of =, where z = |.9].

Recall that a local program for a processor consists of a series of phases separated by
synchronization steps. The processor can not begin its next phase until the synchronization
step has completed. The completion time for a synchronization step depends on the last
processor to reach the step.

The completion time for an algorithm is defined inductively as follows. Initially, all
processors begin their local programs at time zero. Inductively, consider a phase that is
followed by a synchronization step among a set § of processors. The completion time
for the phase for a processor in S (not counting the synchronization step) is defined to
be the completion time for the processor’s prior synchronization step plus the cost for its
instructions this phase. The completion time for the synchronization step is the maximum
completion time for the phase over all the processors in S plus the cost, B(]S5]), of the
synchronization step itself. In this way, the completion time for a local program can be
defined. The running time for an algorithm is defined to be the maximum, over all processors

7, of the completion time for processor j's local program.

Remark. There are a wide variety of schemes for implementing synchronization steps on
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MIMD machines, with varying run time overheads. (Some of these will be discussed in
chapter 5.) This variability in machines requires us to define our algorithms parametrically,
if we wish to have algorithms that are suitable for a wide range of machines. Given a
particular target machine, a parameterized algorithm can be tailored to the machine by
simply plugging in for B(z) the estimated cost of synchronizing = processors on the machine.

2.2.2 A family of models

The Asynchronous PRAM defines a family of models that differ in the types of synchro-
nization steps permitted, the cost of accessing the shared memory, and the extent to which

concurrent reads or writes to a location are permitted.

¢ In an Asynchronous PRAM with subset synchronization, multiple disjoint sets of
processors can synchronize independently and in parallel. The cost for a synchroniza-
tion step among the processors in a set § is charged only to those processors in §.
In an Asynchronous PRAM with all-processor synchronization, in contrast, syn-
chronization steps must include all the processors. Multiple, parallel synchronization
steps are not permitted. Three options are possible: (a) the set § must be all the
processors in the machine, (b) the set S is all the processors assigned to the program,
or (c) the set § is all processors currently active in the program. In this thesis, we

will consider only the second case.

e An Asynchronous PRAM can either account for a communication delay to the shared
memory or not. For the purpose of estimating execution time, we consider fixed
communication delays: a global read takes 2d time and a global write takes d time. If

communication delays are ignored, then both global reads and writes take unit time.

¢ An Asynchronous PRAM can either permit concurrent read and/or write or not. We
have described thus far the CRCW Asynchronous PRAM. The other variants
are more restrictive. In the CREW Asynchronous PRAM, any two accesses to
a location by different processors, where at least one is a write, must be separated
by a synchronization step among the two processors. In the EREW Asynchronous
PRAM, any two accesses to a location by different processors must be separated by

a synchronization step among the two processors.

In all cases, for the purpose of estimating execution times, we will assume that a pro-
cessor can pipeline its instructions, i.e. it may issue instructions i + 1,7 + 2, and so forth,
of its local program before its instruction i has completed. (This assumption is irrelevant
in Asynchronous PRAM’s in which all instructions — other than synchronize - are assumed
to take unit time.) The pipelining of instructions in a phase is limited only by the depen-
dencies (if any) between the instructions. Interdependencies between instructions in a local
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program arise in a sequence of reads if, for example, the value returned by one global read
dictates the location to be read by the next global read (as in the case of traversing a linked
list). The cost in the model to complete a sequence of r global read instructions with no
interdependencies, issued one after another by a processor, is 2d + r — 1. Likewise, the cost
to complete w write instructions, issued one after another by a processor, is d + w — 1.

We make two further assumptions that simplify the model. First, any sequence of reads
and writes issued by a processor to a location read and write the memory in the same order
as they are dispatched. Second, any sequence of reads issued by a processor to different
locations return to the processor in order. The former is true of machines that use FIFO
buffers and links, while the latter can be simulated by buffering requests as they return, if
necessary. Further discussion on support for such assumptions will be presented in section
6.3.7.

As discussed in section 2.1, d is a parameter quantifying the communication delay,
i.e. the time to access (write to) memory. The communication delay d will increase with the
number of processors in the machine. Note that on most machines, B(z) is proportional to
d or dlogz. Let p be the number of machine processors used by a program. In designing
algorithms for the Asynchronous PRAM model, we assume only that 2 < d < B(z) < p,
where 2 < z < p, unless otherwise noted.

Although only a simple variant of the PRAM, the Asynchronous PRAM is considerably
more practical. Its primary advantages are that it permits asynchronous execution and it
reflects some of the costs associated with synchronization and/or communication delay in
real machines. Algorithms designed for the PRAM model tend to be far too fine-grained
for real machines; algorithms designed for the Asynchronous PRAM model tend to be less
fine-grained. Further discussion of the practicality of the Asynchronous PRAM model will
be presented in chapter 6.

2.3 Comparison with Related Models

The literature to date reflects an overwhelming predominance of synchronous models for
parallel computation over asynchronous ones. A large body of parallel algorithms and
complexity theory results have been developed, particularly in the past ten years, entirely
for synchronous models (e.g. the PRAM). There have been asynchronous models in the
world of distributed computing for many years, but in these models, the parameters are
typically the number of processes and the number of messages. The number of messages in a
program is not a suitable complexity measure for tightly-coupled multiprocessors (this will
be discusscd further in section 6.3.10). Typical programming models for MIMD machines
(e.g- for the IBM RP3 [PBG*85] and for the Sequent Balance [Seq86]) are asynchronous,
but have no notion of costs.
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The work presented in this thesis represents one of the first attempts to design an
asynchronous model suitable for parallel computers and study it in detail. Other such
models were developed independently by Kruskal, Rudolph, and Snir, and by Cole and
Zajicek.

Kruskal, Rudolph, and Snir [KRS88] studied an asynchronous model for parallel com-
puters based on an accounting scheme for asynchronous computation due to Lynch and
Fischer [LF81]. In this scheme, each processor completes an instruction in one local clock
cycle. Time is measured using the slowest processor clock. In one time unit or “round”,
each processor executes at least one instruction (the slowest executes one, faster proces-
sors execute more). Kruskal, Rudolph, and Snir show that a PRAM-like model with this
accounting scheme can simulate a CRCW PRAM of p processors with O(log p) loss.

Later, Cole and Zajicek introduced the APRAM model [CZ89], based on the Lynch
and Fischer accounting scheme as well. The APRAM permits multiple sets of processors
to synchronize independently and in parallel, does not account for communication delay,
and permits concurrent reads and writes. The goal in the APRAM model is to redesign
algorithms so that processors synchronize in constant-size sets only: when this can be
achieved, it leads to algorithms with the same time complexity as their PRAM counterparts.
In addition, they define a measure, the synchroneity of an algorithm, that captures the
extent to which slowing down a subset of the processors slows down the overall running time
of the algorithm. They present APRAM algorithms for several basic problems such as the
prefix problem (defined in section 3.2), and devise a sophisticated algorithm for computing
the connected components of an undirected graph. This latter algorithm demonstrates the
subtleties of devising correct algorithms in the APRAM model.

Very recently, Martel, Park, and Subramonian introduced another asynchronous model
for parallel computers [MPS89]. In their model, the processors can have arbitrary asyn-
chronous behavior, including arbitrary unbounded delays in executing instructions. Martel,
Park, and Subramonian show how these delays can be overcome through the use of ran-
domized allocation of work, as follows. A directed acyclic graph representing the tasks to
be performed and the dependencies between them is placed in the shared memory. This
graph has a single root node. Each processor selects a task at random, performs the task if
its predecessors in the graph have been completed, and repeats. A processor halts when the
root node indicates that the entire graph has been completed. In this way, processors that
are delayed, or even fail, do not unduly slow down the computation: the faster processors
will simply evaluate more nodes in the graph. In their more sophisticated algorithms, the
graph is divided into phases in which the processors coordinate at the end of each phase
and, in some cases, use binary search to find an unevaluated task within a block of tasks
selected at random. The complexity measure for the model is the expected amount of work
done, i.e. the total number of instructions executed by the processors. Their model permits
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concurrent reads and writes. In fact, these operations are inherent in the model for two
reasons. First, each processor frequently reads the value of the root node to determine if the
computation has completed. Second, since tasks are selected at random without consulting
other processors, more than one processor can select the same node and perform its task
concurrently. The model also does not account for communication delay.

Many asynchronous algorithms have been developed for particular problems. Most
of this work is tailored to specific machines and does not present a formal treatment of
asynchronous parallel computation as is found in this thesis, e.g. the work does not include
a formal model, general algorithmic techniques, lower bounds, and complexity comparisons
with other models. Some formal work has been done, however. For example, Greenberg,
Lubachevsky, and Odlyzko [GLO88] introduced a model for asynchronous parallel machines
suitable for analyzing algorithms in which the inputs arrive staggered in time. In this
context, the important metric is the average response time for a processor, namely the time
from when its input is first ready until it completes its participation in the computation.
They study the problem of finding the maximum of a set of inputs that arrive staggered in
time. Algorithms are presented that achieve provably optimal response times. Their model
does not account for communication delay and assumes that concurrent reads and writes
can be performed in unit time (write conflicts are resolved by having a random processor
succeed in writing its value).

In the area of iterative numerical algorithms, models for asynchronous parallel machines
have been defined, but in these models, the important performance metric is the convergence
rate of the iterative process. Other complexity measures are typically not addressed. For
example, Lubachevsky and Mitra [LM86] present a model for iterative numerical algorithms
where arbitrary delays occur, but are uniformly bounded by some finite value. Because of
the delays, processors typically receive data computed several iterations before. Their main
result is to prove fast convergence of an iterative algorithm (to compute the fixed point of
an important class of matrices) despite the varying delays.

A model related to the Asynchronous PRAM, but synchronous, is a message-passing
model with unbounded messages [Sni88]. In this model, each processor can pack a collection
of values into a single message which it then sends to some other processor. Sending such
a message is similar to issuing the set of global writes by a processor in an Asynchronous
PRAM phase, since all such writes complete before any values can be read. However, in the
Asynchronous PRAM model, the individual values that make up the set can be accessed
by different processors in the very next phase, in contrast to the message-passing model.

The effect of communication delay on algorithm design has also been studied, in the con-
text of synchronous models, by Aggarwal, Chandra, and Snir [AC88][ACS89] and Papadim-
itriou and Yannakakis [PY88]. Aggarwal, Chandra, and Snir introduced two synchronous
models that are based on the PRAM, the LPRAM and the BPRAM. The LPRAM does not
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permit the pipelining of memory requests, while the BPRAM permits blocks of consecutive
memory locations to be accessed in pipelined fashion. In the model of Papadimitriou and
Yannakakis, pipelining of memory requests is permitted. A more detailed model was studied
by Gannon and Van Rosendale [GR84] in the context of numerical algorithms (e.g. algo-
rithms for solving systems of equations). Variants of their model account for communication
delay, pipelining rates, network bandwidth, and network topology.
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Chapter 3

All Processor Synchronization:

Algorithms and Lower Bounds

3.1 Introduction

In this chapter, we will focus on Asynchronous PRAMs with all-processor synchronization.
A computation in this variant of the model is a series of global, program-wide phases in
which the processors run asynchronously. These phases are separated by synchronization
barriers, i.e. synchronization steps that are among all the processors (see figure 3.1).

We will refer to such Asynchronous PRAMs as either Phase PRAMSs or Phase
LPRAMs. The two models are identical except that the Phase PRAM charges unit time
for global reads and writes, while the Phase LPRAM charges 2d for global reads and d
for global writes. Recall, however, that an Asynchronous PRAM charges only 2d + k — 1
(d 4 k — 1) for a sequence of k global read (write) instructions with no interdependencies,
issued one after another by a processor.

Since all processors participate in each synchronization step, we can count time on a
global phase-by-phase basis. Thus the time cost for a phase is the maximum, over all
processors %, of the cost of the instructions executed by processor ¢ during the phase. The
running time for a program is simply the sum of the time costs for each phase plus B(p)
times the number of synchronization steps, where p is the number of processors used by the
program. Since all processors participate in each synchronization step, for convenience we
will denote B(p) as simply B. In the results presented in this chapter, the only assumptions
on the parameters d and B are that 2<d< B < p.

As discussed in section 2.2.2, various concurrent read/write policies are possible, which

we summarize here.

¢ EREW Phase PRAM or Phase LPRAM. No two processors access the same

location in a phase.
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processor 1

processor 2

processor p

read 71 read T3 read z,
phase 1 read z; * *
* write to B ¥
write to A write to C' write to D
read B read A read C
phase 2 * * *
write to B write to D
* write to C' read B
phase 3 read D read A
* *
write to B

Figure 3.1: An example computation for an EREW Asynchronous PRAM with all processor
synchronization. There are three phases, terminated by synchronization barriers. Each
column contains the instructions executed by one processor. An asterisk (*) represents a
local operation (i.e. an operation other than a global read, global write, or synchronize). A
horizontal line represents a barrier synchronization. In phase one, for example, processor 1
reads shared memory locations ; and z,, performs some local operation, and then writes to
shared memory location A. Note that no two processors access the same location in the same
phase. For example, the read of A is separated from the write of A by a synchronization
barrier.
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¢ CREW Phase PRAM or Phase LPRAM. Any number of processors can read the
same location (as long as no processor writes to the location), but no two processors

may write to the same location in a phase.

¢ CRCW Phase PRAM or Phase LPRAM. Any number of processors can read
(write) the same location, as long as no processor writes to (reads from) the location
in the same phase. For concurrent writes, the processors must all write the same

value.

In what follows, we present algorithms, lower bounds, and simulation results for the
Phase PRAM and Phase LPRAM. In section 3.2, we present a few preliminary lemmas
and an example Phase LPRAM program. Section 3.3 presents algorithms for important
primitive operations such as list ranking and multiprefix. Results for on-line load balancing
are presented in section 3.4. Finally, section 3.5 presents techniques for simulating known

synchronous models of parallel computation on the Phase LPRAM.

3.2 Preliminary Lemmas

We now present a few lemmas and an example program.

First we observe that any algorithm for the EREW PRAM can be adapted to run on the
Asynchronous PRAM as follows: insert a synchronization barrier after each read or write
step in the PRAM program. This forces the Asynchronous PRAM to execute in lock-step.
A single PRAM instruction involving a read step, a compute step, and a write step can be
simulated in 2d + B 4+ 1+ d + B time on the Asynchronous PRAM, i.e. O(B) time, since
d < B. Thus a PRAM algorithm running in time ¢ using p processors can be run on an
Asynchronous PRAM in Q(Bt) time. We can simulate a PRAM using fewer Asynchronous
PRAM processors as follows.

Lemma 1 An EREW (CREW, common-CRCW) PRAM algorithm running in time ¢ us-
ing p processors can be simulated by an EREW (CREW, CRCW) Phase PRAM or Phase
LPRAM running in time O(Bt) with p/B processors.

The idea is to have each Asynchronous PRAM processor simulate B PRAM proces-
sors for a single PRAM instruction and then synchronize. This balances the time spent

synchronizing with the time spent accessing memory and computing.

Lemma 2 Lemma 1 is tight. There is a problem that requires Q(Bt) time on a CRCW
Phase PRAM or Phase LPRAM, where t is the time to solve the problem on a PRAM.
Moreover, p/ B processors are required by the Phase PRAM or Phase LPRAM to achieve
this time, where p is the number of processors used by the PRAM.
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Proof. Consider the problem of determining which node in a linked list of n elements is
the head of the list. The argument presented in section 2.1 shows that the Phase PRAM or
Phase LPRAM requires Q(n/po+ B(po)) time to solve this problem with py processors. The
time is minimized when py = n/B(pg). On the other hand, the Head.of list algorithm of
section 2.1 runs in O(1) time on 2 PRAM with n processors. The lemma follows by setting
t=0(1)and p=n. O

As we shall see, for many problems, algorithms exist that achieve better results than
the results obtained by synchronizing after each step of a PRAM algorithm.

3.2.1 Prefix sum

We begin with the prefix problem. Let @ be an associative binary operation that can be
computed by a processor in constant time. The prefiz problem on @ is, given n inputs
TQy-++yTn-1, COmpute y; = 2o @ ---@ z; foreach i, 0 < i € n — 1. The prefix problem on
addition is also called the prefiz sum problem.

For simplicity, we will describe only the first half of the prefix sum computation, in
which the summation of the n input numbers is computed. We can compute the sum on an
EREW PRAM in O(log, n) time, in a binary tree fashion. Using lemma 1 yields a Phase
PRAM or Phase LPRAM algorithm that runs in O(Blogn) time. This can be improved
to O(Blogn/log B) time using a B-ary tree, where at each level of the tree, each active

processor reads B — 1 values, computes their sum, writes the result, and then synchronizes.

Summation program:

[*

inputs: The n input numbers are stored in shared memory.
outputs: The summation of the n numbers is stored to shared memory.
description: This program computes the summation using a B-ary tree, where at each
level of the tree, each active processor reads B — 1 values, computes their sum, writes the
result, and then synchronizes.
*/
for all processor in parallel do (
for level := 1 to logg n do {
if left-most among your siblings at the current level of the B-ary tree (

read from shared memory the values of siblings 2,3, ..., B;

sum the values of all B siblings;

write the sum to shared memory;

)

barrier;
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Since the global reads can be pipelined, each level of the tree takes 2 + (2d + B —
2)+(B-1)+d+ B +1 time, i.e. O(B) time. There are logn/log B — 1 levels, so the
Summation program runs in O(Blogn/log B) time with n processors. We can achieve
an optimal processor-time product as follows. Let 7 = Blogn/log B. By initially having
each processor sum 7 inputs without synchronizing and then using a B-ary tree, n/r Phase
PRAM or Phase LPRAM processors suffice to achieve O(r) time. This is the optimal
number of processors to use. In fact, in the typical case where B is a strictly increasing
function of p, using p = n or p = n/logn processors would result in a slower algorithm.
This reflects the realities of most real machines.

Similarly, this B-ary tree approach (the same algorithm as in [PY88]), can be used to
solve any prefix problem.

3.2.2 Brent’s scheduling principle

Before continuing to present new algorithms, we present two lemmas for simulating an
Asynchronous PRAM with many processors on an Asynchronous PRAM with fewer pro-
cessors. These lemmas correspond to known lemmas for the PRAM. We will refer to the
processors of the Asynchronous PRAM being simulated as virtual processors, and the

processors of the simulating Asynchronous PRAM as machine processors.

Lemma 3 A Phase PRAM (Phase LPRAM) program using po processors and running in
time t+ B(po)s, where s is the number of synchronization steps, can be simulated by a Phase
PRAM (Phase LPRAM) using p < pg processors in time O((po/p)t + B(p)s)-

Proof. For each phase, each machine processor simulates the instructions in the phase for
po/p virtual processors and then synchronizes. O

In the remainder of this section, we prove a more general result, corresponding to
Brent’s scheduling principle for the PRAM [Bre74]. Brent’s scheduling principle applies
to synchronous models with no communication delay/pipelining. In the context of the
Asynchronous PRAM, we need a revised definition of the work of an algorithm, a revised

statement of the theorem, and a new proof.

Definition 1 The work of a Phase PRAM or Phase LPRAM algorithm is the sum over
all processors of the cost of the instructions performed by a processor in the algorithm, not

counting synchronization barriers.

Theorem 1 A Phase PRAM (Phase LPRAM) program using po processors, s synchro-
nization steps, a total of z work, and t + B(po)s time can be simulated by a Phase PRAM
(Fhase LPRAM) using p < pg processors in O(z/p + t + B(p)s) time.

As in lemma 3, the proof of this theorem involves simulating the virtual processors on

a phase-by-phase basis. We begin with the following lemma.
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Lemma 4 Letn,, (hy) be the work (time) for phase w of a Phase PRAM (Phase LPRAM)
program using po processors. Then the phase can be simulated in < n,/p + h,, time on a
Phase PRAM (Phase LPRAM) using p < po processors.

Proof. We prove the lemma for the Phase PRAM. The extension to the Phase LPRAM
is straight-forward since each machine processor simulates the instructions in a phase one
virtual processor at a time.

Let I; be the instructions performed in phase w by the virtual processor with the jth
largest cost in the phase. Thus cost(l1) > cost(l3) > --- > cost(l,,). Each sequence of
instructions I; in phase w can be viewed as a series of unit time steps. Let z. be the number
of virtual processors with at least ¢ steps in phase w. Thus n, = 0, z,.

Let machine processor i be assigned to perform the instructions in I, Ii4,, fize,, etc.
Processor 1 has the most work and it performs [z./p] unit-time steps which are the cth
step for some virtual processor. Thus the time for the phase on the Phase PRAM using p

processors is

hey huw
3 T2/l < 3 (ze/p+ 1) € /P + hu

a

Now we can prove theorem 1.

Proof. (of theorem) For each phase, each machine processor simulates the instructions
in the phase for pg/p virtual processors and then synchronizes. Let n, (k) be the work
(time) for phase w. Then z = 33 _; ny and t = 3.3 _; hy. Let T be the total time for the
simulating Phase PRAM or Phase LPRAM. By lemma 3.4,

T< Y tnufoh ho + B@)) S olp+ i+ Bp)s

w=1
a

Note that, as in Brent’s scheduling principle, this theorem does not account for schedul-
ing costs.

3.2.3 Phase PRAM vs. Phase LPRAM

Now we turn to the relationship between the Phase PRAM and the Phase LPRAM. We
will need the following lemma.

Lemma 5 A Phase PRAM (Phase LPRAM) program can be simulated with constant over-
head by a Phase PRAM (Phase LPRAM) program in which each processor, in each of its
phases, first performs all its global reads and local operations for the phase, then performs

its global writes.
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This lemma follows from the observation that (a) the timing of the reads and writes within
a phase does not affect other processors, and (b) the processor’s local state can be simulated
even if the writes by a processor are queued until the end of the phase.

Clearly a Phase PRAM can simulate a Phase LPRAM with no loss. The following
lemma. gives a sufficient condition for a Phase LPRAM to simulate a Phase PRAM with
only constant overhead. Recall that a sequence of global reads with no interdependencies
can be pipelined by a processor. Denote such a sequence of reads as an oblivious sequence.
An intraphase oblivious algorithm is one in which, in each phase, each processor first
issues an oblivious sequence of global reads (and waits for them to complete), then performs

a sequence of local compute steps, and finally issues a sequence of global writes.

Lemma 6 An intraphase oblivious Phase PRAM program running in time t with p proces-
sors can be simulated by a Phase LPRAM program running in time O(t) with p processors.

Proof. We show that the Phase LPRAM can simulate each phase of the Phase PRAM with
constant overhead. Suppose the worst case processor for a Phase PRAM phase performs
(an oblivious sequence of) r global reads, then [ local operations, and finally w global writes.
The time on the Phase PRAM for this phase and the subsequent synchronization step is
r+14+w+ B. The reads and the writes can be pipelined, so the time on the Phase LPRAM
for the phase is (2d +r-1)+ !+ (d+w—-1)+ B,ie. O(r+l+w+ B)sinced< B. O

Remark. With this in mind, for convenience, we can focus on the simpler Phase PRAM,
and not the Phase LPRAM. Most of our algorithms will be intraphase oblivious, and so the
results will apply to the more realistic Phase LPRAM.

3.3 Algorithms for Important Primitive Operations

In this section, we analyze the complexity of various primitive operations that, along with
parallel prefix, are used as building blocks for many parallel algorithms.

3.3.1 A lower bound for summing

We begin this section with a lower bound. Our result of the previous section for summing

n numbers is optimal in the following sense:

Theorem 2 Given n numbers, stored one per shared memory location, and the following
four types of instructions: L — G,L — L+ L,G «~ L, and “synchronize”, where L is a
private cell and G is a shared cell, then the sum of n numbers on a CRCW Phase PRAM with
this instruction set requires (B logn/log B) time, regardless of the number of processors.

Proof. Fix the number of processors p. We will show the running time for computing the
sum is (B(p)logn/log B(p)). Let the fastest algorithm have s phases, of time 1,2, .. ., £,.
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In a phase of time ¢;, each processor can at best compute the sum of ; numbers, thus the
number of partial sums reduces by a factor of ¢; at best. So in order to produce the sum,
we must have n/(#12;---¢,) < 1. It can be readily proved that the time ¢ = Y h gtvis
minimized when ¢; = n!/* for all i. Thus ¢t > snl/s.

The running time T' to produce the sum is t+ Bs. Let s = alogn/log B. If a > 1, then
T > Bs 2 Blogn/log B

If a <1, then
T >t>sn!/* > aBY*logn/log B > Blogn/2log B

In either case, the theorem is proved. O

This argument can be applied to any n input, m output associative function f, where (1)
at least one of the outputs of f depends on all the inputs, and (2) the basic step permitted
is combining two partial results to get one. The factor of B/log B occuring in this lower
bound reflects the extent to which expensive synchronization (or communication delay)

hinders information flow to a processor in our model.

3.3.2 Fast Fourier Transform

Consider the Fast Fourier Transform (FFT) problem. It is a well known fact that the FFT
can be computed quickly in parallel using a communication pattern that is a butterfly graph
of n rows and logn columns, where n is the number of inputs (see figure 3.2) [Ulig4]. By
simulating one column at a time, a PRAM can compute the FFT in O(logn) time with
n processors. Likewise, an Phase PRAM or Phase LPRAM can simulate one column at a
time, synchronizing after each column, to solve an FFT problem in O(Blogn) time with n
processors.

We can improve upon the running time as follows. We partition the columns of the
butterfly into log n/log B stages of log B consecutive columns each. By the structure of the
butterfly, the value of each node in the last column of its stage depends on the values of B
nodes in the last column of the previous stage. In particular, the value of each such node
can be computed by a binary tree whose B leaves are in the last column of the previous
stage and whose interior nodes are in the same stage as the node (see figure 3.2).

This leads to the following algorithm for n processors.
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Figure 3.2: A butterfly graph on 32 nodes. The FFT algorithm for the Phase LPRAM
divides the graph into stages of log B columns. Shown here are the stages when B = 4.
The circled node is in the last column of stage 2. The binary tree for computing the value
of the circled node is shown in bold, with its leaf nodes enclosed in squares.
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FFT program:
/*

inputs: The n inputs are stored in shared memory.
outputs: The n result values from computing the FFT on the inputs are stored in shared
memory.
description: This program computes the Fast Fourier Transform by having each processor,
for each of logn/log B stages, simulate log B consecutive columns of the butterfly graph.
At each stage, processor i computes the value for the row i node in the last column of the
stage. -
*/
for all processors 7 in parallel do (
for level := 1 to logn/log B do

read from shared memory the B leaves for the row ¢ node;

compute the value at the node by simulating the binary tree for the node;

write B copies of the value to the shared memory:

barrier;

The extra copies are needed to avoid concurrent access to a location in a phase, since B
processors read the value of any node that is in the last column of the node’s stage. Each
phase (i.e. each iteration of the while loop) takes O(B) time, so the FFT program runs in
O(Blogn/log B) time using n processors.

This algorithm can be improved to use only nlog B/B processors with the same time
complexity as follows. We partition the columns of the butterfly into log n/log(B/ log B)
stages of log(B/log B) consecutive columns each. By the structure of the butterfly, the
value of each node in the last column of its stage depends on the values of B/log B nodes
in the last column of the previous stage. Moreover, the values of a set of B/log B nodes
in the last column of their stage depend on the values of a set of B/log B nodes in the
last column of the previous stage (see figure 3.2). A processor can mimic the butterfly
graph of B/log B rows and log(B/log B) columns in O(B) time. There are nlog B/B
sets in a stage, so nlog B/B processors suffice to achieve O(Blog n/log(B/log B)) time,
i.e. O(Blogn/log B) time, on an EREW Phase PRAM or Phase LPRAM. This algorithm
is similar to the algorithm due to Papadimitriou and Yannakakis [PY88] for computing an

FFT on a synchronous model with communication delay d.

3.3.3 Bitonic merge

A sequence of elements over a totally ordered set is bitonic if it is the cyclic shift of a
monotonically increasing subsequence followed by a monotonically decreasing subsequence.
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For example, the sequence
{12, 16, 23, 36, 45, 48, 42, 34, 28, 25, 20,9, 8,4,6, 10}

is a bitonic sequence. The bitonic merge problem is to sort a bitonic sequence. An algorithm
for this problem can be used to merge two sorted lists, or as a subroutine for a bitonic sorting
algorithm.

As with the FFT, a bitonic merge on n inputs can be performed quickly in parallel
using a communication pattern that is a butterfly graph of n rows and log n columns. Thus
the technique described above for the FFT problem can be used to solve the bitonic merge
problem on a Phase PRAM or Phase LPRAM. For the bitonic merge problem, however, we
can reduce the number of processors needed to n/B as follows.

We will partition the graph into logn/log B stages, each consisting of log B columns.
For each stage j,1 < j < logn/log B, the rows of the butterfly graph can be partitioned
into sets $;1,852,---,5;a/8 of size B with the following property: for each stage j, the
outputs of the rows in §;; are the result of sorting the inputs to these same rows. Each stage
will have a different partitioning of the rows. The rows in a set will be evenly spaced, but
not adjacent (except for the final stage). All comparisons in a stage are between elements
of rows that are in the same set (see figure 3.3).

This leads to the following Asynchronous PRAM algorithm.

Bitonic_.Merge program:

/*

inputs: A bitonic sequence of n elements is stored in shared memory.
outputs: The n elements are stored in shared memory in sorted order.
description: This program sorts a bitonic sequence by having each processor, for each
of log n/ log B stages, simulate log B consecutive columns of the butterfly graph. At each
stage 7, processor : sorts the B elements corresponding to the “rows” for set S;;
*/
for all processors i in parallel do (
for level := 1 to logn/log B do {
read from shared memory the B elements in Sj;;
sort these B elements using a sequential sorting algorithm;

barrier;

write back to shared memory the B elements in sorted order;

barrier;

If the B elements in a set were in arbitrary order, the sorting step above would require
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12 12 8 6 4
16 16 4 4 6
23 20 6 8 8
36 9 9 9 9
45 8 12 12 10
48 4 16 10 12
42 6 20 20 16
34 10 10 16 20
28 28 28 23 23
25 25 25 25 25
20 23 23 28 28
9 36 34 34 34
8 45 45 42 36
4 48 48 36 42
6 42 42 45 45
10 34 36 48 48
(b)

Figure 3.3: A bitonic merge computation. (a) The computation graph for a bitonic merge
problem with 16 inputs. The graph is divided into stages of log B columns, where B = 4.
The subgraph corresponding to the rows in the set $; 4 is shown in bold. (b) The progression
of intermediate values in the bitonic merge computation. The first column is the inputs
and the last is the sorted outputs.
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Q(Blog B) time. However, the sorting step can in fact be done in O(B) time, since the
B elements in a set form a bitonic sequence and hence can be sorted using a linear time
sequential merging algorithm. Thus the bitonic_merge algorithm runs in O(Blogn/ log B)
time on an EREW Phase PRAM or Phase LPRAM using only n/B processors.

This is an example of a general paradigm for saving processors in the Phase PRAM
and Phase LPRAM by (1) using a known parallel algorithm for the problem to structure
the computation, while (2) performing the individual steps by reading B values, running a
sequential algorithm on these values, and then writing the results.

3.3.4 List ranking

Now consider the list ranking problem. The list ranking problem is, given a linked list
of n elements, compute the distance of each element from the end of the list. Unlike the
prefix problem of the previous section, it is no longer trivial to partition the work among the
processors such that each active processor can do B useful operations (and avoid concurrent
read) without synchronizing. However, the following pointer jumping approach achieves
O(Blogn/log B) time on an EREW Phase PRAM with n processors.

Pointer Jumping algorithm:
Given a linked list of n elements, this algorithm reduces the list to a single element. In the

statement of the algorithm, we omit the special handling required for processors that have
encountered the tail of the list prior to the last round.

1. For each of log n/ log B rounds, repeat steps (2)-(4).

2. Processor ¢ makes B copies in shared memory of the name of (pointer to) the current
successor of element 7, then synchronizes.

3. Processor i pointer jumps for B steps, visiting the successor of i (copy 1 from step
(2)), then the successor of the successor of i (copy 2 from step (2)), etc., and then
synchronizes.

4. Processor i writes in shared memory the new successor of ¢, i.e. the Bt such element

visited, then synchronizes.

<

This list-reducing algorithm can be used for list ranking by summing as it chases point-
ers. This shows how duplicating computation (here, B processors chase the same pointer
— although a different copy — each phase) can reduce the running time, and duplicating
the contents of selected memory locations can avoid concurrent read. From the proof of

theorem 2, it is easy to see that the list-reducing (list ranking) problem has a lower bound
of Q(Blogn/log B) time on a Phase PRAM.
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Remark. This is not an intraphase oblivious algorithm. The Phase LPRAM running time
is O(Blogn/log(B/d)) on n processors.

A more sophisticated algorithm is needed in order to use fewer processors and achieve
the same time bound on an EREW Phase PRAM. Known processor-efficient list ranking
algorithms (e.g. [CV86][CV88][AMS88]) communicate too frequently to run efficiently on
this model, so a new algorithm is needed. Our new algorithm runs in three stages, and
applies variants and/or generalizations of three known list ranking algorithms. Let r =

Blogn/log B. We will use p = n/r processors.

Processor Efficient List Ranking algorithm:

Given a linked list of n elements, this algorithm reduces the list to a single element. There
are three stages to the algorithm.

1. This first stage reduces the list from n elements to pB elements. The ideas behind
this stage (we omit the full details) are as follows. The Anderson and Miller [AM88]
EREW PRAM (deterministic) algorithm reduces a list from n to n/logn elements
in O(logn) time using n/logn processors. The list elements are partitioned into
n/logn queues of logn elements each. Each processor works on the elements in
its queue, removing elements from the list according to a fixed arbitration scheme.
Using a clever weighting scheme to analyze the progress of the algorithm, Anderson
and Miller show that at most n/logn elements remain after 5logn rounds of their
algorithm.

Their analysis depends strongly on the ability to reallocate work each of O(logn)
times, and hence their algorithm is too slow for our purposes. However, a careful
examination of their algorithm and proof reveals the following generalization. By
partitioning the list elements into n/z queues of = elements each, where 1 < z < logn,
then n/z processors can reduce a list from n to n/z elements in 5z rounds of their
algorithm. For our purposes, we take n/z = pB, i.e. ¢ = 7/B. At each of O(z)
rounds of the Anderson and Miller algorithm, each Phase PRAM processor simulates
the work of B PRAM processors and then synchronizes. This takes O(r) time.

Finally, we compact the list of at most pB elements into a block of adjacent elements.
This can be done in O(r) time using the parallel prefix algorithm described in section
3.2.1.

2. The second stage reduces the list from pB elements to p elements. We use the deter-
ministic coin tossing technique of Cole and Vishkin [CV86], with each Phase PRAM
processor simulating B PRAM processors. We run the technique for loglog*(pB)
rounds (synchronizing after each round), and then compact. Then we run the tech-
nique for at most log B additional rounds (synchronizing after each round) until
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we are left with at most p elements, and then compact. This takes O(Blog B +
Blog® nloglog*(pB)) time.

3. The third stage reduces the list {from p elements to one element. This is done in O(7)
time using the Pointer Jumping algorithm given above.

O

These ideas lead to an EREW Phase PRAM algorithm that runs in time O(r + B log B)
with n/r processors (the second term from stage (2) can be made not to dominate).
This is an optimal algorithm (i.e. has an optimal processor-time product) for any par-
allel machine where B € 0(2\/%;), in which case the running time for p processors is
O(n/p+ Blogn/log B), the same as for prefix sum.

Remark. The three stages in the above algorithm are used in an “accelerating cascade”
manner [CV86], where earlier stages are processor efficient but make smaller progress, while
later stages are less processor efficient but make greater progress. In order to achieve

O(Blogn/log B) time, we could only “compact” the list a constant number of times.

Remark. For certain functions B(p), e.g. B(p) bounded above by log p, the second stage
can be omitted.

3.3.5 Multiprefix, integer sorting, and Euler tours

In the multiprefiz problem, we are given n elements consisting of a value and one of L labels,
and we want to simultaneously perform a prefix computation for each label. The parallel
prefix algorithm of section 3.2.1 can be used to compute the prefixes for each possible label.
If the labels are integers in the range of 1 to L, then Ln/r processors suffice to achieve O(r)
time for a multiprefix problem of = data items, where r = Blog n/log B. However, we can
improve on this result for the case where L >» 7 using the following algorithm. To simplify
the description of our algorithm, we will consider the case where the associative operation
to be performed is addition. We will use n processors in all.

Consider a forest of L trees, one for each possible label. Each tree is an (implicit)
complete B-ary trees on n leaves. As in the parallel prefix algorithm, the algorithm below
computes a sum by progressing level-by-level up these trees. The difference here is that
we have only p; processors working on the tree for label j, where p; is the number of data
items with label j. Processor i starts at leaf ¢ of the tree for its label and works its way up
the tree until it encounters a smaller-numbered processor with the same label. The smallest
numbered processor with a label [ succeeds in reaching the root of its tree and thereby
computing the sum of all the data items with label [ (see figure 3.4).
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Figure 3.4: A multiprefix computation. (a) A multiprefix problem on n = 16 inputs, and
its desired output. For simplicity, only the values and prefix sums relevant to label L3 are
shown. (b) The multiprefix algorithm for the Phase LPRAM uses implicit B-ary trees for
each label. Shown here is the tree for label L3, where B = 4. Each of six processors start at
the appropriate six leaves and work together to compute the prefix sums for label L3. (c)
The prefix sum for L3 is computed according to the algorithm. The intermediate results at
both levels are shown.
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Multiprefix algorithm:

This algorithm computes the multiprefix of n numbers stored in shared memory.

1. We repeat steps (2)-(3) once for each level in the forest of L trees, a total of log n/ log B
times. Initially, all processors are active and the cumulative sum for a processor is
simply the value of its element.

2. Consider a B x B matrix for each node of the next level in the forest. Each active
processor writes its current cumulative sum in each row of a column of the matrix
for its parent, and then synchronizes. Columns such that no processors have the

appropriate label will remain untouched (all zero).

3. Each active processor sums its row in the matrix and continues to the next level of
the tree (i.e. remains an active processor) if and only if it is the left-most processor
with this label among its B — 1 siblings at the current level of the tree.

4. Reverse the process (steps 1-3) to yield the partial sums for each label.

o

The Multiprefix algorithm runs in O(Blogn/log B) time on an EREW Phase PRAM
or Phase LPRAM using n processors and O(LnB) memory cells. Further refinements
reduce the memory requirements to O([L/B]n) cells and include initialization costs, while
maintaining the same time and processor bounds for any integer value of L. We omit the
details here.

An algorithm for multiprefix yields an algorithm for sorting n integers of klogn bits
each [Ran89]. It runs in O(kBlogn/log B) time on an intraphase oblivious EREW Phase
PRAM with n processors. Given an n node forest represented by each node having a pointer
to its parent, a multiprefix algorithm can be used to compute the index of each node among
the nodes with the same parent. From this, we can construct an Euler tour of a tree and
then compute many tree functions such as preorder and postorder numberings [TV85], all
within the same resource bounds (using the List Ranking algorithm of section 3.3.4).

Generalized multiprefix .

We now consider a generalized multiprefix problem in which we are given n elements
consisting of a value, one of L labels, and a tag, where tags are integers in the range 0 to
r—1,r > 2, and no two elements with the same label have the same tag. The problem is to
compute a prefix computation for each label. We will focus on the case where L > Blogn
and there are p < n processors.

As before, we consider a forest of L trees, one for each possible label. The time to
progress level-by-level up a k-ary tree of r leaves is O(klogr/log k), not counting synchro-
nization steps or communication delay. If n/p > B, then binary trees (k = 2) are used.
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Each processor spends n/p time performing one step for each of the items it represents and
then synchronizes. This yields an O((n/p)logr) time EREW Phase LPRAM algorithm.
If n/p < B, then we choose k = B/(n/p), so that each level of the tree, each processor
performs a total of B steps and then synchronizes. This yields an O(B[logr/log(Bp/n)])
time EREW Phase LPRAM algorithm. This generalized result will be used in the proof of

theorem 7 in section 3.5.2.

3.4 Upper and Lower Bounds for Load Balancing

In this section, we present a scheduling problem that arises in the context of on-line load
balancing in the Phase PRAM, and which has more general applications. Given p processors
and k£ jobs of unknown (nonzero) duration, find a preemptive on-line schedule such that
cost B is charged each time the processors are scheduled, or preempted and rescheduled.
Let h; be the (unknown) number of unit-time steps in job 7, let n = 1% h;, and let
h = max(hy,...,ht). A lower bound on the completion time is max(n/p, h, B).

The generalization of Brent’s scheduling principle to the Asynchronous PRAM presented
in section 3.2.2 can be viewed as an off-line strategy for this problem. In particular, if the
durations of the jobs are known (and sorted: hy > hg > -+ > hy), then, by theorem 1, the
\ following nonpreemptive schedule achieves n/p + h + B completion time: assign processor
t to complete jobs ¢,i 4 p,: + 2p, etc.

When the durations of the jobs are unknown, then the following simple strategy achieves
within an O(log B/ loglog B) multiplicative factor of optimal. As we shall see later in this
section, this strategy is (asymptotically) the best possible deterministic strategy.

We will view each job as a linked list of nodes, where each node represents a unit-time
step. In unit time, each processor can “visit” the first node in some list, i.e. remove the
node from its list, perform the associated unit-time step, and label the list as now dead
(empty) or still live (not empty). We permit at most one processor to be assigned to any

one list at a time.

Balanced algorithm:

This algorithm gives an on-line, preemptive schedule for completing a collection of jobs on p
processors. There are three stages to the algorithm, each potentially involving many steps.

1. Repeat the following while the number of live lists is > pB: partition the live lists
evenly among the processors, and have each processor visit one node in each of its
lists.

2. Repeat the following while the number of live lists is > p. Partition the live lists evenly
among the processors. Each processor cycles through its lists, visiting one node from
a list at a time, until it has visited B nodes or emptied all its lists.
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3. The number of live lists is now at most p. Assign one processor per live list and have

it visit all the nodes remaining in the list.

<&

Theorem 3 The Balanced algorithm achieves an O(max(n/p, h, B) log B/ loglog B) com-

pletion time.

Proof. We focus on the second stage and ignore floors and ceilings (we omit the extensions
to include the first and third stages, which are within a constant factor of optimal).

Let m be the number of rounds in the second phase. Let k; be the number of live lists
per processor at the start of round ¢, 1 < k; < B. Thus the following restrictions on the
values of ¢,n, and h must hold.

t: Each round is completed in 2B time (counting the B for rescheduling). Thus the

completion time is 2mB.

n: In round i, each processor visits at least B/k; nodes in each list that remains live
for round i + 1. Thus the total number of nodes visited in round 7, : < m, is at least
pBkiy1/ki. At the end of round m, there are at most p live lists.

h: The number of nodes in the longest list is at least B Y 1=, 1/k;.
The worst case ratio r of the completion time to the optimal time (i.e. max(n/p, h, B)) is

r < maxg m{t/ max(n/p,h, B)}
max; . {min(t/(n/p),t/h,t/B)}
maXg, m {min{ 2mB/(B L ki+1/k:),
2mB/(B L 1/ki),
omB/B)}
= maxXg,m{2mmin(1/(T kis1/k:), 1)}

where
B>k 3 ky 3P Byl

For any fixed m, r is maximized when
kiy1/ki=1/z
for all i. Thus m = log_ k; and so
m /(D ki k) = =
Thus r is maximized when z = log_ £, i.e. when
r=z = O(logk/loglogk,)

Since k; < B, the theorem holds. O
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Theorem 4 Any deterministic strategy will be Q(log B/ loglog B) from optimal on some
set of jobs.

Proof. Let there be pB lists and let a = loglog B/ log B. We assume that all processors
visit up to B nodes and then reschedule (we omit the simple extension of the proof to the
case where a processor visits more than B nodes before rescheduling). Let m be the number
of rounds, and let k; be the number of live lists per processor at the start of round 1.

To foil the strategy, the adversary decides when to kill off a list (i.e. make a list have
one node remaining). The adversary kills off lists according to the following three rules.

1. Each round, the adversary will kill off all lists assigned to the (1 — a)p processors with
the fewest lists assigned.

2. In addition, the adversary will kill off any list that is visited @B times in one round.

A processor can cause at most 1/« lists to be killed this way.
3. As soon as k; < 2/a, the adversary kills off all the remaining live lists.

First observe that
kiv1 2 alk; — (1/a)) > ak;/2

Thus (after some arithmetic) we see there will be Q(log;/, B) = Q(1/e) rounds.

We use the following accounting scheme for counting the total number of nodes visited in
around: the final node on a list is not charged to the round in which it was visited; instead,
we will add a one time charge of pB to account for these “final” nodes. Then the number of
nodes visited in a round is at most apB (since there are only ap active processors). Thus

the following restrictions on the parameters ¢, n, and h must hold.
t: The completion time is Q(B/a).
n: The number of nodes visited is O((1/a)apB + pB) = O(pB).
h: The number of nodes in the longest list is O((1/a)aB) = O(B).

Hence the strategy is at least t/(max(n/p, h, B)) from optimal, i.e. a multiplicative factor
of
Q(1/a) = Q(log B/ loglog B)

from optimal. O
In contrast, if the Balanced algorithm is modified to randomly partition the lists among
the processors, it achieves within a constant factor of optimal [Kar88].

Remark. This “list” scheduling problem generalizes to scheduling on a tree of unknown
shape. This latter problem has applications in parallel branch-and-bound. We will not
discuss the tree scheduling problem in this thesis, except to remark that an adversary can
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force any deterministic or randomized strategy (that assigns at most one processor to a
node) to be @(B) from optimal as follows. At each round, the adversary kills off all the
frontier nodes of the tree but one, and then has this one remaining frontier node branch
out to pB children.

3.5 Comparisons with Synchronous Models

In this section, we study the computational power of the Phase LPRAM relative to existing
synchronous models of parallel computation. In particular, we present techniques for the
Phase LPRAM to simulate DAG-based computations (formally, uniform circuit families of
bounded-fanin arithmetic circuits), straight-line code, the CRCW PRAM model, and the
BPRAM model. Each of these simulations improves upon the time complexity of the brute
force technique (namely, the technique of synchronizing the Phase LPRAM after every step
of the synchronous model).

3.5.1 Simulation of bounded-fanin circuits

Our first simulation can be used to improve the time complexity of DAG-based computa-
tions. We will begin with a less formal description of the technique and conclude with a
more formal description.

Our informal description makes use of the following definition.

Definition 2 A computation graph is a directed graph G such that (a) the nodes of G
are labeled with either input values, unary operators, or binary operators, and (b) there is
a directed edge in G from one node to another if and only if the former node computes an

operand of the operation at the latter node.

Thus input nodes have indegree zero, unary nodes have indegree one, and binary nodes
have indegree two.

Recall that the natural computation graph for the prefix sum problem was a binary tree
of n leaves fanning into one node followed by a binary tree fanning out to n leaves. The
natural computation graph for the FFT problem was a butterfly graph.

In both cases, we were able to restructure the computation to give improved time com-
plexity on the Phase LPRAM. These were examples of a general technique that can be
applied to known (synchronous) algorithms that can be viewed as a family of computation
graphs with the following properties:

e there is one computation graph for each input size,
e the computation graph is acyclic (a DAG), and

e each node has (indegree and) outdegree at most two.
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Figure 3.5: Simulating a bounded-fanin circuit. Stage i of an example computation graph
is shown, where B = 16. The edges of the graph are directed downward (not shown). The
value of the circled node is computed by evaluating the subgraph shown in bold. The Phase
LPRAM processor for this node reads from global memory the values of the six leaves for
the node (shown here as square nodes), and then computes the value using local operations
that mimic the subgraph.

The level of a node in a computation graph is the number of arcs in the longest path from
an input to the node. The depth of a computation graph is the maximum level of any node
in the graph. The width of a computation graph is the maximum number of nodes at any
one level.

As in the FFT algorithm, in the general technique we will partition the computation
graph into stages of log B consecutive levels each. The value of each node in a stage depends
on at most B predecessors in the graph from earlier stages (since there are log B levels in a
stage and the fanin is at most two). This value can be computed by a DAG whose (up to).
B leaves are in previous stages and whose interior nodes are all in the same stage as the

node (see figure 3.5).
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This leads to the following algorithm.

DAG Evaluation program:

/*

inputs: The values of the inputs to the DAG are stored in shared memory.
outputs: The values of the outputs computed by the DAG are stored in shared memory.
description: This algorithm gives a general technique for evaluating a DAG.
*/
for all processor i in parallel do (
while more stages of log B consecutive levels in the DAG (
/# Processor i computes the value for the i*k node in the current stage. */
read from shared memory the up to B leaves for your node;
compute the value at the node using local operations that mimic the DAG;

write B copies of the value to the shared memorys;

barrier;

If the computation graph for inputs of size n has depth D(n) > logn and width W(n),
then the DAG Evaluation program above runs in O(B D(n)/log B) time with W(n)log B
processors. This represents an improvement by a factor of log B over the running time
resulting from simply synchronizing at each level of the computation graph.

The above technique can be formalized as follows. (See [KR88] for a discussion of
uniform circuit families.)

Theorem 5 Any function computable by a log-space uniform circuit family of bounded-
fanin arithmetic circuits of depth D(n) > logn, mazimum width W(n), and polynomial
size can be computed by a log-space uniform EREW Phase LPRAM family running in
O(B D(n)/log B) time with W(n)log B processors.

Proof. In what follows, we will first present the proof for simulating the circuit family by
a CREW Phase LPRAM family that has one processor per circuit gate. The approach will
parallel the techniqﬁe used in the DAG Evaluation program. Then we will show how the
technique can be enhanced to use fewer processors and avoid concurrent reading.

By a result of Hoover, Klawe, and Pippenger [HKP84], we can assume w.l.o.g. that the
circuit has both indegree and outdegree bounded by two. Let M. be a log-space Turing
machine that generates a description of the arithmetic circuit, starting with the output
nodes and proceeding level-by-level back to the inputs. The description for a node in the
circuit is a four-tuple, (id, op, left_child, right_child), where the i*P node generated has id
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i, op is the unary or binary operation for the node, lefi_child is the id of the first operand,
and right_child is the id of the second operand (if any).

A Phase LPRAM program that computes the same function as the circuit can be gener-
ated uniformly in logarithmic space as follows. On input n, the following log-space Turing
machine M, can generate a description of the Phase LPRAM program, one processor at a
time, starting with its final program instructions. Encode the transition function for M,
into the transition function for M, in such a way that M, can simulate M.. We will handle
the nodes in order. We maintain a counter of the level of the current node in the circuit,
where the level of a node 7 is the length of the longest path from node i to an output. We
view the circuit as divided into slices, or stages, of log B levels.

For each gate in the current slice, we simulate M, repeatedly to perform a depth first
search starting at the node and proceeding to the first node on each path which is outside
the slice (a frontier node). We output the program for the processor (in reverse order) as
(1) synchronize, (2) global write of its final value, (3) series of local operations which mimic
gates within the slice, and (4) global reads of the values for the frontier nodes. Finally,
if the gate is in the j*® slice (from the final slice), we output j — 1 additional synchronize
instructions in order that the processor starts at the proper time.

Note that some operations may be repeated in the resulting Phase LPRAM program,
even by the same processor. Memory locations used in the Phase LPRAM program corre-
spond to the unique node id’s.

This can all be done in logarithmic space as follows. A depth first search from a node
z is performed by maintaining a bit vector indicating, at each level, whether a left or right
child was used to reach the current node in the search. This vector requires O(log B) space,
which is O(logn). To search forward on a child y, simulate M. until the node for y is
generated. To backtrack from a node z at level /, simulate M, starting from z and following
the first [ — 1 bits of the vector to reach the parent of 2. We maintain the minimum id of
a child of a node in the current level. When this child is generated, we increment the level
counter. The level counter is used to detect frontier nodes. It is also used to keep track of
the current slice number, in order to output the correct number of synchronize instructions
per processor.

The resulting CREW Phase LPRAM program will run in time O(B D(n)/log B), since
there are D(n)/log B slices and each slice takes O(B) time.

To reduce the number of processors to W(n) log B, we use processor i to simulate the i*®
node of each slice. The Phase LPRAM program can be generated one processor at a time.
If there are fewer than W(n)log B nodes in a slice, then the code generated for a slice of a
processor who has no work in the slice is just a synchronize instruction. Alteruatively, the
Phase LPRAM program can be generated slice-by-slice, where the width W(n) is computed
prior to the first slice.
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Each value computed for a node will be used by up to 28 — 2 processors. To avoid this
concurrent reading in the Phase LPRAM program, we have each processor generate 2B — 2
copies of its output value. Consider a node r in the circuit and the processor p assigned to
r. For each frontier node w of r, have processor p read copy ¢ of the output value of node w
if node r is the *B lowest numbered node that has w for a frontier node. The number i can
be determined in logarithmic space by simulating M. beginning with node 0 and continuing
to node r, and counting the number of nodes that have w for a frontier node. In this way,
each reader of a node w can be assigned a unique copy to read. 0O

A corollary to this theorem relates the well-studied complexity classes NC* to the Phase
LPRAM. A language is in NCF if it is recognized by a log-space uniform circuit family of
polynomial size and log* n depth [Pip79][(KRS8].

Corollary 1 Any language in NC*, k > 1, can be recognized by a log-space uniform EREW
Phase LPRAM family running in O(BlogFn/log B) time with a polynomial number of

processors.

Remark. By theorem 5, we see that the Ajtai, Kolmos, and Szemeredi (AKS) sorting
network [AKS83] can be simulated on a Phase LPRAM in O(Blogn/log B) time using
nlog B processors.

Remark. Theorem 5 also yields an algorithm for matrix multiplication, based on the fast
matrix multiplication algorithm of Coppersmith and Winograd [CW87], that runs in time
O(Blogn/log B) on an EREW Phase LPRAM with O(n2-76) processors.

There is also a simple algorithm for matrix multiplication on an EREW Phase LPRAM:
fanout n copies of each entry of both input matrices (using a B-ary tree), perform the n3
multiplications, then fanin the n partial terms that sum to yield an entry in the resulting

product matrix (using a B-ary tree). This runs in O( B log n/log B) time using n® processors.

3.5.2 Simulation of the BPRAM and related models

The BPRAM model of computation [ACS89] consists of a collection of p sequential pro-
cessors, each with its own private local memory, communicating with one another through
a shared memory. The processors execute in lock-step, although each processor does have

its own local program. There are three types of instructions.

e Block read. Read a contiguous block of memory words from the shared memory
into private memory. If k¥ words are read, the operation takes [ + k time, where ! is a

parameter in the model intended to capture the latency to shared memory.

e Local operation. Perform any RAM operation where the operands are in private

memory and the result is stored in private memory. This operation takes unit time.
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e Block write. Write the contents of a block of private memory locations into a
contiguous block of shared memory. As in the block read operation, this operation
takes [ + k time to write a block of k£ words.

A processor can perform at most one instruction at a time. For example, a processor issuing
a block read of k words at time ¢ can not issue another instruction until time ¢ + [ + k.
Blocks that are accessed in parallel can not overlap. For example, if processor i reads a
block b;, then prior to the completion of this block read, no processor j may read or write

a block b; such that b; and b; share a common word.

3.5.2.1 BPRAM simulation

We now proceed to compare the BPRAM model with the Phase LPRAM model. By
comparing the latency parameter, [, with the communication delay parameter, d, in the
Phase LPRAM model, we observe that ! = 2d — 1. In the BPRAM model, at any time
step, some processor may issue a read to a block in which another processor wrote at the
previous time step. In simulating the BPRAM on the Phase LPRAM, we must ensure that
the write completes before this read, using a synchronization barrier. A BPRAM algorithm
running in time ¢ can be simulated by an EREW Phase LPRAM running in time O(Bt) by
synchronizing after each step.

The brute force method above can be improved upon. We accomplish this improvement
by exploiting the fact that a block of reads takes more than / time steps to complete, and
thus we can synchronize less often.

Consider slices of the BPRAM program of time . Since a block operation can not
complete in the same slice as it was issued, each slice for a processor consists of (1) waiting
for a block operation to complete, (2) performing local operations once the block operation
has completed, and then (3) issuing a new block operation and begin waiting again. Any of
these three may be omitted, but the ones that are in a slice must be in the order specified.

BPRAM Simulation algorithm:

In this algorithm, a Phase LPRAM simulates a BPRAM algorithm with the same number
of processors.

1. Each Phase LPRAM processor keeps track of BPRAM time in a local variable. For
each slice of / BPRAM steps, repeat steps (2)-(4).

2. Processor : wait for any reads or writes pending from the previous slice to complete.

3. Processor : performs the local operations of BPRAM processor i, and then synchro-

nizes.
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4. If BPRAM processor 7 issues a read (write) of a block of & words, the Phase LPRAM
processor i issues max(k,!) consecutive read (write) instructions, one per word. If
k > I, then for each slice until all the reads (writes) in this block have been issued,

processor i issues a batch of I reads (writes) and waits for them to complete.

o

The correctness of this algorithm follows from the fact that all simulated block reads or
writes in slice j complete in the Phase LPRAM before any reads or writes from slices > j
are issued. Thus the necessary synchronization is enforced.

The number of processors can be reduced to pd/B, by having each Phase LPRAM
processor simulate B/d BPRAM processors.

Theorem 8 A BPRAM algorithm running in time t using p processors can be simulated

by an EREW Phase LPRAM running in O(tB/d) time with pd/B processors.

Proof. In the algorithm given above, each slice of the BPRAM is simulated in less than
2d + B + [ time, and there are t/! slices. Having each Phase LPRAM processor simulate
B/d BPRAM processors increases the time per slice to at most (2d + {)B/d + B, which is
stil O(B). O

3.5.2.2 Arbitrary-BPRAM simulation

Let an arbitrary-BPRAM be a BPRAM that can issue requests for a non-contiguous
block of memory, i.e. a block read or write instruction in the model can access an arbitrary
set of ¥ memory words in [ + k time. As before, sets that are accessed in parallel can not
overlap.

Corollary 2 An arbitrary-BPRAM algorithm running in time t using p processors can be
simulated by an EREW Phase LPRAM running in O(tB/d) time with pd/B processors.

Proof. The proof of theorem 6 did not make use of the fact that only contiguous blocks

of memory were being accessed. O

Lemma 7 Corollary 2 is tight. There is a problem that requires §)(tB/d) time on a CRCW
Phase PRAM or Phase LPRAM, where t is the time to solve the problem on an arbitrary-
BPRAM. Moreover, pd/B processors are required by the Phase PRAM or Phase LPRAM
to achieve this time, where p is the number of processors used by the arbitrary-BPRAM.

Proof. Consider the problem of determining which node in a linked list of n elements
is the head of the list. An arbitrary-BPRAM can solve this problem in O(d) time with
n/d processors as follows. Each arbitrary-BPRAM processor reads in d nodes, sends a
notification to the d successors of these nodes, then tests to see if any of its d nodes have
not been notified. The lower bound for the Phase LPRAM or Phase PRAM is given in
lemma 2. The lemma follows by setting ¢t = O(d) and p=n/d. O
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3.5.2.3 Synchronous-LPRAM simulation

Unlike in the Asynchronous PRAM, a BPRAM or arbitrary-BPRAM processor can perform
at most one instruction at a time. Another natural model to consider is a synchronous model
in which this restriction is removed. Let a synchronous-LPRAM consist of a collection
of p sequential processors, each with its own private local memory, communicating with
one another through a shared memory. The processors execute in lock-step, although each

processor does have its own local program. There are three types of instructions.

¢ Global read. Read the contents of a shared memory location shared memory into a
private memory location. A global read issued at time ¢ accesses its memory location
at time ¢ + d, and returns the value for use at time t + 2d.

e Local operation. Perform any RAM operation where the operands are in private
memory and the result is stored in private memory. This operation takes unit time.

o Global write. Write the contents of a private memory location into a shared memory
cell. A global write issued at time t updates its memory location at time ¢ + d.

A processor can issue one instruction per time step. At each time step, at most one processor
may be accessing or updating a particular memory location. This corresponds to an EREW
version of the model. A CREW synchronous-LPRAM permits multiple processors to issue
a read request to a location in the same time step. A CRCW synchronous-LPRAM permits
multiple processors to issue a write request to a location in the same time step as well, as
long as all processors attempt to write the same value. In each case, a read and a write to
the same location may not be issued in the same time step. The model is related to the
LPRAM model of Aggarwal and Chandra [AC88], hence its name.

A memory location in the synchronous-LPRAM can be used for communication every
step of an algorithm. Consider, for example, d processors numbered 1 to d, where at each
odd-numbered step 7, processor i issues a write of location z, and at each even-numbered
step ¢ + 1, processor ¢ + 1 issues a read of location z. Then a total of d/2 values will be
exchanged in a slice of time d. The technique described in section 5.3 can be used to support
this model: the routing mechanism ensures that global memory accesses at time step j stay
behind those at step j — 1 and ahead of those at step j + 1.

The Phase LPRAM can be simulated on the synchronous-LPRAM with no loss.

Lemma 8 An EREW (CREW, CRCW) Phase LPRAM algorithm running in time ¢t using
p processors can be simulated by an EREW (CREW, CRCW) synchronous-LPRAM running

in t time with p processors.

On the other hand, there are difficulties in simulating the synchronous-LPRAM on the
Phase LPRAM. The main difficulty is that a memory location in the synchronous-LPRAM
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can be used for communication every step of the algorithm, as described above. In the
Phase LPRAM, synchronization is needed whenever there is an exchange, thus it may
appear difficult to improve upon the brute force O(Bt) simulation.

However, we can improve upon the brute force simulation as follows. We will divide
the synchronous-LPRAM computation into slices of 2d steps. Each synchronous-LPRAM
processor can issue up to 2d memory requests in a slice. Because read requests take at least
2d steps to complete, however, the location used or the value written by a request issued in
a slice can not depend on any other request by any processor within the same slice. (The
contents of a location read in a slice, on the other hand, does depend on the writes issued
this slice and the previous slice.) For each location !, we will match each read of /[ in the
current slice to the most recent write of {. Since, in the synchronous-LPRAM model, shared
memory requests access a location exactly d steps after they are issued, it suffices to match

reads with writes based on issue times.

Synchronous-LPRAM Simulation algorithm:

In this algorithm, an EREW Phase LPRAM simulates an EREW synchronous-LPRAM
algorithm with p processors. We divide the synchronous-LPRAM computation into slices
of 2d steps. For each slice, in the first phase, we simulate the effect of the completion of
read .requests and local operations, ignoring any memory requests issued this slice. Then,
in the second phase, we perform all the memory requests. Since multiple reads and writes
to the same location may occur in a slice, we use a multiprefix computation to match each

read to its appropriate write.

1. Each Phase LPRAM processor keeps track of synchronous-LPRAM time in a local
variable. For each slice of 2d synchronous-LPRAM steps, repeat steps (2) and (3).

2. We first simulate the completion of read requests and the execution of local operations.
At the start of this iteration of the loop, due to step (3) of the previous iteration, any
synchronous-LPRAM read operation that completes in step k of this slice is in slot
k of a buffer for its processor. Consider each step j, 7 = 1 to 2d, in turn. If a read
completes in the synchronous-LPRAM at step j and the value read is stored in private
memory location y, copy the value from buffer slot 7 into private location y. If a local
operation is performed by the synchronous-LPRAM at step j, perform the same local
operation.

3. We now consider the memory requests issued this slice. Each synchronous-LPRAM
processor can issue up to 2d memory requests in a slice. For each location [/, we need
to match each read of / this slice to the most recent write of / that was issued prior
to the step in which the read was issued.
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This matching of reads to writes is done using a generalized multiprefix computa-
tion (see section 3.3.5) as follows. There are n = dp elements, each labeled with the
location to be read or written, whose “value” is the value to be written for a write
operation and “x” for a read operation, and whose “tag” is the step number of the
operation within the slice. For example, a write of z to location ! in step k of the
slice corresponds to an element with label I, value z, and tag k. At the start of the
multiprefix computation, the value z will be written to the k! leaf of tree /. Unini-
tialized leaves are assumed to have value “s”. The appropriate associative operation
@ for the multiprefix computation is

a®d = b ifd#sx
a

otherwise.

Two boundary cases need to be handled during the course of the multiprefix com-
putation. If an element corresponding to a read of location / discovers that it has
the smallest tag of any element with label [, it reads memory location ! to get the
contents of the cell prior to the start of this slice. If an element corresponding to a
write of location { discovers that it has the largest tag of any write element with label
l, it is designated the “last writer” for label /. After the multiprefix computation has
completed, the last writer for each location ! (written to this slice) writes its value to
memory location [. At this point, each reader in the slice has obtained the correct
value and the memory locations have been updated to reflect the completion of the

slice. We synchronize and continue on to the next slice.

<

If the synchronous-LPRAM algorithm permits concurrent reading of a location in a step,
i.e. the model is CREW, then in the multiprefix computation, more than one processor may
be marching up the same path in a tree. If a CREW Phase LPRAM is used, the algorithm
aboveis still correct. Likewise a CRCW synchronous-LPRAM can be simulated by a CRCW
Phase LPRAM: the concurrent writing will result in more than one processor marching up
the same path in a tree.

The synchronous-LPRAM Simulation algorithm yields the following theorem.

Theorem 7 An EREW (CREW, CRCW) synchronous-LPRAM algorithm running in time
t using p processors can be simulated by an EREW (CREW, CRCW) Phase LPRAM run-
ning in O(t(B/d)logd/log a) time with ap/(B/d) processors, for 1 < a < d.

Proof. The multiprefix computation each slice dominates the running time for the slice.
We have n = dp items, po = ap/(B/d) processors, and r = 2d possible tags. Thus n/pg =
B/a. Since n/py < B when 1 < a < d, then from section 3.3.5, the time for the slice
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is O(B[logr/log(B/(n/po)]). Plugging in for r and n/py yields O(Blogd/loge). The
theorem follows since there are O(t/d) slices in the synchronous-LPRAM program. O

From this theorem, we see that using p processors yields an O(¢(B/d)logd/log(B/d))
time algorithm, while O(t(B/d)) time can be achieved using pd?/B processors.

3.5.3 Other simulation results

Theorem 5 saves a log B factor off the brute force O(B - D(n)) simulation time for compu-
tations represented as bounded fan-in circuits. Likewise, we can save a log B factor off the
time (using the PRAM algorithm in [MRK88]) to evaluate a straight-line program:

Lemma 9 Let C be an arithmetic circuit over a commutative semiring (R, +,*,0,1) with
n nodes and degree § with values assigned to each input node from the domain R. The value
for each node of the circuit can be computed in O( B lognlog(nd)/log B) time on an EREW
Phase LPRAM using O(n2-378) processors.

Proof. See [MRKS88] for a precise definition of degree. This lemma follows from the
Miller, Ramachandran, and Kaltofen PRAM algorithm for this problem, the fact that the
time for matrix multiplication dominates their algorithm, and our observation that matrix
multiplication can be performed in O(Blogn/log B) time on a EREW Phase LPRAM using
O(n?37) processors. O

Lemma 10 A CRCW PRAM algorithm running in time t using p processors can be simu-
lated by an EREW Phase LPRAM running in time O((Blogn/log B)t) with p processors.

This lemma follows from Eckstein’s simulation of a CRCW PRAM by an EREW PRAM
(Eck79] and our result for the multiprefix problem.

50






Chapter 4

Subset Synchronization:

Algorithms and Lower Bounds

4.1 Introduction

This chapter focuses on the Asynchronous PRAM with subset synchronization. This variant
of the Asynchronous PRAM model permits multiple disjoint sets of processors to synchro-
nize independently and in parallel. The local program for a processor consists of a series
of phases in which the processor runs independently, separated by synchronization steps
involving at least one other processor. Throughout this chapter, we will assume a global
read costs 2d, a global write costs d, a local operation costs 1, and a synchronization step
among a set S of processors costs B(|S5|). For convenience, we will refer to such Asyn-
chronous PRAMs as Subset LPRAMSs. There are EREW, CREW, and CRCW variants
of the model, as discussed in section 2.2.2.

The processors in a set § synchronize using shared memory locations. Any two proces-
sors that agree upon a common memory location can synchronize using that location. Thus
a set S can be data dependent and the processors in S need not know the identities of the
other processors in §. For example, consider a graph G on p nodes with unique labels on
the edges and a clique C in G. In a Subset LPRAM algorithm, a particular synchronization
step may involve synchronizing all processors in C using memory locations based on the
labels on the edges in C. A concrete example will be given in section 4.3 in the context of
the list ranking problem.

In the results presented in this chapter, we will assume that 2 < d < B(z) < p, where p
is the number of processors used by the program and 2 < z < p. Note that B(2) > d. The
model charges the same cost for all global reads (global writes, pairwise synchronization
steps) regardless of any physical proximity between the processor and the memory bank
accessed. We will also assume that synchronization steps, like global reads and writes, can
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be pipelined. In fact, we will assume that B(d) € ©(d). This assumption will be motivated
in section 4.2.4.

Although the cost measure for the Subset LPRAM is relatively complicated, many
algorithms are fairly easy to analyze. Consider, for example, the following algorithm for
computing the sum of n numbers.

Summation2 program:
[*
inputs: The n input numbers are stored in shared memory.
outputs: The summation of the n numbers is stored to shared memory.
description: This program computes the summation using a d-ary tree, where at each
level of the tree, each active processor reads d — 1 values, computes their sum, writes the
result, and then synchronizes with its siblings.
*/
for all processors in parallel do
for level := 1 to logn/logd do (
if left-most among your siblings at the current level of the d-ary tree (
read from shared memory the values of siblings 2,3,...,d;
sum the values of all d siblings;

write the sum to shared memory;

synchronize with your d siblings at the next level of the tree;

All processors that remain active perform the same amount of work. Each active pro-
cessor takes 3+ (2d+d—2)+(d—1)+d time to complete a phase. Thus k levels of the tree
are completed in k(5d+ B(d)) time, i.e. O(kd) time, since B(d) € ©(d). Therefore, the algo-
rithm runs in O(dlogn/logd) time using n processors on an EREW Subset LPRAM. The
processor bound can be improved by initially having each processor sum O(dlogn/logd)
inputs without synchronizing. With this modification, nlog d/(dlogn) processors suffice.

This chapter is organized as follows. In section 4.2, we present a post office gossip game
for studying the inherent synchronization complexity of coordinating processors using pair-
wise synchronization primitives. In section 4.3, we present new algorithms and simulation
results for the Asynchronous PRAM with subset synchronization.
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4.2 Post Office Gossip Problems

In this section, we study complexity questions involving the use of pairwise synchronization
operations to implement arbitrary synchronization patterns among processors. Upon com-
pletion of a pairwise synchronization between two processors, each processor knows that
the other has arrived at this particular synchronization point. A collection of pairwise syn-
chronization operations among the processors can be used to satisfy the synchronization
requirements of a particular point in a program. We view each processor that is ready for a
synchronization step as having a set of other processors with which it wishes to synchronize.
Denote such a set as the goal set for a processor. In the Subset LPRAM, synchronization
is among processors in a set S such that all processors in § have the same goal set 5. That
is, any two goal sets are either identical or disjoint. In this section, however, we will permit
goal sets to overlap in arbitrary ways. We will assume, though, that if the goal set for
processor ¢ contains j then the goal set for processor j contains :.

We can represent the goal sets as a graph G on p nodes. There is an edge between node
t and node j in G if processors i and j are in each other’s goal sets, i.e. they each need to
know that the other has arrived at the synchronization point. For example, if the objective
is to have all processors synchronize with each other, then G is a complete graph.

Two observations need to be made. First, we need not perform a pairwise synchroniza-
tion for each edge in G, since we can take advantage of transitivity. Consider, for example,
a complete graph on four nodes, w,z,y, and z. We can satisfy the goal sets represented by
this graph in two rounds. In round one, w synchronizes with z, and y with 2. In round two,
w synchronizes with y, and z with z. Node w does not need to explicitly synchronize with
node z, since it is easily seen that w already knows that z has arrived at the synchronization
point and z already knows that w has arrived. Second, we are permitted to synchronize
two nodes that are not connected by an edge in G. Thus it becomes an interesting question
to determine, for a given graph G, the “minimum” synchronization needed to satisfy the
graph, according to some reasonable cost measure. As we will see, the minimum depends
greatly not only on the cost measure but on the types of pairwise synchronization steps
permitted and the information about the graph available to each processor in advance.

In what follows, we introduce a model for studying the costs of satisfying the synchro-
nization requirements specified by a particular graph, and present results for this model.
Our cost function is designed to model the following (idealized) scenario.

¢ No global clock.

e Two-way (nonblocking) synchronization, in which processors synchronize in pairs via

the shared memory using “issue exchange” and “complete exchange” messages.
g g P & 3

e No charge for communication or computation.
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¢ No communication delay for synchronization messages.

¢ No reuse of a shared memory location.

We have chosen an idealized scenario in order to simplify the model and focus in on the
“synchronization” aspects of a solution. The basic operation is a synchronization among
two processors, called an exchange. We have divided the exchange operation into two
primitives, issue exchange and complete exchange, in order to permit each processor to
have multiple exchanges in progress at the same time. As we will see, this feature is
quite useful in the model. Moreover, instead of being concerned with distinguishing a
sender from a receiver (or a reader from a writer), we permit a symmetry between the
two processors in an exchange: both perform an issue exchange, then a complete exchange
to the same memory locations. To focus solely on the synchronization aspects, i.e. the
extent to which processors wait for each other, we do not charge for any communication or
computation. Finally, to simplify the model, we ignore issues of the communication delay
of a synchronization message or the safe reuse of memory locations. Later, in section 4.2.4,

we will consider the effect of communication delay.

4.2.1 The gossip model

Consider a game being played by p > 2 boys, numbered 0 to p— 1. A large number of post
office boxes that are numbered 0,1,2,3,... have been reserved at the local post office for
use in the game.

The boys communicate by exchanging letters in pairs using these P.O. boxes. There
are two actions: (a) mail a letter to a box and (b) request delivery from a box. Two boys
exchange letters as follows. Boy b; mails a letter /; to a box z, and later requests delivery
from box z. Meanwhile, boy by mails a letter [, to box z and later requests delivery from
box z. The result of this exchange is that letter /; is delivered to boy by and letter /; is
delivered to boy b;. Two boys exchanging letters are called partners.

The rules of the game are as follows.

1. Letters of any finite length are permitted.
2. A boy must mail a letter to a box before requesting delivery from that box.

3. Each box is either not used during the game or it is the target of a letter and a delivery
request by each of exactly two boys.

4. A boy who mails a letter can proceed to his next action without waiting for any action

by another boy.

5. A boy who makes a request for delivery can neither mail a letter nor request delivery

of another box until he receives his partner’s letter.

54



More formally, the boys are p finite state machines. A boy’s next action, including the
contents of any message sent and the box used, is a function of (a) his “inputs” (described
in the next section), and (b) the contents of all messages he has received.

The complexity measure for the game is based on a global clock, where the unit of time
is a “day”. The game takes place over a series of days. Each day, each boy who has not
finished his participation in the game is either waiting for a letter from a partner, mailing
a letter, or requesting delivery from a box. When a boy makes a request for delivery, there
are two cases. If the partner has mailed his letter on an earlier day, then the boy receives
his partner’s letter the same day that his request for delivery is made. Otherwise, the boy
receives his partner’s letter the day after the partner sends it.

A game is completed on the day that the final boy finishes his participation in the game.
The worst case time for a game is the maximum over all inputs of the number of days to
complete the game.

Although the complexity measure for the game is based on a global “day”, the boys in
the game do not have access to any global or local clocks. A boy never knows what day it
is.

A more restrictive version of the gossip game forces the boys to request delivery of a
box the next action after mailing a letter to the box. In this case, we will say that the game

is using blocking exchanges.

4.2.2 The exchange graph

Given the setup described above, the game is as follows.

Each boy has a secret. An instance of the game is defined by an exchange graph G
on p nodes. The nodes of G are numbered 0 to p — 1, and its edges are uniquely labeled
with nonnegative integer ids. Boy ¢ is assigned to node i.

The goal of the game is for each boy to learn the secret of each of his neighbors in G.

A particular gossip problem is defined by the local knowledge of the boys at the start
of the game, the set of permissible exchange graphs, and whether or not blocking exchanges
are required. Unless otherwise specified in the statement of the problem, each boy ¢ knows
the following at the start of the game, i.e. the following are “inputs” to finite state machine
i

o his secret,

e the id of each of the edges incident to his node, and

e the number of boys (which equals the number of nodes).

Depending on the type of exchange graphs permitted, there may be additional “default”
inputs to the boys. The exchange graph can either be undirected or directed. In the latter
case, another input to the boys is the direction of each of its edges.
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The boys’ algorithm for a gossip problem will reflect the set of exchange graphs permit-
ted. Unless otherwise specified in the statement of a particular game, the boys know no
other information about a particular problem instance.

An algorithm for a gossip problem is valid if, on any problem instance, no game rules
are violated and, at the completion of the game, each boy knows (at least) the secrets of all
his neighbors.

The difficulty of the game is that each boy must determine the order with which to mail
letters and request deliveries starting with only local information.

Our model differs from the gossip model in [EM89] and earlier work (e.g. [BS72]) in at
least three respects. First, the game is asynchronous, i.e. there is no global clock that can
be used to signal the end of a round. Second, we study arbitrary exchange graphs, whereas
earlier work studied only (a) exchanging all secrets and (b) broadcasting a single secret.

Third, we consider communication delay and pipelining in a variant of our model.

4.2.3 Upper and lower bounds for gossip problems

In this section, we present upper and lower bounds for gossip problems. We will examine
the effect of various restrictions on the local information of the boys at the start of the
game, the exchange graphs permitted, and the type of exchanges permitted. For simplicity
in describing the algorithms for gossip problems, we will assume that an exchange graph has
no self-loops. Since a boy can always test all his edges for self-loops in zero days, the results
presented in this section can easily be extended to the case where the exchange graph has
self-loops.

4.2.3.1 Preliminary results

Lemma 11 Any gossip problem (as defined in section 4.2.2) can be solved in 2[log p] days,

with blocking exchanges.

Consider the following algorithm for boy 0 to learn all the secrets.

Fan-in program:

[*

inputs: Let s; be the secret for boy i.

output: All secrets are collected into boy 0’s local variable “my_secrets”.
description: The secrets are collected using a binary tree of p leaves.

*/

for all boys i in parallel do (

(1) my.secrets := {s;}; /* secrets known by boy ¢ »/
(2) for j:=0to [logp] —1do {
3) if 1 is divisible by 2741 { /* left sibling */
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(4) mail to box i + 27; /* use the box of the right sibling */
(8) deliver box i + 27 returning siblings_secrets;
(6) my_secrets := mysecrets U siblings_secrets;
)
(7 else if i is divisible by 27 { /* right sibling */
(8) mail my_secrets to box i;
(9) deliver box i;

A symmetric, “fan-out” algorithm has all boys learn the secret(s) of boy 0. Both these
algorithms use (only) blocking exchanges.

Combining the fan-in and fan-out algorithms yields an algorithm in which all boys learn
all secrets in 4[log p] days. An improved algorithm, which we call the complete-exchange
algorithm, exchanges secrets using a butterfly graph of p rows and [log p] stages. (Figure
3.2 contains a butterfly graph on 32 nodes.) For simplicity, assume that p is a power of two.
Each stage of the butterfly consists of a set of p/2 complete 2-by-2 bipartite graphs. In the
complete-exchange algorithm, each 2-by-2 corresponds to an exchange between partners.
At each exchange, each boy sends all the secrets he knows to his partner. Consider two
boys, j and k, 7 < k. In round ¢ of the algorithm (stage ¢ of the butterfly), 1 < ¢ < log p,
these two boys are partners if £ = j + p/2'. By performing these stages of exchanges in
order, all boys can learn all secrets in 2[log p] days, and lemma 11 follows.

Theorem 8 Consider a set of k boys each of whom has a secret. Suppose each boy knows
the ids of all the others. Then all the boys in the set can each learn all the secrets in 2[log k|
days using blocking ezchanges. Moreover, 2[log k| days are required (even with nonblocking
exchanges) for one boy to learn the secrets of k boys, k boys to learn the secret of one boy,

or k boys each to learn the secrets of all k boys.

Proof. The upper bound uses the complete-exchange algorithm. For the lower bounds, it
takes two days (one for mailing, one for requesting delivery) to pass a secret from one boy
to another. Thus, even with nonblocking exchanges, the number of boys that know a secret

(or the number of secrets that are known by a boy) can at most double every two days.
a

Corollary 3 The gossip problem requires Q(log§) days in the worst case, where § is the

mazimum degree of a node in the ezchange graph.
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Lemma 12 Let 6, the mazimum degree of a node in the ezchange graph, be an input to the
boys. Then the gossip problem can be solved in O(min(é6,logp)) days.

Proof. If § > logp, use the complete-exchange algorithm. Otherwise, have each boy mail
his secret to box i for each incident edge i (a total of § letters are sent), and then request
delivery of those boxes. All letters will have been mailed by day §, thus all delivery requests
will have completed by day 25. Each box corresponding to an edge is used by exactly two
boys for two letters, so the algorithm is valid. O

Lemma 13 Consider a gossip problem where the boys do not have ids. This gossip problem

can be solved in O(6) days, where § is the mazimum degree of a node in G.

Proof. Asin the previous lemma, have each boy mail his secret to box ¢ for each incident
edge 7, and then request delivery of those boxes. 0O
In contrast, theorem 9 in the next section shows that if the boys are restricted to blocking

exchanges, Q(p) days are required even for a restricted set of exchange graphs.

4.2.3.2 Directed cycles

Theorem 9 Consider a gossip problem P where the boys do not have ids, only blocking
ezchanges are permitted, and an ezchange graph must be a collection of directed cycles,
i.e. each node in the graph has indegree one and outdegree one. Then P has a matching
upper and lower bound of 2p days.

Proof. The upper bound can be achieved (without deadlock) by having each boy first
perform an exchange for his edge with the smaller label. For example, a boy with secret s
and with edges labeled i and j, where i < j, (a) mails a letter containing s to box i, (b)
requests delivery of box 1, (¢) mails a letter containing s to box j, and then (d) requests
delivery of box j. In the worst case (a cycle of all the edges in increasing order), this
algorithm takes 2p days.

Now we turn to the lower bound. The first two actions of each boy are to mail a letter
to a box and then to request delivery of the box. In this anonymous game, we can assume
without loss of generality that all boys have the same function f for deciding what box to
use first. This function can depend only on e; and e,, where e; is the incoming edge and
€, is the outgoing edge, and its output must be either a function g(e;) or a function A(e,).
The latter is true since a boy b can never be his own partner, i.e. he must wait for another
boy to mail a letter to the same box, and no other boy may have the same pair of adjacent
edges or any other fact in common with b. In other words, a boy’s first exchange must be
either with his predecessor (using a box g(e;)) or with his successor (using a box h(e,)),
since he can not locate any other boy. Furthermore, since adjacent boys must use the same

box to communicate, we can assume w.l.o.g. that g(e;) = e; and h(e,) = e,.
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Suppose f(a,b) = a and f(b,a) = b. Then if the two edges a and b form a two-cycle in
the exchange graph, the two boys in the cycle will deadlock, since each will be stuck waiting
for each other at different boxes. By symmetry, f(a,b) = b and f(b,a) = a also results in
deadlock. Thus for each pair a and b, either f(e,b) = f(b,a) = a or f(a,b) = f(b,a) = b.

Consider a graph A based on f where the edge ids are the nodes and there is a directed
edge from node a to node b if f(a,b) = a. The above argument shows that A is a tournament.
Furthermore, A must be acyclic, since any cycle in A leads to a deadlock when the exchange
graph contains a cycle of those same edges. It is easy to see by induction that an acyclic
tournament must be a totally ordered chain of nodes.

Given any fixed f corresponding to a totally ordered chain, consider the case where the
exchange graph is a single cycle of its edges in order of the chain. Then only one exchange
can complete on the first two days, and the exchanges will complete, in order, at a rate of

one per every two days. Thus the gossip problem requires 2p days. O

Lemma 14 Consider a gossip problem where an ezchange graph must be a collection of
directed cycles, only blocking ezchanges are permitted, and the edge ids are numbered 0 to

p— 1. Then this gossip problem can be done in O(1) days.

Proof. (Shamir [Sha89]) The cycle sharing algorithm below runs in 12 days using blocking
exchanges. O

The successor id of an arc is the id of the boy into whom the arc is directed. The
predecessor id of an arc is the id of the boy out of whom the arc is directed. Consider a
directed graph where incoming arcs to a node are numbered with consecutive nonnegative
integers starting with 0. Then the (successor) sibling number of an arc is ¢ if the arc is

number ¢ among those arcs directed into the same node.

Remark. With exchange graphs of indegree one, the following are equivalent, i.e. any gossip
problem under one scenario can be solved under the other scenario in the same number of
days.

o The edge ids are numbered 0 to p — 1, not necessarily corresponding to the ids of the
boys at either endpoint of an edge.

o Fach boy knows the ids of his successors in the exchange graph.

If the first is given, each boy can assume the id of his incoming arc. If the second is given,
each arc can be assumed to be labeled with its successor id. This remark also holds for
graphs of outdegree one, and for directed trees. In the latter case, there are only p — 1
edges. The equivalence holds if the root of the tree can determine the unused edge label,
e.g. if the edges are numbered 0 to p — 2, the root takes label p - 1.
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Cycle Sharing algorithm:

Label each boy by the id of his incoming edge (thus the boys are labeled from 0 to p — 1).
Two boys ¢+ and j (by this new labeling) are “brothers” in this algorithm if and only if
i = j mod (p/2). A boy with label less than p/2 is “low”, otherwise he is “high”. Note that
brothers will typically not be adjacent in the graph. There are four steps to the algorithm.

1. Each boy exchanges his secret and the id of his outgoing edge with his brother.

2. Each high boy h sends his secret to box h + p and then requests delivery of this box.

In the meantime, each low boy sends up to two letters as follows. (a) If his outgoing
edge 1 is at least p/2, then he sends his secret to box 7+ p and then requests delivery
of this box. (b) If his brother’s outgoing edge j is at least p/2, then he sends his
brother’s secret to box j + p and then requests delivery of this box.

In this way, the boys have completed exchanges for all edges with ids at least p/2,
i.e. into high boys.

3. Each low boy [ sends his secret to box [ + p and then requests delivery of this box.

In the meantime, each high boy sends up to two letters. (a) If his outgoing edge i is
less than p/2, then he sends his secret to box i + p and then requests delivery of this
box. (b) If his brother’s outgoing edge ; is less than p/2, then he sends his brother’s
secret to box j + p and then requests delivery of this box.

In this way, the boys have completed exchanges for all edges with ids less than p/2,

i.e. into low boys.

4. At this point, a boy may have the secret needed by his brother. If a boy received a
secret on behalf of his brother (step 2b or 3b), then he sends this secret to his brother,

using an exchange with his brother.

o
For clarity, and to help justify the correctness claims, we next give a pseudo-code pro-
gram for this gossip problem.

Cycle Sharing program:
[*

inputs: Let “my_secret”, “myname”, and “my.successor” be local variables for each boy
containing the boy’s secret, incoming edge id, and outgoing edge id, respectively.

outputs: At the end of the algorithm, the local variables “predecessors_secret” and “suc-
cessors.secret” for each boy will contain the boy’s predecessor’s secret and successor’s secret,

respectively.
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description: This program implements the cycle sharing algorithm described above. The
numbers beside program statements correspond to steps in the description of the algorithm.
*/
for all boys in parallel do (
case my-name < p/2 ( /* low boy */
brothers_name := my_name+p/2;
for_brother := empty_msg;
(1) mail my.secret, my_successor to box my.name;
deliver box myname returning brothers_secret, brothers_successor;
(22) if my_successor > p/2 (
mail my_secret to box my_successor+p;
deliver box my_successor+p returning successors_secret;
)
(2b) if brothers_successor > p/2 (
mail brothers_secret to box brothers_successor+p;
deliver box brothers_successor+p returning brothers_successors_secret;
for_brother := brothers_successors_secret;
)
(3) mail my_secret to box my_name+p;
deliver box my name+p returning predecessors_secret;
(4) mail for_brother to box brothers.name;
deliver box brothers.name returning from_brother;
if my_successor > p/2

successors_secret := from_brother;

case my_name > pf2 ( /* high boy */
brothers_name := my_name—p/2;
for_brother := empty_msg;
(1) mail my secret, my_successor to box brothers_name;
deliver box brothers.name returning brothers_secret, brothers_successor;
(2) mail my._secret to box 1ny_name+p;
deliver box my.name+p returning predecessors_secret;
(3a) if my_successor < p/2 {
mail my_secret to box my.successor+p;
deliver box my_successor+p returning successors-secret;

)

(3b) if brothers_successor < p/2 (
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mail brothers_secret to box brothers_successor+p;
deliver box brothers_successor+p returning brothers_successors_secret;

for_brother := brothers_successors_secret;

)

(4) mail for_brother to box my_name;
deliver box my_name returning from_brother;
if my_successor > p/2

successors_secret := from_brother;

The proof of correctness is left to the interested reader. The analysis of the cycle sharing
algorithm is as follows. All boys complete step 1 on day two. A low boy completes step 2a
on day four and step 2b on day six in the worst case. Thus a high boy completes step 2
on day six in the worst case. A high boy completes step 3a on day eight and step 3b on
day ten in the worst case. Thus a low boy completes step 3 on day ten in the worst case.
All boys complete step 4 on day twelve in the worst case. Thus the cycle sharing algorithm
runs in 12 days as claimed.

4.2.3.3 Directed trees

Lemma 14 can be generalized as follows.

Theorem 10 Consider a gossip problem where an exchange graph must be a tree directed
towards its leaves, only blocking exchanges are permitted, and the edge ids are numbered 0
to p — 2. Then this gossip problem can be done in O(log§) days, where § is the mazimum
outdegree of a node in the ezchange graph. Likewise, the gossip problem corresponding to

the symmetric case of a tree directed towards its root can be done in O(log ) days.

Proof. The tree sharing algorithm below solves the problem for trees directed towards
their leaves in 20 + 6logd days. A symmetric algorithm solves the case where the tree is
directed towards its root. These results match the 2(log §) lower bound (corollary 3). O

Tree Sharing algorithm:

Label the boy at the root of the tree p—1, and label each other boy by the id of his incoming
edge (thus the boys are labeled from 0 to p — 1). Two boys i and j (by this new labeling)
are “brothers” if and only if ¢ = j mod (p/2). A boy with label less than p/2 is “low”,
otherwise he is “high”. In the first half of the algorithm, we will broadcast a boy’s secret
to all his successors. Figure 4.1 gives an example and shows the intermediate steps of this
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boy 0" _|__{10] 0.0 — — [ — [ {4 [{0]
boy “1” {} {4 =t {1}

boy “2” {1} 1}5:{} — — | — | {26} | {2}
boy “3” | {8,9,12,14} || {8,9,12,14},{} S {3}

boy “4” i} {},{11,13} == =" — | = | {4}
boy “5” {7} {h{} — — | {5}

boy & | {) 0.0 =T = ==
by | 0| 0.0 = — T ]
boy “8” {} {}?{} {819!12314} {819} {8}

boy " | 12.6) 2650 — [ — [®

boy “10” {} {}.{1} {10}

boy “11” {} {3,{} {11,13} {11}

boy “12” | {0,4,11,13} {0,4},{} — {12,14} | {12}

boy “13" | {5} {(5}.{7} — {13}

boy “14” {]- {},{} 1 e {14}

boy “15” {3} {3},{} (root)

Figure 4.1: Applying the tree sharing algorithm to an example exchange graph. The in-
termediate steps of the tree sharing algorithm are shown for an example where p = 16 and
6 = 4. Only the first half of the algorithm is shown, in which each boy broadcasts his secret
to all his successors (the secrets are not shown). The first column contains the boys listed
according to their labels. The first eight boys are low, the second eight are high. The second
column is the original list of outgoing edges for each boy. The third column contains, for
each low boy, the outgoing high edges for the boy and his brother, and for each high boy, the
outgoing low edges for the boy and his brother. Columns 4-6 show the steps in distributing
each high edge A to (high) boy h. Columns 5-8 show the steps in distributing each low edge
[ to (low) boy I. Low edges are sent from a high boy to a low boy as soon as the high boy
has finished its distribution of high edges.

first half of the algorithm. In the second half, we will return to the boy the secrets of all
his successors.

1. Each low (high) boy sends his secret and the ids of his outgoing low (high) edges to
his high (low) brother.

2. Each high boy h (except the root boy) sends an empty message to box h + p and then
requests delivery of this box. This box will contain his predecessor’s secret and a set

S of one or more high edges that share the same predecessor (h € 5).

In the meantime, each low boy sends up to 2 letters. (a) If he has at least one outgoing
high edge, he sends his secret and the ids of his outgoing high edges to box i+ p, where
i is, say, the smallest of the outgoing high edges, and then he requests delivery of this
box (receiving an empty message). (b) If his brother has at least one outgoing high
edge, he sends his brother’s secret and the ids of his brother’s outgoing high edges
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to box 7 + p, where j is, say, the smallest of the outgoing high edges, and then he

requests delivery of this box (receiving an empty message).

. Each high boy continues for up to logd rounds as follows. If the set S received by
a high boy A contains more than one member, send his predecessor’s secret and half
of the set § (say, the larger half) to box i + p, where i is the smallest member of §
that was sent. Then, request delivery of this box and repeat this step until but one

member of § remains, namely h.

In this way, each high boy receives his predecessor’s secret.
. Step 2 is repeated with the roles of the high and the low boys reversed.

. Step 3 is repeated with the roles of the high and the low boys reversed.

In this way, each low boy receives his predecessor’s secret.

. In the second half of the algorithm, each boy will receive all his successor’s secrets.

We first unwind step 3. Consider a high boy h (not the root boy) and let A; + p, ko +
D,...,hr + p be the boxes he used in step 3, where k is the number of rounds he
sent messages in step 3. If k£ = 0, i.e. the boy received a set § of size 1, then boy
h sends his secret to box A + 2p and then requests delivery of this box. Else boy h
does the following for k¥ rounds. In round i, boy h sends an empty message to box
h; + 2p, requests delivery of this box, and adds the set of secrets received to those
secrets received in earlier rounds. At the end of k rounds, boy A sends all the secrets

he has received to box h 4+ 2p and then requests delivery of this box.

. To unwind step 2, each low boy receives up to 2 messages as follows. (a) If he has
at least one outgoing high edge, he sends an empty message to box i + 2p, where 1
is the smallest of the outgoing high edges, and then he requests delivery of this box
(receiving the set of secrets for his high successors). (b) If his brother has at least one
outgoing high edge, he sends an empty message to box j + 2p, where j is the smallest
of the outgoing high edges, and then he requests delivery of this box (receiving the

set of secrets for his brother’s high successors).

. Step 6 is repeated with the roles of the high and the low boys reversed, in order to

unwind step 5.

. Step 7 is repeated with the roles of the high and the low boys reversed, in order to

unwind step 4.

In this way, each high boy receives the set of secrets for his low successors and his

brother’s low successors.
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10. At this point, a boy may have secrets needed by his brother. If a boy received secrets
on behalf of his brother (step 7b or 9b), then he sends these secrets to his brother,
using an exchange with his brother.

o

The worst case analysis of the tree sharing algorithm is as follows. All boys complete
step 1 on day two. A low boy completes step 2a on day four and step 2b on day six (in the
worst case). If a high boy receives a set S of § members in step 2, then he performs log é
rounds in step 3, completing the first on day eight and the last on day 6 + 2logé. A high
boy (in this worst case) completes step 4b on day 10 + 2logé and begins the second half
of the algorithm. Meanwhile, if a low boy receives a set S of § members in step 4, then he
performs log § rounds in step 5, completing the first on day 12 + 2log § and the last on day
10 + 4 log 4.

Unwinding step 3 takes 2log § days. Thus both the high boys and the low boys complete
step 7 on day 14 + 4log§. Then unwinding step 5 takes 2log § days, so all boys complete
step 9 on day 18 + 6log 6. Step 10 takes two days. Thus the tree sharing algorithm runs in
20 + 6logé days as claimed.

The tree sharing algorithm can be further generalized as follows.

Corollary 4 Consider a gossip problem where an exchange graph must be a directed graph
of mazimum indegree (or outdegree) one, only blocking ezchanges are permitted, and the
edge ids are numbered (0 to m — 1, where each boy knows the number of edges m. Then
this gossip problem can be done in O(logé) days, where § is the mazimum outdegree (or
indegree) of a node in the exchange graph.

Proof. The problem in extending the tree sharing algorithm to this gossip problem is that
we need a way to divide the boys into two groups, low and high, such that (a) a predecessor
knows whether his successor is low or high and (b) low boys can be paired with high boys
as brothers. In the tree sharing algorithm, we used the id of the incoming edge as the label
of a boy and p — 1 as the label of the root boy. If there is more than one boy of indegree
zero, however, this simple technique no longer works.

The solution in the case where the number of edges is known by the boys, is as follows.
Consider the set of m boys of indegree one and label each one by the id of its incoming
edge. Let the boys labeled less than m/2 be low, the rest high. (If m is odd, it poses no
problems to the algorithm to have two low boys share a high brother.) Root boys fall into a
third category., A root boy does not need the help of a brother since it has only successors.

The algorithm proceeds as in the tree sharing algorithm, except that a root boy does
not participate in any exchange between brothers and a root boy may send his secret in
both steps 2 and 4. To elaborate, in step 2 (step 4), if a root boy has at least one outgoing
high (low) edge, he sends his secret and the ids of his outgoing high (low) edges to box
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i+ p, where 1 is the smallest of the outgoing high (low) edges, and then he requests delivery
of this box. Likewise, in the second half of the algorithm, a root boy may receive a set of
secrets in both steps 7and 9. O

Corollary 5 Consider a gossip problem where an ezchange graph must be a directed graph
of mazimum indegree (or outdegree) one, only blocking exchanges are permitted, and each
arc is labeled with its successor (or predecessor) id. Then this gossip problem can be done
in O(log §) days, where § is the mazimum outdegree (or indegree) of a node in the ezchange

graph.

If each arc is labeled with its successor id, then we can divide the boys into high and low
by their ids and each predecessor will know whether his successor is low or high.

4.2.3.4 General graphs

Theorem 11 Consider a gossip problem where an exchange graph is a fized directed graph
and only blocking ezchanges are permitted. Then this gossip problem can be done in O(min(§,

log p)) days, where § is the mazimum indegree or outdegree of a node in the ezchange graph.

Proof. In this off-line problem, the exchange graph is known in advance, but not the
secrets. If 6 > log p, use the complete-exchange algorithm. Otherwise, decompose G into §
subgraphs, not necessarily edge disjoint, whose union is G such that each of the subgraphs
is indegree and outdegree one. Each of these graphs can be edge colored with three colors,
and hence solved in 6 days using blocking exchanges (two days per color). O

Theorem 12 Consider a gossip problem where an ezchange graph is a directed graph, only
blocking ezchanges are permitted, and each arc is labeled with the pair (b, s), where b is its
successor id and s is its sibling number. Then this gossip problem can be done in O(6;1og §,)

days, where 6; (6,) is the mazimum indegree (outdegree) of a node in the ezchange graph.

Proof. The algorithm consists of §; rounds. At round i, consider the subgraph G; induced
by all arcs with sibling number i. Each G; is a directed graph of maximum indegree one.
Thus, by corollary 5, each round can be performed in O(log §,) days. Note that each round
needs to use its own set of boxes, but this can be accomplished by using box numbers that
are offset an amount based on the round number. O

By symmetry, the lemma holds when the roles of the indegree and outdegree are reversed.
In either case, for graphs of high degree, the complete-exchange algorithm (lemma 11), which
solves this problem in C(logp), can be used instead.
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4.2.4 Adding communication delay to the gossip model

In the post office gossip model, a boy can send his secret to another boy in two days. Now
consider the case where a letter takes d days to reach the post office once mailed and 2d
days to be delivered once requested. If each boy can have at most one letter or delivery
request in transit to the post office at a time, we simply multiply the results of the previous
section by d to get results for this new model. If, however, each boy can have multiple letters
and delivery requests in transit on the same day, then these new results can be improved
upon. We refer to this latter post office gossip model as the pipelined gossip model.
These modifications are intended to capture the communication delay and pipelining of the
Asynchronous PRAM model. Note that, in order to pipeline, pairwise exchanges must be
nonblocking.

The pipelined gossip model will be used in section 4.3 to prove results about the Subset
LPRAM. In what follows, we first present two lemmas concerning the complete exchange
of secrets among a set of boys in the pipelined gossip model. Then we present two results
on solving pipelined gossip problems on arbitrary graphs.

Lemma 15 Consider a set of k boys, 2 < k < d, each of whom has a secret. Suppose each
boy knows the ids of all the others. Then all the boys in the set can each learn the secrets
of all k boys in the pipelined gossip model in ©(d) days.

Proof. Consider the boys to be numbered 0 to £ — 1. Each boy ¢ sends his secret to box
i+ kj, for 0 < j £ k-1, 7 # i Each boy i then requests delivery of box ki + j, for
0<j<k-1,j# i This completes in O(d) days since both the sends and the delivery
requests can be pipelined.

A lower bound of 2d follows from the fact that it takes 2d days to pass a secret from
one boy to another. O

This result motivates our assumption in this chapter that B(d) € ©(d) in the Subset
LPRAM.

Lemma 18 Consider a set of k boys, k > d, each of whom has a secret. Suppose each boy
knows the ids of all the others. Then all the boys in the set can each learn the secrets of all
k boys in the pipelined gossip model in ©(dlogk/logd) days.

Proof. We use a variant of the complete-exchange algorithm (described in section 4.2.3) in
which the exchanges are performed according to a butterfly graph of base d. For simplicity,
assume that k is a power of d. Each stage of the base d butterfly consists of a set of p/d
complete d-by-d bipartite graphs. For each of the log k/log d stages, each d-by-d corresponds
to a complete exchange between a set of d boys. By the previous lemma, this can be done
in O(d) days, so all boys can learn all secrets in O(dlogk/logd) days.
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For the lower bound, consider the problem of £ boys learning the secret of one boy.
Initially one boy, 7, knows the secret. After 2d — 1 days, boy i will have mailed at most
2d—1 letters and no other boy will have received the secret yet, and hence no other boys will
have mailed a letter containing the secret yet. Assume that all letters in transit magically
arrive the next day (this can only help the algorithm). Then there are 2d boys with the
secret and no letters with the secret in transit. After 4d — 1 days, at most 2d boys will have
mailed a letter containing the secret, to a total of at most 2d(2d — 1) boys. Assume that all .
letters in transit magically arrive the next day. Then there are at most 4d? boys with the
secret and no letters with the secret in transit. In general, after #(2d) — 1 days, there are
at most (2d)* boys with the secret. Thus, in order for k¥ boys to know the secret, we need
(2d)t > k, i.e. t > log k/log(2d). Therefore Q(dlogk/log d) days are required. O

Corollary 6 The gossip problem requires Q(dlogé/logd) days in the worst case, where §

is the mazimum degree of a node in the exchange graph.

Lemma 17 Let §, the mazimum degree of a node in the ezchange graph, be an input to the
boys. Then the gossip problem can be solved in O(min(d + 6, dlogp/logd)) days.

Proof. If § > dlogp/logd, apply the approach used in lemma 16. Otherwise, have each
boy mail his secret to box 1 for each incident edge i, and then request delivery of those
boxes. All letters will have been mailed by day §, reached their boxes by day § + d, and
delivered by day & + 2d (using pipelining). Each box corresponding to an edge is used by
exactly two boys for two letters, so the algorithm is valid. o

4.3 Algorithms and Simulation Results

In this section, we present new algorithms and simulation results for the Subset LPRAM.

4.3.1 Subset LPRAM vs. Phase LPRAM

We begin with a comparison between the Subset LPRAM and the Phase PRAM or Phase
LPRAM.

Theorem 13 An EREW (CREW, CRCW) Subset LPRAM algorithm running in time ¢
using p processors can be simulated by an EREW (CREW, CRCW) Phase PRAM or Phase
LPRAM running in O(tB(p)/B(2)) time with pB(2)/B(p) processors.

Proof. Let ¢ = pB(2)/B(p). We assume that B(p) € O(B(g)). Each Phase LPRAM
processor simulates B(p)/B(2) Subset LPRAM processors as follows. Consider slices of the
Subset LPRAM computation of B(2) time steps each slice. Each processor can participate
in at most one synchronization step during a slice. For 1 < i < t/B(2), let C(, j) be the set
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of instructions issued by processor j in slice 1 prior to its synchronization step (if any). Let
D(3,7) be the set of instructions issued by processor j in slice  after its synchronization step
(if any). To simulate slice %, each Phase LPRAM processor first performs all the instructions
in C(i,k), where k is one of its B(p)/B(2) simulated processors, then synchronizes with all
the other processors. Second, it performs all the instructions in D(%, k), where k is one of
its B(p)/B(2) simulated processors, and continues to the next slice.

For each slice, the first half of the simulation can be done in O(d + B(2)(B(p)/B(2)) +
B(q)) time and the second half can be done in O(d + B(2)(B(p)/B(2))) time. Thus each
slice takes time z, z € O(d + B(p) + B(q)) € O(B(p)). Since there are t/B(2) slices, the
total time is O(tB(p)/B(2)). O

Corollary 7T An EREW (CREW, CRCW) Subset LPRAM algorithm running in time t
using p processors can be simulated by an EREW (CREW, CRCW) Phase PRAM or Phase
LPRAM running in O(tlogp/logd) time, with plogd/logp processors.

Proof. This follows since B(2) € Q(d) and B(p) € O(dlogp/logd) by lemmas 15 and 16.
a

4.3.2 Algorithms for important primitive operations

In this section, we present Subset LPRAM algorithms for many of the important primitive
operations discussed in chapter 3. We will refer to the following lower bound.

Lemma 18 Let f be an n input, m output associative function such that at least one of the
outputs of f depends on all the inputs. Then Q(dlogn/logd) time is required for a CRCW
Subset LPRAM to compute f, regardless of the number of processors.

Proof. By an argument similar to that used in theorem 2, Q(dlogn/logd) time is needed
to fanin the n inputs to an output that depends on all the inputs. O

The algorithms presented here are based on the Phase LPRAM algorithms for these
problems. Many of the Phase LPRAM algorithms presented in chapter 3 consist of a
series of stages in which each processor performs O(B) steps, separated by synchronization
barriers. The barrier synchronization in these Phase LPRAM algorithms can safely be
replaced in the Subset LPRAM by synchronization steps involving disjoint subsets of size
f(B) < p. For example, in the O(Blog n/log B) time, nlog B/B processor Phase LPRAM
algorithm for the FFT problem, subsets are size f(B) = B/log B. The set size f(B) in the
Phase LPRAM algorithms is selected to ensure that each processor performs O(B) steps
each stage. In designing Subset LPRAM algorithms for these problems, we aim to have
each processor perform O(d) steps per stage and synchronize in sets of size f(d) < d. An
example is the summation algorithm for the Subset LPRAM presented in section 4.1, in
which we use a d-ary tree and synchronize in sets of size d. In contrast, the summation
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algorithm for the Phase LPRAM in section 3.2 uses a B-ary tree and synchronizes in sets of
size p. By lemma 18, each of these problems has a matching Q(dlog n/log d) lower bound.

o The prefix problem can be solved in O(dlogn/logd) time on an EREW Subset
LPRAM with nlogd/dlogn processors.

o The FFT and bitonic merge problems can be solved in O(dlogn/logd) time on an
EREW Subset LPRAM with n processors.

e Matrix multiplication can be solved in O(dlogn/logd) time on an EREW Subset
LPRAM with n® processors.

We omit any further details.

Now consider the list ranking problem. In the list ranking problem, we assume the head
and tail of the list are marked. During the course of the algorithm, the processors perform
a series of pointer jumping steps. To avoid concurrent reading of the tail element, we keep
track of which elements currently point to the tail element so that we do not pointer jump
to the tail element. We use one processor per element. For each of logn rounds, each
processor performs a pointer jumping step for its element. This takes O(d) time. Then
each processor synchronizes with its new successor. We can view each round as separated
by a synchronization point whose exchange graph has outdegree and indegree at most one.
Thus by corollary 5, this synchronization can be accomplished in O(1) gossip game days.

In applying gossip game results to the Subset LPRAM, we must first ensure that the
synchronization can be done within the rules of the more restrictive Subset LPRAM model
(see the discussion at the beginning of section 4.2). In this case, there is no problem since
corollary 5 is a result for blocking exchanges. Thus each day consists of a collection of
synchronizations among sets of size two. Second, in the Subset LPRAM, we must account
for communication and computation costs not reflected in the gossip game results. For the
gossip game algorithm used to prove corollary 5, each gossip game day takes at most 24
time on the Subset LPRAM. Therefore, we have the following result.

Lemma 19 The list ranking problem can be solved in O(dlogn) time on an EREW Subset
LPRAM uith n processors.

It is interesting to note that if the Subset LPRAM model were modified to permit the
less restrictive synchronization steps of the gossip model, then the list ranking problem can
be solved in O(dlogn) time with only n/d processors. The algorithm is as follows. Each
processor is responsible for d elements in the list. For each of logn rounds, each processor
performs a pointer jumping step for each of its elements. This takes O(d) time, since the
global accesses can be pipelined. Then each processor synchronizes with d others, where the

set of d is data dependent. The exchange graph at each synchronization point has maximum
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indegree and outdegree d. By lemma 17, this synchronization can be accomplished in this
less restrictive model in O(d) time. Thus the total time is O(dlogn) as claimed. Similarly,
the FFT and bitonic merge problems can be solved using fewer processors in this less
restrictive model. Both problems can be solved in O(dlogn/logd) time, with the FFT
problem using nlogd/d processors and the bitonic merge problem using n/d processors.
We give a very brief sketch of the algorithms used. As in the Phase LPRAM algorithms
for these problems described in section 3.3, each processor is assigned multiple nodes in a
stage. For each stage, each processor synchronizes with the d processors from the previous
stage, reads in the values from shared memory, computes the outputs, and then writes the
outputs to shared memory. Since the exchange graph at each synchronization point has
maximum indegree and outdegree d, each processor can complete its synchronization for a
stage in O(d) time (lemma 17). Thus each stage can be performed in O(d) time, so the
total time for the two problems is O(dlogn/logd) as claimed.

4.3.3 Comparisons with synchronous models

In this section, we compare the Subset LPRAM to existing synchronous models of parallel

computation. We will use the following lower bound.

Lemma 20 Consider the problem of determining which node in a linked list of n elements
ts the head of the list. This problem requires Q(dlogpg/logd) time on a CRCW Subset
LPRAM, where py = nlogd/dlogpy is the number of processors needed to achieve this
time.

Proof. The argument presented in section 2.1 shows that a synchronization step among
all the processors is required. Thus the Subset LPRAM requires Q(n/p+ dlog p/log d) time
to solve this problem with p processors. The time is minimized when p = n/(dlogp/log d).
a

Note that more processors can be available, but only py processors should be used to
achieve the given time bound.

The following results follow directly from the simulation results presented in chapter 3.
Definitions of the models are given in that chapter. The upper bounds presented below are
trivially true since the Subset LPRAM can simulate the Phase LPRAM with no loss (in the
results below, we have replaced B(po) by dlogpo/logd in accordance with lemma 16). The
lower bounds follow from lemma 20. In many cases, the lower bound matches the upper
bound. This list of results is presented here for completeness.

e An EREW (CREW, common-CRCW) PRAM algorithm running in time t using p
processors can be simulated by an EREW (CREW, CRCW) Subset LPRAM running
in ©(tdlogpg/logd) time with py = plogd/(dlogpy) processors.
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¢ A BPRAM algorithm running in time ¢ using p processors can be simulated by an
EREW Subset LPRAM running in O(tlogpo/logd) time with po = plogd/log po

Processors.

¢ An arbitrary-BPRAM algorithm running in time ¢ using p processors can be simulated
by an EREW Subset LPRAM running in O(t log po/log d) time with py = plogd/log pg

Processors.

e An EREW (CREW, CRCW) Subset LPRAM algorithm running in time ¢ using p
processors can be simulated by an EREW (CREW, CRCW) synchronous-LPRAM
running in ¢ time with p processors.

¢ An EREW (CREW, CRCW) synchronous-LPRAM algorithm running in time ¢ using
p processors can be simulated by an EREW (CREW, CRCW) Subset LPRAM running
in O(tlog po/log a) time with py = aplog d/log py processors, for 1 < a < d.

We conclude this section with a simulation of bounded fanin circuits by the Subset
LPRAM. The arc-width of a circuit is the maximum, over all levels 7, of the number of
arcs from a node of level < ¢ to a node of level > i. Corresponding to theorem 5 for the
Phase LPRAM, we have the following theorem.

Theorem 14 Any function computable by a log-space uniform circuit family of bounded-
fanin arithmetic circuits of depth D(n) > logn, mazimum arc-width W(n), and polynomial
size can be computed by a log-space uniform EREW Subset LPRAM family running in
O(d D(n)/logd) time with d W(n) processors.

Proof. The only synchronization inherent in a circuit is along arcs in the circuit. The
simulation outlined in the proof of theorem 5 can be adapted to the Subset LPRAM as
follows. We consider slices in the circuit of log d levels and output the instructions for one
slice at a time. We assign one processor per node in the slice. At each slice ¢, each “node”
processor (a) reads from global memory the values of its up to d frontier nodes, (b) mimics
the circuit in order to compute its output value, and then (c) writes d copies of the value
to the shared memory for each arc that is outgoing to a node in a different slice.

The necessary synchronization is accomplished as follows. We assign d “arc” processors
to each outgoing arc for the slice. A node processor has zero, one, or two outgoing “inter-
slice” arcs. For each outgoing inter-slice arc, the node processor synchronizes with the d
arc processors for the arc. This results in there being a unique arc processor for each copy
of a value that will be needed in slice i + 1. At slice i 4+ 1, each node processor for the slice
synchronizes with the up to d “arc” processors corresponding to the values of its frontier
nodes (one arc processor per value),

Note that an arc may be both an incoming and an outgoing inter-slice arc for a slice.
In this case, the d processors for the arc are idle this slice and remain assigned to the arc
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in the next slice. The synchronization for a slice can be done in O(d) time. Thus each slice
can be done in O(d) time. We use O(d W{(n)) processors at a time, so the theorem follows.
a

73






Chapter 5

Semi-Synchronous Programming

and Hardware Support

5.1 Introduction

In previous chapters, we defined the Asynchronous PRAM model of computation and stud-
ied various questions in complexity theory on this and related models. Each model stud-
ied, although an asynchronous model, has the property that programs in the model are
repeatable. This property is sometimes called determinacy [KM69]. Certainly less restric-
tive models are possible and are beginning to be studied in some detail (e.g. the APRAM
[CZ89]). However, we argue in what follows that this “structured” asynchrony is useful in
many application domains and may be practical as a basis for an effective programming
model.

In this chapter, we broaden our study of asynchronous parallel computation from the
strictly theoretical to the more practical issues of programming models and hardware. In
section 5.2, we introduce the notion of a “semi-synchronous” programming model, a hybrid
of existing synchronous and asynchronous programming models. This model is based on
enforcing “structured” asynchrony, so that programs are repeatable.

In section 5.3, we present a new method for supporting fast synchronization barriers
in hardware. In order to effectively support a semi-synchronous model such as the Asyn-
chronous PRAM, the target multiprocessor must provide support for fast implementation
of the synchronization steps defined in the model. For the case of an Asynchronous PRAM
with all-processor synchronization, it is essential that a barrier synchronization primitive
require minimal run time overhead. This new method minimizes the synchronization over-
head for certain common classes of MIMD machines.

In section 5.4, we discuss a method for supporting pairwise synchronization in hardware
that minimizes the overhead. This permits an Asynchronous PRAM with subset synchro-
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nization to be supported efficiently in hardware.
Together, we believe these results validate the Asynchronous PRAM as a practical
model:

e it supports an effective programming model for many application domains,
e it serves as a good basis for studying algorithms and complexity issues, and
e it can be implemented efficiently in hardware.

These claims will be discussed in detail in chapter 6.

5.2 Semi-Synchronous Parallel Programming

A programming model defines the view of the computer presented to the applications
programmer. The purpose of a parallel programming model (language, environment) is to
provide a framework and tools for expressing parallelism in programs. In some cases, the
parallelism is transparent to the programmer: programs are written in a sequential language
such as Fortran and then “vectorized” or “parallelized” using a sophisticated compiler that
produces code for parallel machines (e.g. [AK85][PW86][AJ88][BCF+88]). In other cases,
the programmer is provided with an explicit framework (however modest) in which to think
about problem solutions exploiting parallelism, and tools for telling the parallel computer
what to do (e.g. [Sny84][ACG86][Ble87][AS88][CMB8S|[LSF88]).

In an often-cited paper, A. Karp [Kar87] commented on the “sorry state” of parallel
programming, lamenting the difficulties in programming and debugging parallel programs on
existing programming models. Indeed, a variety of programming models have been proposed
with not entirely satisfactory results. In this section, we introduce a new programming

model for large scale parallel shared memory machines.

5.2.1 Asynchrony and programming models

As discussed in section 1.2.4, writing, debugging, analyzing, and testing programs for asyn-
chronous machines can be very difficult due to (1) the subtleties of dealing with nondeter-
ministic orderings among the communication events during program execution and (2) the
lack of simple, global states in programs written in these models. Most existing program-
ming models for MIMD machines (e.g. the EPEX programming model [DRGNP86]) provide
little help in overcoming these difficulties. We refer to these models as fully asynchronous
programming models.

In contrast, synchronous programming models, in which the processors are pre-

sented as executing in lock-step, are much easier to program, debug, and analyze than
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fully asynchronous models. From the programmer’s viewpoint, a program reaches a deter-
ministic global state at each step, i.e. each processor executes its instruction i before any
processor proceeds to it instruction ¢ + 1. Debugging is simplified since program execution
is repeatable: any bug can be recreated by rerunning the program.

However, as discussed in section 1.2.4, machines that permit the processors to run asyn-
chronously have a definite performance advantage over those that restrict the processors to
lock-step execution. (The sole exception may be in application domains that lend them-
selves naturally to programs with frequent interprocessor communication at regular time
intervals between neighboring processors, as in systolic algorithms [Kun82].) The perfor-
mance advantage of asynchronous machines grows with the irregularity in communication
and the number of programs running simultaneously on the machine. Thus, a synchronous
programming model will be mapped, in most cases, to an asynchronous machine. As dis-
cussed in section 2.1, this mapping is inherently inefficient since the ability of the machine
to run asynchronously is not fully exploited and there is (a potentially large) overhead in
synchronizing the processors as part of each instruction. Compilers can be used, to some ex-
tent, to convert a synchronous program into one more suitable for an asynchronous machine,
by removing unneeded synchronization (more on this below).

5.2.2 Semi-synchronous programming models

There are general trade-offs in restricting the sources and types of asynchrony in program-
ming models. Interestingly, all existing models fall into the two extremes: synchronous or
fully asynchronous. Qur key observation is that there are points in between these two which
may be more desirable for many application domains.

In semi-synchronous programming models, each processor executes its instruc-
tions independently, but all “competing” accesses to a memory location are serialized in a
predetermined order. Two accesses to memory are competing if they are both to the same
location and

e one is a read and one is a write, or
e both are writes that are attempting to write different values.

Otherwise, the two communication events are non-competing. The order in which com-
peting accesses are serialized may be data-dependent, but a fixed input must always produce
a fixed ordering.

If the order of competing communication events is not serialized in a predetermined
order, then race conditions can result in which the value read or written depends on the
delays encountered during program execution. It is precisely this type of nondeterminism

that we seek to avoid. Since there is a predetermined ordering of all competing events in
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semi-synchronous models, program computations in these models are indeed repeatable.
There are no race conditions.

The idea of repeatability has a long history (e.g. [MSGR61][KM69]), but has been largely
ignored by the designers of programming models. In fact, current research either assumes
that programs will have nondeterminism (e.g. [MC88]) or explores the extent to which
nondeterminism can be encouraged in programs (e.g. [CM88]).

Particular semi-synchronous models may place restrictions on the concurrent access of a
memory location in order to reflect the (lack of) support for concurrent access in the target
machine(s). For example, the model may place restrictions on the concurrent writing of a
location if the target machine(s) can not support a large number of write operations to the
same location in a short period of time. In asynchronous models, restrictions on concurrent
access can be enforced by specifying that the accesses be serialized in the program (since
they will likely be serialized during run time). In other words, we will extend our definition
of competing for these more restrictive models. In a CREW semi-synchronous model, two
accesses to the same location are competing if at least one is a write. In an EREW semi-
synchronous model, any two accesses to the same location are competing. These models
are more suited for target machines with networks that do not have combination hardware.
The general definition given at the beginning of this section (with no further restrictions on
concurrent access) corresponds to a CRCW semi-synchronous model.

On the other hand, higher level primitives may be provided for coordinated actions such
as a “synchronized” concurrent write step, in which the processor with highest priority
succeeds in writing the location and all others fail. When treated as a “black box”, this
primitive is repeatable. A primitive or library routine is a black box if the programmer
has access only to the inputs and outputs of the routine. These black boxes are assumed
to be completely debugged, and thus will work regardless of the delays that may occur on
different runs or due to the presence of a debugger. These higher level primitives simplify
the programming task. In order to have the programming model reflect the target machines,
the model should assign a cost to the higher level primitive that reflects its expected running
time on the target machines.

Semi-synchronous models permit asynchronous execution (for efficiency), and yet non-
determinism is restricted to non-competing memory accesses (for ease of programming and
analysis). A detailed comparison between semi-synchronous and fully asynchronous pro-

gramming models will be made in section 6.2.

5.2.3 All processor synchronization vs. subset synchronization

There are tradeoffs between using a semi-synchronous programming model with only all-
processor synchronization (as in the Phase LPRAM) and one with subset synchronization.
Subset synchronization is likely to lead to faster programs, since processors wait for each
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other only when needed. However, the model is more complicated since synchronization
points do not provide simple, global states during execution.

The efficiency of the all-processor version can be improved as follows. Once the program
is debugged, an optimizing compiler can be used to “relax” the synchronization barriers.
Instead of having all the processors synchronize at each barrier instruction, a smart compiler
can determine cases in which only subsets of the processors need to synchronize among
themselves before continuing in the program. Assuming the compiler works correctly, this
will not introduce any new bugs to the program. This optimization should be used only
after the program is believed to be debugged, since it may destroy some of the desirable
properties of the model (e.g. easily specified global states at each synchronization point).

An important open question is the extent to which compiler technology can transform
more synchronous programs into less synchronous ones.

5.3 Hardware Support for Barrier Synchronization!

In order to effectively support an Asynchronous PRAM with all-processor synchronization,
it is essential that a barrier synchronization primitive require minimal run time overhead.
Barrier synchronizations can exact a tremendous performance penalty if not implemented
properly [Axe86].

In this section, we present a simple hardware mechanism for supporting efficient syn-
chronization barriers in certain classes of MIMD parallel computers. We generalize this
mechanism to yield a family of methods for implementing barriers that differ in their cost
and their ability to adapt to varying run time delays. Our focus is on shared memory
machines with hundreds (or more) of interconnected processors. In fact, the performance
advantage of these barrier methods over existing methods increases with the number of pro-
cessors. For the purpose of this thesis, we omit some of the details and generalizations of
our barrier method. These details can be found in the full paper on the method [BGSS89].

5.3.1 Introduction and terminology

The family of barrier methods described here is designed for MIMD machines working on
a single problem (no multiprogramming). The barriers are all machine-wide, so a barrier
instruction must be included in the local programs of all processors for every barrier. Nev-
ertheless, special treatment is given to processors that do not truly participate in a given
barrier.

As we shall see, our methods for barrier implementation are particularly attractive
when used in machines employing dancehall multistage interconnection networks with

monotonic routing. In these machines, the nodes in the network graph can be partitioned

!This section represents joint work with Yitzhak Birk, Jorge L.C. Sanz, and Danny Soroker.
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into “stages” such that (a) all processors are in the first stage, (b) all memory banks are in
the last stage, and (c) all links are between stages. Paths from processors to memories follow
strictly increasing stage numbers, and paths from memories back to processors follow strictly
decreasing stage numbers; the two sets of paths are disjoint. Furthermore, any processor
accesses any memory location in exactly one pass through the network. Examples of such
machines include the IBM RP3 [PBG*85], the NYU Ultracomputer [GGK*83], Cedar
[Gaj83], and the BBN Butterfly [BBN86].

For dancehall networks with monotonic routing, our methods implement barrier syn-
chronization in one pass through the network, using special “barrier messages”. Run time
synchronization overheads are minimized since the processors can pipeline barrier messages
with other memory requests, and thus continue to work without waiting for the barrier to
complete. The logic needed in the switches to support the method is very simple, and does
not slow down normal message traffic. We know of no previous synchronization method
that provides both these advantages.

For shared memory MIMD machines that do not belong to the foregoing class, our
methods become more complicated and are somewhat less attractive, but are nevertheless
interesting. In particular, we present implementations of our methods for various network
topologies such as butterflies, hypercubes, and meshes.

We will use the following definitions. Traffic from processors to memory will be referred
to as messages. Traffic from memory to processors will be referred to as replies. Both
messages and replies are assumed to be autonomous and can be thought of as packets.

Since there will typically be multiple synchronization barriers in a single program, we
use the term barrier instance to refer to each one. The actual enforcement of the re-
quired synchronization will be referred to as the implementation of the barrier instance.
Barrier messages will be used to denote messages that are sent strictly for the purpose
of implementing a synchronization barrier.

Data (non-barrier) messages issued by a processor prior to its reaching a given barrier
instance in its program will be referred to as pre-barrier messages with respect to this
instance; those issued after reaching a barrier instance will be referred to as post-barrier
messages. (A message is issued when it is sent by its originator.)

Many barrier synchronization methods have appeared in the literature. In the next

section, we survey these existing methods.

5.3.2 Existing methods for barriers

We distinguish seven types of existing methods for supporting barrier synchronization:
wire, fetch-and-add at memory bank, fetch-and-add in a combining network, combining-
with-holding network, fetch-and-add in holding tree, multi-pass tree, and double network.
In this section, for each type, we give a brief description of the method and then evaluate
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it in the areas of run time overheads, hardware costs, and generality.
There are four potential sources of run time overheads associated with synchronization

barriers.
¢ Longer switch cycle times due to the hardware complexity of the barrier method.

¢ Slower global memory access times for data messages due to the increased network
congestion and delays resulting from barrier messages (e.g. hot spots).

e Clock ticks wasted at processors waiting for other (slower) processors to begin their

participation in the barrier.

e Clock ticks spent by a processor participating in the barrier after the above overheads
are factored out.

We define the following quantitative measure of this latter type of run time overhead.
Consider two sets of messages, pre-barrier and post-barrier, separated by a barrier instance.
For a given barrier method, let its barrier delay be the minimum number of clock ticks
between the issuing of a pre-barrier message and the issuing of a post-barrier message when
a particular barrier method is used. This quantity is intended to reflect the best case
behavior of the barrier method: it assumes that messages do not encounter any delays due
to other messages (e.g. as a result of contention for a link or memory bank).

For concreteness, we assume that a processor can write (read) a word to (from) memory
in an empty network in exactly d (2d) clock ticks. Moreover, a processor can pipeline
messages to memory. In an otherwise empty network, a sequence of r read messages, issued
during r consecutive clock ticks by a processor, will complete in 2d 4 clock ticks. Likewise,
a sequence of w write messages, issued during w consecutive clock ticks by a processor, will
complete in d 4+ w clock ticks. Given these assumptions (the same ones as used in the
Asynchronous PRAM with communication delay d), we can calculate precisely the barrier
delay associated with any barrier method.

5.3.2.1 Wire

Our first existing barrier method involves implementing a barrier instance by having all
the processors “pull on a wire”. Initially, every processor “holds the wire down”, resulting
in a low voltage. As processors reach the barrier instance, they let go of the wire. When
the last one lets go, the voltage goes up and all processors know that the barrier has been
implemented. At that point they may begin issuing post-barrier messages, and hold the
wire down until the completion of the next barrier instance.

Run time overheads. Since the wire is not part of the processor-memory network,
it neither increases the switch cycle times nor slows down processor-memory traffic. The

barrier delay is calculated as follows. A processor must wait for its pre-barrier messages and
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replies to complete before it can release the wire. If its last pre-barrier message is issued at
clock tick k, then the message completes in clock tick k+2d — 1, if it is not delayed by other
messages. (A write takes 2d as well since the processor must wait for an acknowledgement
that the write has completed.) The processor releases the wire, and in the best case, all
other processors have already released the wire. If so, then the processor can immediately
issue its first post-barrier message. Thus the wire method has barrier delay 24 if pulling
on a wire can be done in one clock tick. As the number of processors increases, however, it
becomes impractical to use a single wire. Thus, asymptotically, the wire method has barrier
delay 2d + O(log p) with p processors.

Costs. A single wire for synchronization can be added to a machine at almost no
cost. As the number of processors increases, however, implementation of the wire method
becomes more complicated, as multiple wires are needed due to limited fan-in of devices.

Generality. The method works for implementing a barrier involving all the processors,
however it can not do multiple barriers in parallel. The method works along side any
processor-memory network, but special care must be taken when not all the processors are

in working order.

5.3.2.2 Fetch-and-add at memory bank

A fetch-and-add operation [GLR83|[GGK*83] is a synchronization primitive with the
following semantics. If a processor issues a fetch-and-add(X, c) instruction, where X is the
name of a shared memory location and ¢ is an integer, then a message is sent to location
X. Upon arrival of the message, memory location X is read, the value of X is increased by
¢ and written back to location X, and the old value of X is returned to the processor. The
hardware ensures that only one processor has access to X at a time.

Given a primitive for performing fetch-and-add at the memory banks of the machine, a
barrier among p’ processors can be implemented by having each such processor execute a
fetch-and-add(X,-1) instruction, where location X is first initialized to p’. After issuing its
fetch-and-add, each processor keeps reading location X to see if the barrier has completed
(i.e. the value is zero). This method is used in the BBN Butterfly [BBNS6].

Run time overheads. Since the hardware to support this method is at the memory
banks and not in the switches, this method does not slow down the switch cycle time.
However, considerable network traffic and delays can occur as a result of multiple processors
polling the same location repeatedly to test whether X has become zero. These requests
are serialized at the memory bank containing X. If the network is not a combining network,
this creates a bottleneck (“hot spot”) which potentially delays all network traffic, including
messages to other locations and by other users [PN85]. This problem can make the method
impractical for synchronizing large groups of processors.

The barrier delay for this method is 4d, as follows. A processor must wait for its pre-
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barrier messages and replies to complete before it can issue its fetch-and-add. If its last
pre-barrier message is issued at clock tick k, then it completes in clock tick k + 2d — 1
(if the message is not delayed by other messages). The processor issues its fetch-and-add
instruction during clock tick k + 2d. It begins polling to see if all processors have arrived at
clock tick k4 2d + 1. At best, all processors have arrived in time for the polling to succeed
with this first message. After receiving the successful reply to the first polling message in
clock tick k + 4d, the processor can issue its first post-barrier message during clock tick
k + 4d + 1. Thus the first post-barrier message is issued 4d clock ticks later when there is
a barrier than when there is not. As indicated above, the actual delay will be much longer
due to the serialization of the requests at location X.

Costs. Hardware support for a fetch-and-decrement instruction can be provided at
little cost.

Generality. The method can be used to implement barriers involving arbitrary subsets
of processors, including multiple subsets in parallel. It works with any network. Since no
assumptions are made on the paths used to get to the memory banks, it is easy to avoid

faulty components while using this method.

5.3.2.3 Fetch-and-add in a combining network

A combining network (defined in section 1.2.2) can be used to reduce the run time over-
heads of the previous method. In particular, a combining network provides a more efficient
implementation of the concurrent accesses to memory resulting from the previous method.
Typically, the paths from the processors to location X form a tree in the network, which
we call the combining tree. Messages can be combined when they meet at switches in
this tree. If messages corresponding to fetch-and-add(X,c) and fetch-and-add(X,d) meet at
a 2-by-2 switch §, they are combined: the value of ¢ is saved for the return trip, and the
message sent on is fetch-and-add(X,c+d). When the value of X is returned from memory,
the dual switch of § returns (a) the value of X back towards the first processor and (b) the
sum of ¢ and the value of X back towards the second processor. Likewise, multiple requests
to read X (to see if its value is zero) are combined and then broadcast to precisely those
processors requesting X.

The advantages and disadvantages are the same as the previous method, except (i) the
combining network reduces network congestion, although there is still heavy traffic due to
the polling of location X, and (ii) normal message traffic is slowed down since the switches
in a combining network are considerably slower [PN85]. Using g-by-r switches for ¢,r > 2
makes the switches even slower.

The barrier delay for this method is 4d, the same as the previous method. The actual
delay, however, will likely be shorter than that of the previous method since requests to
location X are no longer serialized.
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5.3.2.4 Combining-with-holding network

In the foregoing combining network, the combining of messages is not guaranteed. In a
combining-with-holding network, messages are held at the switches to ensure that combining
occurs. This type of network forms the basis for the Fluent machine [RBJ88][Ran89]. In
this network, the switches are 2-by-2. Each message is assigned a priority according to its
destination. During the course of the routing, each switch holds the first message in a queue
until a message of lower or equal priority arrives at the head of the other queue. If the first
messages of both input queues have the same priority, these messages are combined. In this
way, messages travel between switches sorted by priority. Special messages, called ghoét
messages and end-of-stream (EOS) messages, are used to keep messages progressing through
the network despite the holding policy. In particular, the EOS messages (which are simply
messages of lowest priority) are used to implement a barrier after each memory request. The
routing strategy, due to Ranade, is designed to support an efficient step-by-step simulation
of a CRCW PRAM on a butterfly network [Ran87].

Run time overheads. Since only the first element of each queue is compared and
potentially combined, the switches may be less complex than the switches in the previous
method. However, the switches are still more complex than in either of the first two methods
above (i.e. wire and fetch-and-add at memory bank). Furthermore, since messages are often
held in the switches before proceeding, a synchronization penalty may be incurred at every
switch for every message. These two factors increase the time to access memory, whether
or not the processors are executing a barrier or performing a concurrent access to memory.

On a dancehall multistage network, the barrier completes in only one forward and one
backward pass through the network (both passes are needed since EOS messages travel to
the memories and back). There is no polling of the status of synchronization variables.

The primary advantage of this method for barriers is that the barrier delay is one. A
processor can issue its last pre-barrier message, its EOS message, and then its first post-
barrier message on consecutive clock ticks. The routing strategy ensures that any pre-barrier
message reaches the memories before any post-barrier message to the same location.

Costs. The switches in the Fluent machine are augmented to include word-size com-
parators for comparing priorities, extra buffer space for storing return information, and
arithmetic units for operating on the data fields of messages being combined.

Generality. The method can be used only for barriers among all the processors. Be-
cause messages are held at each 2-by-2 switch until an appropriate message arrives at the
other queue, the machine deadlocks if one processor fails to issue an EOS message, or if an
EOS message is lost. The Fluent machine uses time-out methods in the switches to prevent
deadlock. Given an Omega network (i.e. a butterfly network with a few extra columns for
fault tolerance), a faulty link into a switch can be avoided if the entire switch is avoided (so

that messages arriving on a good link are not held waiting for a message to arrive on the
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bad link).

The routing strategy has been generalized to meshes and other network topologies
[LMR88], but not to g-by-r switches. If the strategy were implemented for ¢-by-r switches,
two serious inefficiencies would arise. In order for messages to travel between switches
sorted by priority, ¢ priority fields must be compared in each switch cycle to select the next
message to be sent. Furthermore, only one message would be forwarded each switch cycle,
not r messages as desired.

As we shall see, our barrier method is similar in appearance to the EOS messages used
in this routing strategy. However, there are some differences, both in the applicability and

in the resulting performance, as will be discussed later.

5.3.2.5 Fetch-and-add in holding tree

This method, due to Jayasimha [Jay88], is related to the two previous methods. The syn-
chronization barrier is implemented using a primitive, called a distributed synchronizer,
in which “barrier” messages perform fetch-and-add operations on variables stored in the
switches at each level of the network. More precisely, consider the combining tree associ-
ated with a location X for a machine-wide barrier. Let each switch in this tree contain a
counter variable which is initially set to g, where ¢ is the number of inputs to the switch.
To implement a barrier, each processor issues a fetch-and-add(X,-1) message. Each such
message is sent to the appropriate switch in the first level of the combining tree, at which
point it decrements the counter stored at the switch. If the counter is not zero, the message
is discarded. The last message to arrive will set the counter to zero. This message continues
on to the next level of the combining tree and decrements the counter stored there. The
process is repeated for each level of the tree. When the counter at the root of the tree
is set to zero, all the processors have synchronized. A second phase follows in which the
processors are notified that the barrier has completed. This is done by reversing the first
phase: the message at the root is broadcast to the switches at the previous level of the
combining tree, and so forth level-by-level, back to the leaves of the tree. At the conclusion
of this second phase, all the processors have been notified that the barrier has completed.

Run time overheads. Because the intended functionality is greatly simplified, the
switches will be much simpler than those in a sophisticated combining network. There is
no polling/busy-waiting needed: processors are signaled when the barrier has completed.
Similar to the other fetch-and-add methods, the (best case) barrier delay is 4d — 1. The
actual delay will be longer since at each level of the tree, at least g cycles are needed to
decrement a switch’s counter variable from ¢ to 0.

Costs. The switches in the network must be augmented to include counters and some
additional logic.
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Generality. The method works best for barriers among all the processors, since in this
case the counters in each switch can be reinitialized automatically by using mod-q counters.
Barriers among a subset of the processors require the counters to be initialized according
to the shape of the combining tree dictated by the particular set of processors. Moreover,
the broadcast method of the second phase must handle selective broadcast at each switch.
Faulty switches can be avoided by routing around them and then initializing the counters
to be the number of non-faulty inputs to the switch.

5.3.2.6 Multi-pass tree

A barrier among an arbitrary set of p’ processors can be implemented in log p’ rounds of
coordinating pairs of processors in a tree-like fashion, each round involving at least one pass
through the network. At each round, each right sibling waits until its left sibling in the
current level of the tree has finished the previous level, by busy-waiting on a shared global
variable. All processors have synchronized when the processor assigned to the root of the
tree performs its final coordination. By retracing the tree in logp’ rounds starting from the
root and progressing level-by-level to the leaves of the tree, the processors can be informed
that the barrier has completed.

Run time overheads. The main advantage of this method is that it avoids hot spots
without resorting to using complex switches, as in combining network methods. The main
drawback is that it requires at least logp’ passes through the network. In addition, the
busy-waiting at each round can create considerable network traffic. The barrier delay for p
processors is 2d(logp + 1).

Costs. No additional hardware support is needed in the network. Hardware support at
the processors is essential to avoid the overheads of initiating each round of the tree under
software control.

Generality. The multi-pass tree method works on any network, including networks
with fast, simple switches. Since no assumptions are made on the paths used to get to
the memory banks, it is easy to avoid faulty components while still using this method.
Unlike the fetch-and-add methods which use a single memory location, in this method O(p)
memory locations are used. In order to synchronize an arbitrary subset of the processors,
at each round each active processor must somehow know which memory location to use to
coordinate with its neighbor.

Another related method, due to Brooks [Bro86], involves coordinating the processors in
a butterfly-like fashion with log p’ passes through the network (as in the complete-exchange
algorithm of section 4.2.3). The advantage of this method is that all processors learn when
the barrier has completed without busy-waiting on a shared status variable or having a
separate phase for notification.
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5.3.2.7 Double network

Another method, proposed by the RP3 group [PBG*85], is to use two networks: a non-
combining network for normal message traffic and a combining (without holding) network
for synchronization (as well as for supporting processor scheduling and concurrent access to
memory). Data message traffic is not slowed down by synchronization, since data messages
use a separate network that has fast, simple switches. The “synchronization” network for
the RP3 supports the fetch-and-add in a combining network method. Another possibility
for a synchronization network is to use a combining-with-holding network.

The wire method described at the beginning of this section is also a double network
method. The drawbacks of double network methods are (i) having two networks increases
the cost of the machine, and (ii) the barrier delay must be at least 2d since a processor
must wait for its pre-barrier messages and replies to complete in the “data” network before

it can issue its barrier message in the “synchronization” network.

5.3.3 Global barriers for dancehall MINs

In this section and section 5.3.4, we present a new family of methods for implementing
synchronization barriers in shared-memory machines employing dancehall interconnection
networks with monotonic routing and with FIFO links and queues. In such networks,
the messages and replies can be thought of as using separate networks, since they use
disjoint sets of queues and links. This, along with the fact that processors only interact
via the memories and our assumption that messages are not lost, permits us to focus on
guaranteeing the correct arrival order of messages at memories. The replies take care of
themselves.

Of the barrier methods described in the previous section, only the combining-with-
holding network method achieved a barrier delay of one. All others had a barrier delay
of at least 2d. Since combining networks are slow and expensive, we propose extracting
the “barrier” aspects of this method for use on simple, fast networks. We show how such
barriers can be supported with very simple logic at the switches, avoiding the need for
word-size comparators. Holding of messages is done on demand in our method, not for
every message as in the combining-with-holding method. In addition, we can efficiently use
g-by-r switches, for g, > 2, unlike the previous method. Furthermore, we will generalize

our method in several important ways.

o We describe techniques that permit run time adaptability of the enforcement of a
barrier instance, permitting certain data messages to “pass through” a barrier that

has been delayed due to a slow processor.

e We present extensions to other network topologies such as hypercubes and grids that

permit more flexible routing schemes than those for which the combining-with-holding
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network method applies.

o We provide a general framework and correctness tests for applying our method to any

network.

We begin by describing the method for implementing a global barrier, i.e. a barrier
among all the processors.

5.3.3.1 The method
We use two types of messages:

e “D” messages are data messages sent by processors. They contain an address and
data.

e “X" messages are barrier messages. Their existence is the only information they carry.
(They could carry additional information for other purposes, but this is not necessary

for the barrier implementation.)

At programming and/or compilation time, instructions to issue X messages are inserted
into the program of every processor at the points at which synchronization barriers are
required. (Every processor must have such instructions for every barrier instance, since
the barriers are all global.) Thus, a processor issues mostly D messages, with occasional
X messages. A processor may continue to issue D messages immediately following an X
message without fear of any interprocessor synchronization problems. Of course, its own
program may have to wait for some pre-barrier replies to arrive before the processor can
continue with its post-barrier instructions.

To explain the method, let us initially focus on a single switch. A switch has a FIFO
input queue for each of its inputs, and a FIFO output queue for each of its outputs. Also,
it has a path from every input queue to every output queue and some switching logic to
control the paths and other aspects of switch operation.

The algorithm at a switch is as follows:

¢ A D message at the head of an input queue is routed to the tail of the appropriate
output queue as soon as possible (i.e. once there is space available in the output queue
and the data path is available). Then and only then, the next message in that input

queue becomes the head-of-queue.

¢ An X message, in contrast, is held at the head of an input queue until the messages

at the heads of the other input queues of the switch are all X messages.
e When there is an X message at the heads of all the switch’s input queues:

1. An X message is placed at the end of every one of the switch’s output queues.
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2. The X messages at the heads of the input queues are then (and only then)

discarded, thereby permitting new messages to become heads-of-queue.

The switch can operate either synchronously or asynchronously. However, care must be
taken to ensure that all intra-switch transfers have completed before step 1 is performed.
To implement a barrier instance, each processor issues an X message when it encounters
the barrier instruction in its program. The messages are forwarded by the switches per
the foregoing algorithm, and thus constitute a wave of messages that travels from the

processors to the memories.

5.3.3.2 Correctness

The implementation must guarantee that there can be no deadlock and that a post-barrier
message can only reach a memory bank after all pre-barrier messages have reached it. A
sufficient condition for satisfying the latter requirement is that every pre-barrier message
reaches its destination before the barrier does AND that every post-barrier message reaches
its destination only after the barrier reaches it. (Reaching a destination means reaching
the head of an input queue and being serviced. For a data message this simply means
reaching the head of an input queue, but for a barrier message it also means that the heads
of all other input queues of the destination switch are also occupied by barrier messages.)
We refer to these two properties of a barrier implementation as flushing and restraining,

respectively, and proceed to show that our methods possess them.

Lemma 21 (flushing property) An X message traverses any given link only after all

pre-barrier messages that use that link.

Proof. By induction on &, the interconnection stage to which the link belongs. The base
case (k = 0) holds since each processor issues all its pre-barrier messages prior to issuing
the X message, and since a processor does not handle messages other than its own.

Assume that the claim is true for links in level k. Consider the level £+ 1 links outgoing
from a switch 5. By the induction hypothesis and the use of FIFO queues and links, when
an X message reaches the head of an input queue of §, we know that there are no more
pre-barrier messages that need to use the link over which it arrived. Thus when X messages
reach the heads of all input queues for 5, we know that all pre-barrier messages that are
routed via S have already been transferred to outgoing queues. By the barrier-forwarding
policy, no X messages have been transferred. Only then are X messages placed at the end
of every output queue. Given the FIFO policy in the output queues and the links, the claim
follows. O

Lemma 22 (restraining property) An X message traverses any given link before all

post-barrier messages that use that link.
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Proof. All post-barrier messages are issued by processors, and a post-barrier message is
issued by a processor only after the X message. D messages cannot bypass an X message
in a switch’s queues, and the X messages are placed in all output queues. This guarantees
that the X messages cover the tree of all paths from any given processor to all memory
banks. O

It remains to show that there is no deadlock. To do so, we prove another property of

our barrier wave.

Lemma 23 (clear route property) The path of a pre-barrier message (with respect to
the i*h barrier instance) is always clear of any ith or higher X messages and post-i*h-barrier

D messages.

Proof. Follows immediately from the fact that the flushing and restraining properties were
true at all network stages, the transitivity of temporal order, and the fact that replies use
separate routes. 0O

The issuing of an X message by a processor for a given barrier instance can thus never
result in blocking the path of pre-barrier messages from it or any other processor, so there

is no deadlock.

5.3.3.3 Self-regulation

It is also interesting to observe that whenever a processor is behind, no other traffic interferes
with its progress. The system is thus self-regulating in some sense (negative feedback). This
property is not true of most of the other methods, e.g. any of the fetch-and-add methods.
Large performance penalties can be incurred if messages from processors that are polling

to see if a barrier has completed are allowed to interfere with pre-barrier messages [Jor85].

5.3.3.4 Implementation

By the flushing and restraining properties, the set of X messages used to implement a
given barrier instance stay behind any X messages from earlier barriers instances. Barrier
instructions thus stay in order. This obviates the need to tag X messages with a barrier
instance number, and leads to the following simple hardware implementation. Each message
contains a “type” bit that is set to 1 for X messages and to 0 for D messages. The test to
see if there is an X message at the head of all input queues for a switch is performed by
ANDing the type bits of the messages at the heads of those queues.

5.3.3.5 Comparison with existing methods

The barrier method described in this section minimizes run time overheads as follows.
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e It can be implemented with minimal hardware costs: there are no comparators, com-

bining mechanisms, counters, or fancy queues.

o For each barrier, there is only one barrier message that uses any given link or is
destined for any given memory bank, so there are no hot spots resulting from the
barrier.

e Furthermore, as discussed above, the method is self-regulating. Post-barrier messages
are blocked behind barrier messages in queues, creating a clear route to the memory
banks from processors that are still issuing pre-barrier messages. This minimizes the

time spent waiting for slower processors to begin their participation in the barrier.

e Finally, the barrier delay is 1: a processor can issue its last pre-barrier message, its

barrier message, and then its first post-barrier message on consecutive clock ticks.

The primary advantages of our method (as described thus far) over implementing a
complete combining-with-holding network are that (i) the network can use switches that
are simple, fast, and inexpensive, (ii) holding of messages is done on demand, not for every
message, (iii) g-by-r switches, for ¢, > 2, can be efficiently supported, and (iv) adaptive
monotonic routing may be used if desired.

The disadvantages are that the simplified network does not support combining and may
not have a provably good routing scheme.

Whether or not combining-with-holding networks are worth the price is an interesting
open question. By separating synchronization from combining, however, we have developed
a simple mechanism for barrier synchronization that can be used with existing, noncombin-

ing networks.

5.3.4 Selective barriers for dancehall MINs

We have assumed thus far that all processors in the machine were truly interested in the
barrier, i.e. each processor needed to have (a) its pre-barrier messages reach their destina-
tions before the barrier and (b) its post-barrier messages to reach their destinations after
the barrier, in order for the program to behave correctly. In general, however, some pro-
cessors may be uninterested in a given barrier instance and should not be delayed by it. A
selective barrier is one in which all processors participate, but some may be interested in
the instance and some may not be.

In this section, we describe a way for distinguishing between interested and uninterested
processors for any given barrier instance, and illustrate how this can be used for simple run-
time adjustments of the enforcement of barrier messages with respect to data messages of

uninterested processors, even after the barrier messages have been issued.
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To distinguish between interested and uninterested participants, we have uninterested
processors issue a dummy barrier message, denoted “\”. Thus, we have a total of three

different types of messages:
¢ D - data message
e X - barrier message of an interested processor (true barrier)
e \ - barrier message of an uninterested processor (dummy barrier)

A processor which is interested in a given barrier instance issues an X message at
the appropriate position in its program (same as for the global barrier). An uninterested
processor issues a \ message. This may be issued any time after the latest X message issued
by that processor for an earlier barrier instance and before the earliest X message issued
by the processor for a later instance. An early issue helps propagate the barrier, but may
unnecessarily block data messages if the barrier is not ready to propagate. The switch

model is fundamentally the same as was used for the global barriers.

5.3.4.1 The family of policies

The introduction of the \ messages paves the way to a family of barrier policies. The
differences between the family members are in the treatment of \ messages. For brevity, we
use HOQ to denote head-of-queue.

e A forward-porous barrier permits D messages of uninterested processors to skip
over \ messages whenever the \ is at the HOQ and yet cannot be propagated. However,

once a D message is in front of a barrier, dummy or real, it never falls behind it.
The forward-porous barrier policy helps mitigate the effect of a premature issuing of

a \ message by an uninterested processor.

¢ A backward-porous barrier permits \ messages to skip over D messages of unin-
terested processors, but not vice-versa. This skipping occurs inside the queue when

the \ message arrives, rather than when it is at the head of the queue.
¢ A doubly-porous barrier is both forward and backward porous, as follows.

— A D message is permitted to hop over a \ message if and only if (i) there are
only \ messages between the D message and the HOQ), and (ii) at least one of
the HOQs at the other inputs of the switch is neither \ nor X (i.e. the dummy

barrier is unable to advance).

— A \ message is always permitted to hop over a D message in the queues.
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The doubly-porous policy can be summarized as follows. We try to propagate the
barriers as best we can, but stuck dummy barriers do not prevent D messages from

progressing.

~ In all cases, a barrier is propagated when and only when all inputs of the switch agree
to propagate it, and the type propagated is X unless all inputs support \.

5.3.4.2 Correctness

To accommodate the introduction of uninterested processors, we make the following revision
to our definition of pre-barrier and post-barrier messages. A data message is a pre-barrier
(post-barrier) message with respect to every barrier instance appearing later (earlier) in

the issuing processor’s program and in which that processor is interested.

Lemma 24 (correctness) All members of the family operate correctly and retain the flush-

ing and restraining properties of the global barrier.

Proof. Since X and \ messages are never allowed to overtake any other X and \ messages,
their order is preserved and barrier instances are thus never confused. Since the type of
barrier messages placed on all output queues by a switch is “conservative”, i.e. it is an X
even if only one of the enabling barrier messages was an X, messages issued by an interested
processor always hit a true barrier and wait behind it. O

5.3.4.3 Implementation

The doubly-porous policy lends itself to a simple implementation. We use the same basic
switch structure as for the global barriers, except that each queue in the switch is now
replaced with two queues. The primary queue contains only X and D messages, whereas
the control queue contains only X and \ messages. An example is shown in figure 5.1.
Each input to a switch, consisting of a pair of queues, contains the following state

information:

o Whether it is blocked for D messages. It is blocked if and only if HOQ(primary)=X.

o Whether it agrees to propagate a barrier and, if so, what type of barrier. Propagation
of a \ barrier is supported if and only if HOQ(control)= \. Propagation of an X
barrier is supported if and only if HOQ(primary)=HOQ(control)=X.

Implementation of either of the one-way-porous schemes appears to be more complicated
and is not discussed here.
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Figure 5.1: Implementation of doubly-porous selective barriers. There are two queues for
each input to the switch (only one switch input is shown). D messages are placed in the
top queue, \ messages in the bottom queue, and X messages in both queues.

5.3.4.4 Schemes with enhanced adaptivity

QOur goal is to permit the propagation of barriers at the earliest possible time, while per-
mitting D messages that should not be delayed by a given barrier instance (i.e. the issuing
processor is uninterested in that barrier instance) to hop overit. The problem in our method
is that once a \ message reaches a switch whose other input is reachable from an interested
processor, the barrier forwarded will be a true (X) barrier and hence no longer porous to D
messages of uninterested' processors.

In this section, we present three alternative barrier methods. Each method is more
adaptive than the method discussed thus far, but requires more complicated hardware.

The first alternative scheme is to use only X and D messages: every X message would be
tagged with an instance number, and every D message of an uninterested processor would
be tagged with the delimiters of the instance range in which the issuing processor is not
interested. Skipping in both directions would be allowed within this range.

The second scheme, which does not require absolute instance numbers, is as follows.
Again, we use only X and D messages, but the X messages are not tagged. Every D message
carries a tag indicating the number of barriers over which it may hop and a counter. The
counter is initially equal to the tag number. Whenever the D message wants to skip over
an X message, this is permitted only if its counter is greater than zero. If the skip takes
place, the counter is decremented. Whenever a barrier wants to skip over a message, this
is permitted only if the counter is less than the tag. If the skip takes place, the counter is
incremented.

In both these two schemes, barrier messages of an uninterested processor can be issued as

early as possible since they will not delay any of its own D messages. It is not clear whether
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either of these two schemes can be implemented easily in hardware, since each requires the
capability to swap any adjacent entries in a queue based on their counter values.

The third scheme uses a more elaborate queuing and message-identification system. The
idea is to issue post-barrier messages without delay, but to have them wait in a service-
queue at the destination until the barrier arrives. This scheme does not unduly delay D
messages and can be used with any network. However, it can create unbalanced message
loads at the destinations (e.g. bursts at barrier points). Furthermore, the scheme is not self-
regulating, i.e. post-barrier messages can interfere with the progress of pre-barrier messages
from processors that are behind. (No deadlock will occur, but the delay may increase.)
Finally, this third scheme requires rather complicated bookkeeping, especially to support
multiple simultaneous barrier instances.

In summary, although more adaptive schemes are possible, our method may be the best

that can be implemented at a reasonable cost.

5.3.5 Barriers for other networks

Previous sections have focused on multistage “dancehall” networks with monotonic routing.
The full paper on our barrier method [BGSS89] presents a “generic” barrier method that
is suitable, in principle, for any interconnection network and any set of routes. We say
“in principle” since the method will be impractical for many sets of routes. The paper
introduces a general framework and a set of correctness tests for applying our method to
any network. Various implementation/efficiency tradeoffs are discussed as well.

In this section, we demonstrate our method for three specific network topologies: popu-
lated multistage networks, hypercubes, and meshes. We follow these with a short compari-
son to existing methods.

In dancehall MINs with monotonic routing, a single “wave” of barrier messages suffice
to implement a barrier instance. To accommodate these other networks, however, multiple
waves are needed. Each wave starts and propagates independently. A wave consists of one
or more “sweeps”, where a sweep is a siﬁgle traversal of all the nodes in the network.

We will present multi-wave barrier methods that ensure the following three conditions:

¢ No deadlock.

e A pre-barrier message must reach its destination before the last barrier message for

the given barrier instance to reach that node does so.

¢ A post-barrier message may reach its destination only after all barrier messages that
should reach that node do so.

It is not required that a pre-barrier message reach its destination before any barrier message
‘reaches that node.
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As will become clear later, the mechanism needed for correctly implementing global
barriers in non-dancehall topologies resembles the forward porous implementation for selec-
tive barriers in dancehall MINs. Here we need to introduce a third type of barrier message
(which we will call “f”). An f message cannot overtake any other message, but regular mes-
sages are permitted to overtake it. We will discuss here only global barriers. Extensions
to selective barriers are discussed in the full paper.

Each processor issues pre-barrier messages, then begins its participation in the barrier
(by issuing or forwarding f or X messages). The processor continues to forward waves
that arrive at its node. After forwarding the last sweep of each wave that will arrive, the

processor can safely issue post-barrier messages, i.e. it is released.

5.3.5.1 Populated multistage networks

A populated multistage network is one in which there are processors and memory banks
scattered throughout nodes in many columns (the common case, when there is a processor
and memory bank in every node, is called fully populated). A multistage network has
wrap-around if the first column is identified with the last one (i.e. the columns are ordered
cyclically). We will concentrate on such networks in this section. The links of such a network
are of two types: clockwise (increasing column number, cyclically) and counterclockwise.

We will consider two classes of routing algorithms - monotonic and uniformly monotonic.
Monotonic means that each message route is either totally clockwise or totally counterclock-
wise. Uniformly monotonic means that all routes are monotonic with the same orientation
(say clockwise).

Monotonic routing. The barrier implementation involves two waves, both of which
start at column 0. One wave propagates clockwise and the other counter-clockwise. The
number of sweeps of each wave is determined by the need to flush all pre-barrier messages,
and is thus only a function of the message routes. In the butterfly network, for example
(as well as various others with log p columns for p processors), the maximum (monotonic)
distance between any two nodes is 1.5 rounds. However, since the message route may start
in column log p — 1, whereas the waves start at column 0, three sweeps are required. In the
first two sweeps, f messages are used (to prevent deadlock). In the third sweep, X messages
are used.

The correctness proof of this scheme can be found in the full paper.

Uniformly monotonic routing. The barrier implementation here is very similar to
that of monotonic, only simpler. Instead of two waves there is only one, which must travel
in the same direction as the messages. As before, the wave starts at column 0 and makes
three sweeps.

It is also possible to permit non-monotonic routing. However, the number of sweeps

required increases with the complexity of the routes.
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5.3.5.2 Hypercube example

In a hypercube of dimension n there is a node corresponding to every binary string of length
n, and there is a bidirectional link between two nodes if and only if they differ in one bit
(we identify a node with its corresponding string). We define a link as upward if traversing
it increases a bit value (from 0 to 1). Otherwise the link is downward. Let § and T be the
node of all 0’s and all 1’s, respectively.

We can view the hypercube as a multistage network, wherein two nodes are in the same
stage if they have the same Hamming weight (i.e. the same number of 1’s). Using this view,
there is a natural partial ordering of the nodes according to their weight. This ordering is
equivalent to suspending a hypercube by node T (see figure 5.2). We will permit one-turn
routing: each source-destination route will be either UD or DU, where UD is a route whose
prefix contains only upward links and whose suffix contains only downward links. DU is
symmetrical. The barrier will have two waves, each consisting of two sweeps, up and down.
One wave starts at 0, sweeps up to I, and then sweeps back down to 0. The other wave
is symmetrical, and starts at T. The first sweep of each wave uses f messages (to prevent
deadlock), while the second sweep uses X messages.

As is the case with uniformly monotonic routing in multistages, if all routes are UD then
the barrier implementation requires only one wave, starting at 0. Interestingly, there is an
asymmetry between the delays at the nodes in this case. Node 0 must begin its participation
in the barrier before the barrier can propagate, and it is released only after all other nodes
have been released. At the other extreme, node T is the last to be required to participate
in the barrier and the first to be released. Thus node T is a candidate for a larger workload
than other nodes, since it experiences the shortest barrier delay.

Correctness proofs of the schemes described here are given in the full paper.

5.3.5.3 Grid example

For simplicity of exposition, we will discuss here square, two-dimensional grids. The dis-
cussion can be extended in a natural way to rectangular and higher dimensional grids. In
a (square two-dimensional) grid, each node has two coordinates, (z,7), 0 < z,y < n. Two
nodes are connected by a link if they differ in only one of their coordinates, by 1. A link
can go up, down, left or right with the obvious interpretation.

First observe that the “natural” barrier scheme for grids does not work. By this we
mean the scheme in which one wave starts at each side of the grid and propagates to the
opposite side. For example, one wave starts at the set of nodes with x-coordinate 0 and
propagates to the set of nodes with x-coordinate n. This method does not work because
most message routes are not covered by a single barrier wave (which violates one of the

correctness conditions given in the full paper).
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Figure 5.2: (a) The 3-dimensional hypercube viewed as a multistage network. Nodes with
equal Hamming weight are in the same level. (b) The 8-by-8 grid viewed as a multistage
network. The Up and Down directions are marked.
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However, if the grid is viewed as a multistage network, where two nodes are in the same
stage if their weight is equal (where weight here means the sum of the coordinates), then
the scheme used for hypercubes will work for grids. The ordering on the nodes is equivalent
to suspending the grid by node (n,n) (see figure 5.2). A UD route in this case would be
a route whose prefix contains only “upward” links (i.e. only up links and right links in the
original grid), and whose suffix contains only “downward” links (i.e. only left links and down
links in the original grid). The barrier scheme for UD routes would have one wave, starting
at (0,0), sweeping up to (n,n), and then sweeping back down to (0,0). As before, nodes
are released after forwarding the second sweep of the wave. Thus, similar to the hypercube
with UD routes, node (0, 0) has the longest barrier delay while node (n, n) has the shortest.

If more flexibility in routing (beyond UD routes) is desired, then we can define DU, LR,
and RL routes and use corresponding waves. For example, an RL route is one whose prefix
contains only right links and down links in the original grid, and whose suffix contains only
left links and up links. The corresponding wave starts at (0, n), sweeps across to (n,0), and

then sweeps back to (0, n).

5.3.5.4 Comparison with existing methods

In contrast to the case of dancehall MINs, the barrier delay may be greater than one for
our method on other topologies. Because waves are initiated independently of one another,
the barrier delay depends only on the maximum number of sweeps in a wave (and not
the number of waves). As in section 3.3.2, let 2d be the number of clock ticks required
for a processor to retrieve a word from a memory on the opposite side of the network.
Furthermore, assume that a single sweep across the network takes d ticks. If k is the
maximum number of sweeps in a wave, then the barrier delay for our method is kd.

The barrier delay of our method compares favorably to the wire method (2d + O(log p)
delay) when k£ < 2 and to the various fetch-and-add methods (> 4d — 1 delay) when & < 4.
Moreover, in our method, most nodes in the network experience a barrier delay of less than
kd. For example, the barrier delay at nodes in the hypercube or grid with UD routing
(k = 2) ranges from 1 to 2d.

We conclude this section with a comparison of our method with the combining-with-
holding network method for networks other than dancehall MINs. Ranade’s routing tech-
nique can be applied to networks other than dancehall MINs. Indeed, it was originally
designed for a fully populated butterfly network. Leighton, Maggs, and Rao [LMRS38]
extended the routing technique to other topologies such as hypercubes and grids. Our ap-
proach to imposing a multistage framework on hypercubes and grids is reminiscent of the
Leighton, Maggs, and Rao technique of using “leveled” paths for routing in hypercubes and
grids. The same arguments for separating synchronization from combining that applied in
the case of dancehall MINs (section 5.3.3) apply here, namely (i) the network can use simple
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switches, (ii) holding of messages is done only on demand, (iii) switches with more than two
inputs and outputs can be efficiently supported, and (iv) adaptive routing may be used.
We elaborate on the fourth advantage. Our method works, in principle, with any rout-
ing scheme. Moreover, our method provides efficient barrier implementations for many
routing schemes forbidden in the Leighton, Maggs, and Rao framework. For example, their
technique is in the context of oblivious routes (only the delays at a switch are adaptive:
a message is held until a message of lower or equal priority arrives at the head of the
other queue). In contrast, even our one-wave-barrier implementation for the hypercube or
grid can be used in conjunction with adaptive routing, providing many alternative paths.
In their scheme, packets typically do not take the shortest source-destination routes. For
example, their routes for high dimensional grids and butterflies must first travel to a ran-
dom intermediate destination and then on to the true destination. Our routes can use the

shortest path from source to destination if desired.

5.3.6 Discussion

We have presented a family of efficient schemes for implementing synchronization barriers in
shared-memory MIMD machines employing a variety of interconnection topologies. These
barriers permit processors to begin issuing post-barrier messages before all pre-barrier mes-
sages reach their destinations, yet guarantee that no post-barrier message reaches any given
destination before all pre-barrier messages have reached it. This is very useful in conjunc-
tion with the Asynchronous PRAM and the semi-synchronous programming model, since
it permits consecutive computation phases to be partly overlapped.

We were able to extend the methods to support “selective” barriers. These handle mes-
sages of processors that are not interested in a given barrier instance in a flexible manner,
by permitting them to skip back and forth over the irrelevant barrier instance to prevent un-
necessary waiting. Nevertheless, one would like to support synchronization barriers among
multiple sets of processors in parallel. For example, in multi-user and multi-programmed
environments, a barrier in one multiprocessor program should not unduly slow down other
multiprocessor programs running at the same time. This does not seem possible with our
method, unless perhaps each program is assigned its own contiguous block of processors in
the network. On the other hand, barriers among all the processors may be sufficient for
time-sharing multiple users, where each user is given the entire machine for a short duration
(“time slice”).

We have shown that the run time overheads in our method are smallest for dancehall
MINs with monotonic routing. Nevertheless, our methods can be implemented with any
network topology, including non-multistage ones. A given network and barrier scheme
determine the set of allowable message-routes. However, apart from the constraints on

route lengths and monotonicity, the message-routing policy is independent of our scheme,
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and can be quite flexible, even permitting adaptive routing. Another interesting property
of our methods is self-regulation: a processor that falls behind finds its paths to memory
clear of post-barrier messages of other processors.

The cost of implementation and the performance benefit vary with the topology, the set
of permissible routes, and the choice of barrier waves. Hypercubes and grids, for example,
permit very efficient implementations with the appropriate routing restrictions.

The barrier messages offer a powerful mechanism for gathering and disseminating in-
formation throughout the machine. Possible uses of this mechanism warrant further explo-
ration, especially in view of the fact that they are essentially free of charge since the barrier
messages contain very few bits of information for barrier-implementation purposes, and the

remaining bits are available for other purposes.

5.4 Hardware Support for Pairwise Synchronization

In this section, we discuss a method for efficiently supporting the pairwise synchronization
associated with an Asynchronous PRAM with subset synchronization. We first present a
cache protocol that supports the pipelined reads and writes of an Asynchronous PRAM.
This protocol maintains memory consistency in the presence of multiple outstanding shared
memory references for each processor. Then we show how a mechanism for pairwise syn-
chronization can be encorporated into this cache protocol.

A cache memory for a set of main memory locations S is an auxiliary memory that
temporarily holds the values of a subset of the locations in §. A cache memory local to
a processor is smaller and physically closer to the processor than main memory. Thus the
access time to cache memory is typically only a few processor cycles, far less than the access
time to main memory. Associated with the cache is 2 many-to-one hash function f that
maps addresses in S to addresses (lines) in the cache. This function defines which cache
line is used to hold the value of a particular location.

We describe a simple cache policy/protocol suitable for Asynchronous PRAM programs
running on a parallel computer with many processors, large memories, and a high band-
width network. Our policy is related to the many existing policies; it is derived from a
combination of known ideas. Our policy differs from existing policies in its support of a
semi-synchronous programming model (as opposed to a fully asynchronous model) and its
emphasis on pipelining memory requests while maintaining a single instruction stream at
a processor. Supporting a semi-synchronous model, instead of a fully asynchronous model,
greatly simplifies the cache policy. The purpose of this section is to provide evidence of the
practicality of the Asynchronous PRAM by showing how simple an effective cache policy
for the Asynchronous PRAM can be.

There are four types of memory operations in the Asynchronous PRAM, as follows.
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Consider a local operation on the Asynchronous PRAM, i.e. a RAM operation where the
operands are in private memory and the result is stored in private memory. For convenience,
we will view a local operation as simply a request to copy the value of each operand from
its private memory location into a register and then copy the value in a register into the
target private memory location. These two copy operations are denoted private read
and private write operations, respectively. (This corresponds to load-store uniprocessor
architectures [Pat85] where the two operations are called load and store, respectively.)

The other two operations are global read and global write. On a global read, a copy
of the shared location is stored in a private location. The processor has exclusive use of the
value, which simplifies the cache policy.

Throughout this section, let s be a shared memory location, p a private memory location,
and r a private register. The four types of operations to support are global read (p := s),
global write (s := p), private read (r := p), and private write (p := r). Note that each
operation involves both a read and a write. Later, we will add a fifth type of operation, a
synchronized read (p := $s), for the purposes of implementing synchronization.

Loading a shared memory location into a register is performed using two instructions:
a global read followed by a private read. Dividing the shared memory read operation into
two parts permits a processor to continue with other work while the contents of the shared
location is brought local to the processor. This division is similar to the split-phase reads
of a dataflow machine [NA88] and the prefetch operation of the Stanford DASH machine
[Gup89]. By pipelining its memory requests in this fashion, a processor can mitigate the
performance penalty associated with accessing shared memory.

Our cache policy was designed with the following priorities in mind. We have aimed for

a solution with the following properties.

o Lockup-free caching for all writes, for global reads, and for synchronization, i.e. nei-
ther the processor nor the cache controller should block on a cache miss. This goal

minimizes run time delays.

o Apggressive caching. Any read or write to a main memory location should cause the
location to be cached (if it is not already cached). If the cache line for the location
is full, i.e. a cache collision occurs, the current value is discarded. However, the
discarded value should be stored in local memory so that it does not need to be
refetched from a remote node. This simple greedy approach seeks to minimize the

number of main memory accesses needed by active processors.

e Single instruction stream per processor. Each processor has a sequence of instruc-
tions that it executes in order. It has a single instruction counter. There is no run
time rearranging of instructions based on the arrival times of memory references or

synchronization events, as there is, for example, in the HEP machine [Jor85] or in a
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dataflow machine [NA88]. We believe that such run time rearranging is not worth
the cost to support it. Delays to the processor can be minimized in our scheme by
judicious prefetching.

e Minimal state information in cache lines. There should be only a moderate amount
of state information in a cache line. There should not be extra address or value fields
added to a cache line. This minimizes the physical area needed to hold a cache line.

e Simple memory bank interface. The complexity of the protocol is at the cache in-
terface, not the memory bank interface. The mechanism should not require special
hardware at the memory bank itself, e.g. for fetch-and-add [PBG*85], and should not
add state information to memory words, e.g. for synchronization [GVW89]. This goal
simplifies main memory access, and hence increases memory throughput, and it does

not increase the word length of memory.

Our policy uses the configuration of memory banks, caches, and queues depicted in figure
5.3. Each processor has a local memory bank which is divided between private and shared
memory locations. There is a cache memory for the private memory locations associated
with a processor. There is a cache memory for the shared memory locations associated
with a shared memory bank. First-in-first-out queues reside between the cache, the local
memory, and the network to help accommodate the varying consumption and production
rates of these components. FIFO links connect nodes in the network, and thus the series
of messages traveling from a node u to a node v are guaranteed to arrive at v in the order
they are dispatched from u.

Each memory location is cached only in the cache local to the memory bank in which
the location resides. Since a global read is an instruction to copy the contents of a location
into private memory, the data returned by a global read of s is stored in a cache line for the
private location (in the private cache), not in a cache line for s, as in common cache schemes
(DSB88][SD88] which support fully asynchronous programming models. In both shared and
private caches, we use a write-through cache policy, i.e. a write operation updates both the
cache line and the local memory location.

Our cache policy provides an effective way to decrease program running times by the

following four means.
e Provide fast references of recently used private memory locations.

e Permit accesses to recently used shared memory locations that avoid accessing the
memory bank in which the location resides (although accesses to locations in distant

memory banks will still be slow).

¢ Enable the processors to have multiple private and shared accesses in transit at a time
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Figure 5.3: The two caches for a node in the network. Each node with both a processor
and a shared memory bank has two caches, one for private data and one for shared data.
Shown here are the data paths that connect the various memory components at a node.
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by keeping track of outstanding memory requests and enforcing the necessary order

of accesses to a location.

¢ Support efficient pairwise synchronization.

5.4.1 A cache protocol for the model

In this section, we will assume throughout that each shared location is accessed in a non-
competing manner. In other words, each shared location is either accessed only for reading,
only for writing some common value, or only by one processor. Enhancements to the
mechanism to handle competing accesses and the synchronization steps between them will

be described in the next section.

5.4.1.1 The basic policy

We divide the description of the policy into two parts. First we discuss the policy with
regards to private locations, then we discuss the policy with regards to shared locations.
As in [SD88], we consider the case where each cache line contains only one word.

Private. We show the policy for each of the four instruction types. In this part, we will
view shared memory as a black box as follows. A request to read or write a shared memory
location is placed in either the shared request queue (if the shared location is local) or the
remote request queue (if the shared location is not local). For a read request, a reply later
returns with the correct value to the reply queue. For a write request, the shared location
is updated later.

¢ Private read (r := p). Wait until cache line f(p) is not blocked.

If line f(p) contains the value, v, of private location p, then copy v into register r,

and continue to the next instruction.

Otherwise, add a request to read location p to (the tail of) the local request queue.
When the local reply returns, place the value returned, v, into line f(p). Copy v into
register r, and continue to the next instruction.

e Private write (p := r). We will write the value to both the cache line and the

memory location.

Wait until cache line f(p) is not blocked. Place the contents of register r into line
f(p). Add a request to write the contents of register r to private location p to the
local request queue, and then continue to the next instruction. (The private memory

location p gets updated a short time later.)

e Global read (p := s). We will issue a request for the shared memory location, get

the reply, and place the value in both the cache line and the memory location.
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Wait until cache line f(p) is not blocked. Mark the line as blocked for reading s into
p. Add a request to read shared location s to the shared or remote request queue,

and then continue to the next instruction.

(When the global reply returns, place the value returned, v, into line f(p). Add a
request to write v to location p to the local request queue and unblock the line. The

private memory location p gets updated a short time later.)

¢ Global write (s := p). We will get the value of p and then issue a write request to

the shared location.
Wait until cache line f(p) is not blocked.

If line f(p) contains the value, v, of private location p, then add a request to write v
to shared location s to the shared or remote request queue, and then continue to the

next instruction. (The shared memory location s gets updated later.)

Otherwise, add a request to read location p to the local request queue. When the
local reply returns, place the value returned, v, into line f(p). Add the request to
write v to location s to the shared or remote request queue, and then continue to the

next instruction. (The shared memory location s gets updated later.)

Shared. In this part, we focus on processing requests in the shared request queue.
There are two types of requests. For a read request, the value of the requested location is
placed in either the private reply queue (if the return destination is in the same node) or
the remote reply queue (if the return destination is in a remote node). For a write request,

the requested memory location is updated.

o read s. Wait until cache line f(s) is not blocked.

If line f(s) contains the value, v, of memory location s, then add a reply containing

v to (the tail of) the remote or private reply queue, and continue to the next request.

Otherwise add a request to read memory location s to the local request queue, mark
line f(s) as blocked for s, and continue to the next request. (When the local reply
returns, place the value returned, v, into line f(s). Add a reply containing v to the

remote or private reply queue and unblock the line.)

e write s. Wait until cache line f(s) is not blocked. Write the value into line f(s).
Add a request to write the value to memory location s to the local request queue, and
continue to the next request. (The shared memory location s gets updated a short
time later.)

The above policy satisfies the goals outlined in the previous section, namely lockup-free
caching for all writes and global reads, aggressive caching, single instruction stream per

processor, minimal state information in cache lines, and simple memory bank interface.
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Lockup-free caching is used in all cases except for a read of a private location. This
occurs in both private read and global write operations. The processor is stalled on a cache
miss for a private read in order to satisfy our goal of having a single instruction stream
for the processor. The processor is stalled on a cache miss for a global write in order to
ensure that two writes by a processor to the same memory location occur in program order.
Consider two global write operations, s := p and s := p’, where p is not in the cache and p’
is in the cache. If the processor is not stalled, then the second write can be added to the
remote request queue while p is being fetched from memory, and hence the global writes
will occur out of order. Using lockup caching for reads of a private location delays only
the processor itself; it does not slow down any other processor. Even the cache controller
for the private cache is not delayed: it can process replies in its private reply queue in the
meantime.

The only other source of delay is a blocked cache line. This delay occurs only on a cache
collision involving two requests in progress (if the earlier request has completed, the line
is not blocked and can be discarded). We expect this to be a rare occurrence. Otherwise,
a processor or cache controller is delayed only as long as it takes to complete the tasks
described in the policy.

5.4.1.2 A correctness proof for the policy

In this section, we prove the correctness of our cache protocol by showing that (a) memory
consistency is maintained despite the prefetching and lockup-free caching and (b) there
can be no deadlock as a result of the protocol. Our task is greatly simplified by the fact
that memory is accessed in a non-competing manner. Thus the only possible sources of
inconsistency are in locations that are accessed by a single processor. For such locations,
we need to show that the value returned on a load instruction is always the value given by
the latest store instruction with the same address [CF78].

We divide the proof into three parts. First we consider the case where there are no cache
collisions and show that consistency is maintained for private locations. Next we show that
consistency is maintained for shared locations. Finally, using these two results we show
that consistency is maintained even in the presence of collisions. In addition, we prove that

there can be no deadlock as a result of the policy.

Lemma 25 Suppose the function f that maps private memory locations to private cache
lines is one-to-one (so that no collisions occur). Consider the following initial setup: (a)
each private cache line is empty, (b) the most recent store for each private memory location
has already been added to the local request queue, and (c) the most recent load or store
for each shared memory location has already been added to either the shared request queue

(if local) or the remote request queue (if non-local). Then the above policy ensures the
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consistency of registers, private cache lines, and private memory locations with respect to
a sequence of program instructions. In addition, the policy ensures that shared memory

requests are placed in the (shared or remote) request queue for a processor in program order.

Proof. A register is accessed in program order since the processor is blocked until a private
read completes and until a private write has accessed the register.

Now consider private memory. Note that each of the four operations involves a private
memory load or store.

The first load or store to a location will bring the location into the cache. A cache line
for a private memory location receives the most recent value of the location since (a) on a
store, the value is placed directly in the cache and (b) on a load, the request to read the
location is added to the local request queue after any previous store, and the processor is
blocked until the value is placed in the line.

In the absence of collisions, all subsequent private memory loads will use the value in
the cache and all subsequent private memory stores will update both the cache and the
memory. A cache line for a private memory location is accessed in program order since (a)
a global read instruction blocks its cache line until the returned value is placed in the cache,
thereby preventing any other instructions involving the same location to proceed, and (b)
any other load or store is completed while the processor is blocked.

Stores to a private memory location occur in program order since (a) the local request
queue is a FIFO queue, (b) a global read instruction blocks its cache line until the returned
value is placed in the local request queue, thereby preventing any other instructions involving
the same location to proceed, and (c) the processor is blocked on a private write until the
write request is added to the local request queue.

Requests to read or write a shared memory location at a local (non-local) node are
added to the shared (remote) request queue in program order since the processor is blocked
until the request is added to the queue.

For each private memory location and its cache line, there is at most one outstanding
read request on its behalf. Thus no matter what order the replies return from the shared
memory, there will be no confusion since each reply is labeled with its target location. O

Lemma 26 Suppose the function f that maps shared memory locations to shared cache
lines is one-to-one (so that no collisions occur). Consider the following initial setup: (a)
each shared cache line is empty, (b) the most recent store for each shared memory location
has already been added to the local request queue, and (c) the most recent read reply from
each shared memory location has already been added to either the private reply queue (if
local) or the remote reply queue (if non-local). Then the policy ensures the consistency of

shared cache lines and shared memory locations with respect to a sequence of requests in the
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shared request queue. In addition, the policy ensures that the correct values are returned in

response to read requests.

Proof. The first read or write to a location will bring the location into the cache. A cache
line for a shared memory location receives the most recent value of the location since (a) on
a write, the value is placed directly in the cache and (b) on a read, the request to read the
location is added to the local request queue after any previous store, and the line is blocked
until the returned value is placed in the line.

In the absence of collisions, all subsequent reads will use the value in the cache and all
subsequent stores will update both the cache and the memory. A cache line for a shared
memory location is accessed in request order since the cache controller is blocked until the
write request has updated the cache or the read request has accessed the cache line (since
there are no cache misses). Write requests to a shared memory location occur in request
order since (a) the local request queue is a FIFO queue and (b) the cache controller is
blocked until the request to update the location has been added to the local request queue.

Since the correct values are added to the remote or private reply queue while the con-
troller is still blocked, the correct values will be returned in response to read requests. Note

that we do not need to guarantee the order of replies. QO

Theorem 15 Given initially empty?aches, the above policy ensures memory consistency,
even in the presence of collisions. In addition, there can be no deadlock as a result of this

scheme (assuming no lost messages or other faults).

Proof. There can be no deadlock as a result of this scheme (assuming no lost messages or
other faults). Requests on the local request queue will always complete, so a read s request
that blocks a cache line will complete. Thus any line in the shared cache will eventually
become unblocked, permitting any new request to complete. A global read request that
blocks a cache line waits on a read s request, which will complete. Thus any line in the
private cache will eventually become unblocked, permitting any new operation to complete.
Since there can not be a cycle of blocking, there can be no deadlock as a result of this
scheme.

Now we show that the policy ensures memory consistency even in the presence of colli-
sions.

Consider a private memory location p. The sequence of private memory loads and stores
during the program can be partitioned into subsequences as follows. Each subsequence
starts with cache line f(p) not containing the value of p, and consists of (a) an initial
load of the cache line for p in response to a load or store request for memory location p,
and (b) zero or more requests to read or write p while the cache contains the value of p.

Note that this is precisely the setup for lemma 25 and that no collisions occur within a
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subsequence. It follows by an easy induction proof using lemma 25 that the policy ensures
memory consistency.

We now consider a shared memory location s. Requests to read or write s, where s is
local (non-local), are added to the shared (remote) request queue in program order since
the processor is blocked until the request is added to the queue. Since the links in the
network are FIFO, these requests are added to the local shared request queue in program
order. Similar to the private case, an easy induction proof using lemma 26 shows that
the policy ensures memory consistency and that replies are returned in response to read

requests. Putting together the two cases yields the theorem. O

5.4.1.3 Cache line format
The above policy can be implemented using a cache line with the following fields.

e Status. There are three possible values.

1. Invalid. The cache line can not be relied upon to contain useful information.
The line is valid if the status is not “invalid”.

2. Ready. The cache line contains the value of the memory location indicated by
the address field.

3. Blocked. There are two cases. (a) For a line in a private cache, the cache line
has been preallocated for a (local) private memory location, awaiting a value
that is on its way in response to a read of a shared memory location. (b) For a
line in a shared cache, the cache line has been preallocated for a (local) shared
memory location, awaiting a value that is on its way in response to a request to

read the local location.

e Address. For a valid line, this field contains the memory location to which this line

corresponds.

¢ Value or requested address. If the status is ready, this field contains the value of
the cached location. If the status is blocked, this field contains the address requested.

5.4.1.4 An example

We now turn to a short example. Consider the problem of adding two vectors. A program
for adding two vectors stored in shared memory is given below. We use two new instructions:
issue and complete. These two primitives enclose a set of instructions that comprise a
pipelining block. The instructions in a pipelining block will be issued one after another
without waiting for any global read or write instructions in the block to complete. Thus no
instruction within a block may use the value returned by any read instruction in the same

block. These values may be safely used only by instructions that follow the block.
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Vector Sum program:
/*
inputs: Two vectors, Ag, A41,...,Aa—1 and Bg, Bi,...,B._1, are stored in the shared
memory.
outputs: The output vector Cy,C1,...,Cpr-1 is stored in the shared memory, where, for
alli,0<i<n, C;= A; + B;.
description: Each processor reads in two elements, adds them together, and writes the
result. The variables z, y, and z are private variables.
*/
for all processors ¢ in parallel do (
issue
z:= 4Ai;
y = By
complete
ZiI=ZTY;
Gy =g

Consider processor 7 and suppose that A; has value e, B; has value b, both A; and B;
are in their respective caches, and that ¢ = a+b. Figure 5.4 shows the instructions executed
by processor i, the actions taken, and the state of its private cache after these actions have

been performed.

5.4.2 Cache support for synchronization

Section 5.4.1 presented a protocol for handling non-competing memory accesses. In this
section, we show how to enhance the protocol to handle competing accesses and the syn-
chronization steps between them.

We add a fifth type of operation, synchronized read (p := $s), which reads a value
into p when a successful pairwise synchronization has been made at s. (As we shall see, the
particular value placed in pis not important.) This instruction invokes a new shared memory
request, synchronize s. As in section 4.2, synchronization is between two “partners” that
wait for each other at a common location s and return once both have arrived at s.

Synchronization is supported at the cache level: the memory location s is neither read
nor written to. The first of the partners to arrive places its return address in the cache line.
When the second one arrives, a reply is sent to each partner. If a cache collision occurs
prior to the arrival of the second partner, the first partner is dropped from the cache. The
return address in the line is used to notify the first partner that it must reissue its request to
synchronize at s. This contrasts with synchronization methods that include synchronization
bits with each location in memory (e.g. [GVW89)]).
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instruction
initially

1. z:= A;

2. y = B;
dorl:=cz

4. r2:=y

9. 13 i=rl+12
6. z:=13

1. CGri= 2

action(s)

block the line
send read request

block the line
send read request

load register r1

load register r2
compute the sum

store in the line

send write request

private cache

invalid

invalid

invalid

blocked

invalid

invalid

blocked

blocked

invalid

ready

blocked

invalid

ready

ready

invalid

ready

ready

w2 | &

ready

ready

ready

ready

N

M

shared cache

read A;
| ready | B; [b I
read B;
write C;
[ready [Ci|c |

Figure 5.4: An example of the cache policy is shown for the Vector Sum program given in
the text. The first column shows the instructions executed by processor i, where r1, r2, and
r3 are private registers. For each instruction, the second column lists the actions taken by
the cache controller, and the third column shows the state of the private cache after these
actions have been performed. The last column depicts the arrival of the shared memory
requests at the shared cache and the subsequent departure of the shared memory replies
back towards the private cache.
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5.4.2.1 The full policy

As before, we divide the description of the policy into a discussion on private locations and
a discussion on shared locations.

Private. The policy for the original four operations is unchanged.

¢ Synchronized read (p := $s). Wait until cache line f(p) is not blocked. Mark
the line as blocked for synchronizing at s and returning the status into p. Add the
request to synchronize s to the end of the shared or remote request queue, and then

continue to the next instruction.

(When the global reply successfully returns, add the request to write to p to the end
of the local request queue, and unblock line f(p).)

(If a reissue reply returns, add the request to synchronize s to the end of the shared

or remote request queue.)

Note that the policy for global reads can be used for synchronized reads assuming that
reissues are handled automatically and that cache lines being used for synchronization can
be specially marked (if such marking is desired).

Shared. The policy for shared requests is as follows.

¢ synchronize s. Let p be the return address. Wait until line f(s) is not blocked.

If line f(s) is marked as waiting for s, then the partner has already arrived and the
cache line contains the return address p; of the partner. Add a reply destined for p;
to the end of the (remote or private) reply queue. Add a reply destined for p to the
end of the (remote or private) reply queue. Invalidate the cache line and continue to
the next request. (The two replies are sent out a short time later.)

Otherwise, the partner will arrive later. If the cache line is marked as waiting (for
some other location ¢’ with return address p’), add a “reissue” reply destined for p’ to
the end of the (remote or private) reply queue. This reply message indicates that the
synchronize s’ request on behalf of ' should be reissued. Else the cache line is simply
discarded. In either case, place the return address p in the cache line and mark the
line as waiting for s. Continue to the next request. (The reply, if any, is sent out a
short time later.)

o read s. Wait until cache line f(s) is not blocked.

If cache line f(s) contains the value of s, then add the reply containing the value of

8 to the remote or private reply queue, and continue to the next request.

Otherwise the cache line does not contain s. If the cache line is marked as waiting

(for some location s’ with return address p’), add a reissue reply destined for p’ to the
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end of the (remote or private) reply queue. Else the cache line is simply discarded.
In either case, mark the line as blocked for location s. Add the request to read s to
the end of the local request queue, mark line f(s) as blocked for s, and continue to
the next request. (When the local reply returns, place the value returned into f(s),
add the reply containing the value to the remote or private reply queue, and unblock
the line.)

o write s. Wait until cache line f(s) is not blocked. If the cache line is marked as
waiting (for some location s’ with return address p’), add a reissue reply destined for
P’ in the cache line to the end of the (remote or private) reply queue. Else the cache

line is simply discarded.

In either case, place the value in line f(s). Add the request to write the value to s
to the end of the local request queue, and continue to the next request. (The shared

memory location gets updated a short time later.)

5.4.2.2 Discussion

To accommodate these extensions to the policy in the cache, we need a fourth status type,
waiting, for a shared cache line that is holding one of the two partners of a synchroniza-
tion. In addition, it may be convenient to tag private cache lines that are being used for
synchronization.

Given this support for pairwise synchronization, we can efficiently support the Asyn-
chronous PRAM. Consider a sequence S of (normal) memory requests, followed by a syn-
chronization step, followed by a sequence S’ of (normal) memory requests. The processor
can issue a synchronized read instruction, p := $s, as soon as the only outstanding requests
are to the same memory bank as s. While waiting for the synchronization to complete, the
processor can perform local operations using the values prefetched prior to the synchroniza-
tion and/or issue other synchronized read instructions.

We have not discussed acknowledgements of write operations. Acknowledgements can be
used, for example, to inform the processor that all its memory requests have completed and
thus it can issue a synchronization step. To accommodate acknowledgements, an extra field
is needed in a write request to hold the return address. The acknowledgement can be sent
as soon as the write request arrives at the shared request queue for its destination node. If a
processor is running only a single program, it can maintain a count of the outstanding global
read and write requests. The count is incremented whenever a shared request is made and
decremented whenever a read reply or write acknowledgement is received. Alternatively, a
test to see if all outstanding reads have completed can be made by performing an “or” of
the appropriate status bit in all the cache lines.

Consider a request to synchronize s, that arrives at the head of a shared request queue
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only to find that cache line f(sy) is waiting for a second request to synchronize s,, where
3n # 3,. In our policy, we place the new request s, in the cache line and force the old
request s, to reissue. Note that this forced reissuing will not upset the assumed ordering
of operations: a processor already must wait until a synchronization step completes before
continuing with instructions that must follow the synchronization step.

We now compare this approach to collisions with three alternative approaches.

1. Place the new request s, in the cache line and store the old request in memory location
8,. The advantages of this alternative are that a synchronization can complete as soon

as the second partner arrives and there is no need to reissue requests on collisions.

On the other hand, each request to synchronize s must check memory location s
to see if its partner is in memory. This delays the mechanism even when there are
no collisions. Each memory location used for synchronization must be tagged to
distinguish a cell containing normal data from one containing the return address of
a partner. This tagging may increase the memory line size if an address uses all the
bits in a memory word.

2. Keep the old request s, in the cache line and force the new request s, to reissue.
This eliminates the thrashing that can occur in our approach when requests arrive
in alternating order, e.g. 35, 3x, 35, 3,- On the other hand, the new request s, can
be delayed for a long time if the partner of s, is slow to arrive. In the worst case, a
bug in another program running on the machine can tie up the cache line indefinitely,

preventing the new request from ever succeeding.

3. Keep the old request s, in the cache line and store the new request in memory location
8. This has the drawbacks of both of the previous two approaches. Before the new
request can be stored in s, memory location s, must be fetched to see if the partner
has already arrived. If the partner of s, is slow to arrive, a cache line can be unavailable
to other requests for a long time. This alternative is the most complicated of the three.

As indicated above, thrashing can occur in our approach when requests that map to
the same cache line arrive in alternating order. We argue that this thrashing is unlikely
to continue for long due to the variations in the round trip time for a reissue and the fact
that a reissue does not begin until a new arrival occurs. This assumes that all four requests
(two s, and two s,,) are not issued by the same processor. Indeed, there is no need for a
processor to synchronize with itself.

A possible optimization is to have a separate queue for synchronize requests that are
bumped from the cache. This can save the overhead of the round trip for a reissue. To
avoid the problem of continued thrashing discussed in the previous paragraph, the queue

should not be used for the same request twice.

114



Our synchronization exchanges carry no data. This is because the first partner is storeed
in the cache and we did not want to add an extra field to the cache line to hold any additional
data. The “value” field in the cache holds the return address for the partner. We can,
however, return to a processor the return address of its partner. In this way, each processor
can learn its partner’s id.

Throughout our discussion of the protocol, we have assumed no faults occur in the
network. In practice, there will be a timeout mechanism for reissuing a global read request.
The “requested address” field in the private cache line can be used to reissue the request.

We now turn to an example. Consider a processor wishing to synchronize both at shared
memory location A and shared memory location B prior to reading shared location C. This
can be accomplished by the following (compiler-generated) instructions: (a) p := $4, (b)
q:=3$B, (c) r0:=p, (d) r0 := ¢, and (e) z := C, where p, q, and z are private locations
and 70 is a register. First, a request will be issued to synchronize at A. While this is in
progress, a request will be issued to synchronize at B. Then a private read of p will be
issued. This instruction will not complete until the synchronization at A has successfully
completed (since prior to that the line will be blocked). Finally a private read of ¢ will
be issued. Likewise, this will not complete until the synchronization at B has successfully
completed. Thus both synchronizations will have completed by the time that instruction
(e) is issued. Note that we did not have to test the value of p or ¢ in order to know that
the synchronization had completed (since if the line is unblocked, then the synchronization
has completed). This assumes that pending synchronization reads map to unique cache
lines. As discussed in the next paragraph, cache collisions can lead to “hidden” deadlock
in certain anomalous cases.

We can support the full generality of synchronization exchanges discussed in section
4.2, including nonblocking exchanges as in the above example. However, special care must
be taken so that cache collisions do not induce deadlock in a program. With nonblocking
exchanges, the relative order of the synchronizations at A and B is unimportant. One
processor may issue the synchronization at A then B, while another may issue the synchro-
nization at B then A. The order is unimportant since both are issued before either must
complete, and hence both can complete. However, if, for example, p and g above map to the
same cache line, then the synchronization at A will block the cache line. This prevents the
processor from issuing the synchronization at B until the synchronization at A completes.
Thus we have an additional dependency between A and B that is not present if two different
cache lines are used. With this added dependency, the relative order of the synchronizations
at A and B is now important. Deadlock can arise in this scenario if one processor issues
A first while the other first issues B. However, since p and ¢ are temporary variables used
only for the purpose of synchronization, they can readily be selected so as to map to distinct

cache lines. Alternatively, the relative order of the two synchronizations can be selected so
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as to avoid deadlock even in the presence of cache collisions, e.g. by having both processors
issue the synchronization at A before the synchronization at B. Thus we suspect that this
type of “hidden” deadlock due to cache collisions is not a problem in practice.
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Chapter 6

‘Discussion and Related Work

6.1 Introduction

In the previous chapter, we claimed that the Asynchronous PRAM was a practical model
for the following reasons: it supports an effective programming model for many application
domains, it serves as a good basis for studying algorithms and complexity issues, and it
can be implemented efficiently in hardware. In this chapter, we evaluate these claims and
compare the Asynchronous PRAM with related models.

We begin with a discussion of the machines, programming audience, and application
domains for which the model is well-suited. Section 6.2 discusses the advantages and dis-
advantages of semi-synchronous models. Section 6.3 evaluates other features of the Asyn-
chronous PRAM model. We will limit our discussion to shared memory models and shared
memory parallel computers. It is an important open question whether message passing or
shared memory is the “better” model of processor communication for large-scale parallel
computers. In section 6.4, we enumerate some of the differences between message passing
and shared memory in terms of their effect on programming models, routing strategies, and
architectural features.

6.1.1 Target machines

In section 1.2, we discussed four bottlenecks in large-scale parallel computing, namely,
latency to global memory, contention in the network and the memory banks, synchronization
overheads, and asynchronous communication. Based on the arguments presented there, we
believe that the fastest general purpose shared memory parallel machines of the near future
will be of the following type.

There are hundreds or more processors which communicate by reading and writing data
words to a shared memory. The processors are (nearly) identical. The machine is asyn-
chronous. Each processor has some fast, relatively small, private memory (e.g. registers,
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cache). There is a large shared memory composed of a series of memory banks that are
accessible by all processors via an interconnection network. Each processor has one such
memory bank which is local to it, i.e. it can access the bank without going through the
interconnection network. The network is (nearly) regular, i.e. it is (mostly) symmetrical
with respect to the processors and memory banks. Special coprocessors take care of rout-
ing the memory requests. In order to overcome the high latency of accessing the shared
memory, the parallel computer supports the pipelining of global memory accesses through
the network. This implies that the interconnection network has sufficient bandwidth to
handle the multiple requests per processor. Finally, the network will not contain features
for combining messages (to avoid unneeded synchronization and/or complicated switches),

but may provide support for synchronization.

6.1.2 Target programming audience

At the risk of oversimplification, programmers can be divided into three groups based on the
effort they are willing to expend in order to achieve the fastest programs for their problems.
The casual programmer wants to write programs that work with minimal programming
effort. Programming is done at a high level using software packages (e.g. Mathematica
[Wol88]) and/or library routines (e.g. Linpack [DBMS79]). The informed programmer
is willing to spend considerably more time writing programs in order to improve their
performance. When programming uniprocessor computers, for example, the informed pro-
grammer writes code in programming languages such as C, Ada, or Pascal. Finally, the
sophisticated programmer is especially concerned with program performance and is
willing to program at a very low level in order to achieve such performance. When pro-
gramming uniprocessor computers, for example, the sophisticated programmer writes code
tailored to the target computer, perhaps using the machine’s assembly language.

The target audience for programming models based on the Asynchronous PRAM are
the informed programmers. The goal is to provide the proper level of abstraction and cost
measures to balance the informed programmer’s desired programming effort with his or her

performance expectations.

6.1.3 Target application domains

The model is targeted towards applications where nondeterminism is not needed. For
example, any application suitable for a synchronous model is a good candidate for the
Asynchronous PRAM. Problems from numerical computation and graph theory, for which
PRAM algorithms exist, are well-suited to the model. In contrast, the Asynchronous PRAM
is not suited for developing operating system routines where race conditions, arbitration,

and other forms of nondeterminism are required.
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The Asynchronous PRAM is well-suited to applications whose parallel programs exhibit
frequent, data-dependent interprocessor communication, particularly when sufficient paral-
lelism exists to run the program on a large scale parallel machine. Many applications fit in

this framework.

6.2 The Case for Repeatable Programs

Given these assumptions about the target machines, programming audience, and application
domains, we can proceed to evaluate the Asynchronous PRAM model.
This section discusses the advantages and disadvantages of the semi-synchronous ap-

proach to parallel programming, namely the restriction that programs be repeatable.

6.2.1 Reasons for more structured models

There is a natural tendency to dismiss any idea that places restrictions on programmers
and/or appears to degrade the potential performance of programs. High level programming
languages (even FORTRAN), structured programming, virtual memory, and so on, were
each resisted for years. Eventually, however, the less structured approach is sometimes
abandoned in favor of the more structured approach, typically for one or more of the

following reasons.

¢ Too difficult to use. The less structured approach requires considerable program-
ming effort to avoid making errors. For example, programmers tend to make many
errors when writing programs in assembly code and/or with many “goto” statements.
Another example is the popularity of structured communication paradigms such as
remote procedure call [BN84][Gib87] as a less error-prone programming interface for
communication between machines over a network. (In the remote procedure call
paradigm, the communication between machines is accomplished by having a pro-

gram on one machine call a procedure on another and wait for the return values.)

¢ Too costly to support. Supporting the more flexible approach in hardware and soft-
ware can be costly. Reducing the number of options can reduce the cost of supporting
the programming model. In the remote procedure call example, communication pro-
tocols can be simplified when intermachine communication is restricted to the single
paradigm.

e Too complex for optimizing software. The less structured approach can thwart
the efforts of optimizing compilers and other software. Existing optimizing compilers
take advantage of the structured control flow of programs that are written using
structured programming languages. In particular, structured control flow simplifies
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the task of global data flow analysis. The performance and time saving benefits of

optimizing software is lost when structured programming is not used.

» Too little return for the effort. The performance advantage of the less structured
approach can be too small to justify the extra effort needed. For example, in most
cases, programmer-controlled memory management yields minimal performance gain

compared to operating systems-supported virtual memory.

The natural question that arises with regard to imposing more structure is why not
give the programmer the choice of whether or not to be restricted? On the one hand,
providing only the more structured model may simplify the hardware and software (see
above). On the other hand, the necessary hardware may already exist in the machine and
the less structured model may be needed for a few select parts of a program for which the
performance is crucial. For example, a performance-critical section of a program otherwise

written in a high level language may be written in assembly code.

6.2.2 A four point evaluation

We now evaluate repeatable and nonrepeatable programming in the context of the four
criteria given above. As we shall see, many of the important questions remain unresolved.

Difficulty of use. As argued in detail in section 1.2.4, programs that exploit nonre-
peatability are difficult to write, debug, analyze, and test. Errors can be extremely subtle,
and not detectable by repeating the program. Moreover, debuggers can interfere with the
timing programs. A debugger may mask certain errors by its very presence as an active
agent in the computation, preventing certain timings that reveal a bug in the program.
Parallel programming is already more difficult than sequential programming, so extra diffi-
culties are not needed.

Semi-synchronous programming models, in contrast, eliminate what we claim is the most
difficult aspect of parallel programming. Repeatability means the program can be viewed
as having a single execution path for a given input. Hence, conceptually, the program is
more straightforward and thus the programmer is less likely to make errors. Any bug can
be recreated by rerunning the program. The presence or absence of the debugger does not
affect the computation. However, extra programming effort may be required initially in
order to create a program that is repeatable, just as extra programming effort is sometimes
required to avoid using goto statements. For the problems in chapter 3, certain techniques
were developed for writing repeatable programs that can be used for many other problems.

Cost to support. Programming models that permit nonrepeatability must support
synchronization primitives that arbitrate between competing processors, and perhaps pro-
vide large queues to hold all the “losers” waiting for their next opportunity. Hardware

support such as cache coherence mechanisms must be provided to keep the memory consis-
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tent [DSB88]. Since arbitration typically involves concurrent access, expensive combining
networks may be needed to achieve acceptable performance.

Semi-synchronous programming models, in contrast, can be supported by simpler hard-
ware. Synchronization variables are used for ordering, not arbitration (since the order
of competing accesses has been predetermined). Simple pairwise synchronization meth-
ods, as discussed in section 5.4, suffice since no hardware arbitration is needed. EREW
semi-synchronous models can be efficiently supported on machines without combination
hardware. Methods for synchronization barriers that do not need combination hardware,
such as described in section 5.3, are also appropriate in this case. Since synchronization
steps separate a sequence of competing accesses, each memory location has a single owner,
or a set of nonconflicting owners, in the interval between two consecutive synchronization
steps. This provides a simple means for cache coherence, as discussed in section 5.4. The
programs in chapters 3 and 4, for example, can be efficiently supported by the scheme de-
scribed in section 5.4. Sophisticated hardware coherence mechanisms are not needed since
there is no arbitration of ownership to be resolved at run time.

On the other hand, hardware message-combining and cache coherence mechanisms may
already exist in the machine and/or may be needed for programs from application domains
that can not use the semi-synchronous model.

Complexity for software. Since programs with nondeterminism may have an expo-
nential number of execution paths, software components may be unable to produce quality
optimized code within an acceptable amount of time. Program testers must check all pos-
sible execution paths. Because programs are nonrepeatable and debuggers can affect the
timing of events, traditional debugging techniques do not suffice. Existing debuggers for
MIMD machines (e.g. [FLMC88][MC88]) provide an event logging mechanism that must be
left on at all times, even after the program is considered to be debugged. The mechanism
slows down all programs and can require a large amount of space for the log files.

In contrast, since a semi-synchronous program can be viewed as having a single ex-
ecution path for a given input, the task of the optimizing compiler is greatly simplified.
Instruction schedulers, for example, may be able to take advantage of the simplified control
flow. (An instruction scheduler performs compile time reordering of machine level instruc-
tions for improved pipelining (e.g. [GM86]). Traditional debugging techniques can be used,
and debuggers do not have to be left on at all times. However, a new tool is needed to
detect competing accesses that have not been properly serialized, i.e. race conditions. These
types of bugs must be eliminated first in order to use compiler optimization and debugger
techniques that rely on repeatability. This paper does not address the design of such a tool.

More research needs to be done to study the extent to which compilers, debuggers, and
cache mechanisms can exploit programs written in a semi-synchronous model.

Marginal return. This is the key open question: whether or not the performance
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benefits of nonrepeatability warrant the effort. Considerable experimental research needs
to be performed to test the performance implications of the semi-synchronous model. This
paper provides no such data.

The performance of repeatable programs hinges on the ability of the programmer to
select, in advance, a good ordering for competing communication events. For the problems
studied in chapters 3 and 4, there were “natural” orderings that appear to be reasonable.
Nevertheless, a nonrepeatable program has more freedom to adapt to the delays that occur
during a particular run of the program.

6.2.3 Floating point computations and randomized programs

Difficulties with nonrepeatability are particularly acute for programs with floating point
arithmetic. Different round-off effects can appear on two runs with the same input as a
result of variations in the order of communication events. With repeatable programs, the
final results (and all intermediate results) are the same whenever the input is the same.,
On most machines, even programs that use randomization are repeatable in the semi-
synchronous model. Randomization, on most machines, is generated using a pseudoran-
dom number generator that produces a fixed sequence of “random” bits from an initial
“seed”. Each processor generates an independent sequence from its own particular seed
(as opposed to a single sequence that all processors access for their random bits). Thus a
semi-synchronous program is repeatable if each processor starts with the same seed as it
used in the previous run. Of course, debugging a program with a fixed set of seeds does
not yield a correct program, but at least a particular run that generated an error can be

repeated.

6.3 Practical Evaluation of the Model

Among the variants of the Asynchronous PRAM model, we consider the variant with subset
synchronization, non-unit time communication delay, and exclusive reading and writing to
be the most practical for analyzing algorithms and programs, given our target machines,
programming audience, and application domains. A programming model based on this
variant of the Asynchronous PRAM includes “black box” primitives for the concurrent
access of a memory location, in order to support a CRCW semi-synchronous model (defined
in section 5.2.2). In addition, black box primitives are provided for parallel prefix, list
ranking, and synchronization barriers.

In this section, we discuss design choices for programming models and models of com-
putation, comparing the Asynchronous PRAM with related models.
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6.3.1 Explicit parallelism

In the Asynchronous PRAM, parallelism is expressed explicitly by the programmer or algo-
rithm designer. This contrasts with models in which programs are written in a sequential
language and then compiled into code for a parallel machine (e.g. [AJ88][BCF*88]). These
latter models permit programmers to avoid the complexities of parallel programming. Using
these parallelizing compilers, existing uniprocessor software can be readily adapted to run
on parallel machines.

Unfortunately, the state of the art in parallelizing compilers fails to produce high quality
parallel code for many problems [AK85][AJ88]. Good parallel algorithms for a problem are
often very different from known sequential algorithms. For example, the preorder numbering
of trees is typically computed on a uniprocessor using depth first search [AHU83], but the
fastest parallel algorithm for this problem uses list ranking and other techniques not used
in the sequential algorithm [KR88]. The task of converting from a sequential algorithm to
an entirely different parallel algorithm is too difficult for compilers, so explicit parallelism
is needed to achieve better performance.

6.3.2 Word-level programming

In the Asynchronous PRAM, programs manipulate data words using unary or binary op-
erations. Operations include reading a word from memory, writing a word to memory, and
adding two words, where a word is a value that can fit in a single memory cell. A typical
word size in existing computers is 32 bits. For theoretical models, a reasonable assumption
is that a machine of p processors has a word size of O(logp) bits.

In contrast, in other models such as SISAL [LSF88] and the SCAN model [Ble87],
programs manipulate sequences of values using functions that operate on sequences. These

higher level models simplify the programming task, typically with a loss of performance.

6.3.3 Shared memory

The Asynchronous PRAM provides a shared memory model of processor communication
instead of a message-passing model. Comparisons between the two will be discussed in
detail in section 6.4.

6.3.4 Semi-synchronous

The issue of repeatability was discussed in section 6.2.

The semi-synchronous model also assumes that arbitrary delays are possible. For cor-
rectness in the model, the program must accommodate arbitrary delays in the completion
of instructions. In practice, however, delays may be bounded by some fixed amount and/or

distributed according to some known probability distribution. Models and algorithms can
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be designed that take advantage of known properties of the delays. Some initial work along
these lines is being done by Cole and Zajicek [CZ89).

6.3.5 Two-level memory

A uniform shared memory model presents a uniform programmer view of the shared
memory, in which the access time to a shared memory location is (viewed as) independent of
the processor making the request. A useful refinement is to distinguish between a processor
accessing a local memory bank and a non-local bank, with the access time to the local bank
being much smaller. We refer to this as a two-level shared memory model. In both models,
the topology of the interconnection network is hidden from the programmer, as is the
assignment of non-local data to memory banks. A nonuniform shared memory model,
in contrast, exposes the fact that the access time to a shared memory location depends on
the distance of the location from the requesting processor. Programmers are provided with
an interconnection network graph, either the graph for the target machine or a graph that
maps efficiently to the target machine [HRS88][KLM+89]. Moreover, programmers know
and can control the mapping of the shared address space to memory banks. With this
information, the programmer can compute the cost of any particular communication step.
Communication primitives may be based on relative locality, e.g. each processor reads a
location from its neighbor to the right in the mesh.

Certain problems, especially in numerical computation, lend themselves naturally to
programs with interprocessor communication patterns that are highly structured, obey a
strong locality, and can be determined in advance. The communication structure in such
programs can often be mapped efficiently onto the interconnection graph of the target
machine. In this case, the nonuniform shared memory model is well-suited for writing and
analyzing programs that exploit locality.

In general, however, the “natural” communication patterns for a problem will not be
so highly-structured. Thus, uniform or two-level shared memory programming models are
typically easier to program than nonuniform models. Programmers prefer a uniform view
of memory; they do not want the responsibility of keeping data values properly distributed
among the memory banks throughout the course of a program (in order to minimize network
and memory bank contention). If the natural communication patterns for a problem are
highly irregular, it can be difficult for a programmer to exploit nonuniform access times. The
model is too complicated and each access time is valid only if contention can be minimized.
Another advantage of the uniform or two-level shared memory abstractions are that they
are more universal since they hide the particular topology of the interconnection network.
In addition, there is more flexibility in assigning processors to programs in the presence of
faulty components and multiple users, since the correctness of a program is not based on a
particular processor assignment, even after the computation has begun.
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Uniform or two-level shared memory models can be effective in practice since

e contention at the memory bank level can be minimized by either interleaving or ran-

domly hashing the address space,

e inefficiencies in communication can often be overcome by pipelining global memory
accesses; and

¢ in many machines, the access time is rather uniform for all (processor, memory loca-

tion) pairs.

This latter fact holds since the access time to a memory location is often dominated by
software overheads and the z/k cycles needed to send an z-bit message across a k-bit wide
link [Sei85].

The PRAM model provides a uniform shared memory model in which access to the
shared memory takes unit time, the same as a local operation. Because of this, algorithms
designed for the PRAM tend to be too fine-grained to run efficiently on real machines. This
disadvantage of the PRAM can be partially overcome if the number of (virtual) processors
in the program exceeds the number of machine processors on the target computer. Valiant
[Val89] refers to this excess as the parallel slackness of an algorithm on a machine. If there
are k PRAM processors per machine processor, then each processor can issue the k memory
requests in pipelined fashion and thus proceed in a less fine-grained manner. The advantage
to be gained through parallel slackness depends upon the rate at which memory accesses
can be pipelined. For example, consider a machine in which a processor can complete a
batch of k¥ memory requests in 2/ + f(k) steps where [ is the (one-way, average) latency
to non-local memory. If f(k) = ck for some constant c, then the difference between a set
of local references and a set of non-local references is at least a factor of ¢ slower for the
non-local case. In existing machines, ¢ is quite large (e.g. 22 on the Stanford DASH machine
[Gup89]), or worse still, f(k) is not a linear function of k. Moreover, certain applications
may have insufficient parallel slackness. For these reasons, the distinction between a local
reference and a non-local reference is an important one.

Other models that do not distinguish between local and non-local references include
the SCAN model [Ble87] and the Bulk-Synchrony model [Val89]. Models that present a
two-level view of memory, besides the Asynchronous PRAM, include the LPRAM [AC88]
and BPRAM [ACS89] models.

An important open question is whether hybrid uniform-nonuniform models can be ef-
fective. In these, the programmer can selectively control the mapping of the shared address
space to memory banks for sections of the program that can exploit locality.
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6.3.6 Explicit processor scheduling

Programming models can be classified according to the way in which processors are assigned
work. In typical SIMD models, the single instruction dictates the assignment of processors
to data items. In MIMD models, processors are either assigned work explicitly by the pro-
grammer or implicitly. In explicit scheduling models, such as the PRAM and the Asyn-
chronous PRAM, the programmer explicitly schedules the work among a collection of virtual
processors. In implicit scheduling models, such as the EPEX model [Dar87][DRGNPS6),
the programmer does not schedule the processors. Instead, the programmer labels instruc-
tions in the code that can be done in parallel, and relies on the compiler to add code for
dynamically scheduling the processors during program execution. For programs with DO
loops, the assignment of loop iterations to processors can either be done by the programmer
or compiler (a pre-scheduled loop) or at run time (a self-scheduled loop).

Explicit scheduling models permit the programmer to be clever about how processors
are scheduled. Moreover, the large overheads of run time scheduling are avoided. Implicit
scheduling models, on the other hand, free the programmer from scheduling concerns and
provide an easy way to write programs that automatically adjust to the number and relative
speeds of the processors. Run time scheduling of processors is supported without operating
system intervention through the use of global work queues or shared status variables. Upon
completing its previous task, each processor accesses the appropriate work queue or status
variable to get the next available task to be completed. For example, the status variable
for a self-scheduled loop would indicate the first iteration of the loop not yet assigned
to a processor. A processor that has finished its assigned work atomically updates this
variable using a fetch-and-add primitive so as to obtain a unique iteration (or block of
iterations) on which to work. However, considerable network traffic and contention (“hot
spots”) arise when many processors access the same work queue or status variable in order
to be scheduled. A sophisticated combining network, with fetch-and-add hardware at each
switch, is needed to avoid serious contention bottlenecks in programs with frequent run
time scheduling [PN85].

Explicit scheduling models can do run time scheduling if the programmer puts instruc-
tions for load balancing into the program. Many PRAM algorithms, for example, use
parallel prefix operations to assign consecutive numbers to the tasks remaining, so that the
remaining tasks can then be evenly distributed among the processors (see [KR88]).

Since the target machines have no combining hardware and our goal is to have repeat-
able and easily analyzed programs, the Asynchronous PRAM provides explicit processor
scheduling. The model provides a run time parameter, p, that indicates the number of
processors assigned to the program. This parameter permits programs to be tailored to the
number of machine processors assigned. For example, the best parallel algorithm to use for
sorting n integers depends on the ratio of n to p [CS88]. Most of the algorithms in chapter
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3, as well, consist of two or three stages in which the number of machine processors dictates

the proper time to move from one stage to the next.

6.3.7 Arbitrary pipelining

The Asynchronous PRAM assumes that a batch of k requests to read any k shared memory
locations completes in 2d+k—1 time steps. In section 6.3.5, we argued that such a pipelining
rate was unrealistic for existing machines. Indeed it is important to distinguish between local
and non-local shared memory references for this very reason. On the other hand, adding
another parameter, corresponding to the pipelining rate of the machine, would complicate
the model considerably. Thus the compromise taken in the Asynchronous PRAM model is
to provide a two-level view of memory and make an overly optimistic assumption on the
pipelining rate, in order to avoid adding an additional parameter.

The LPRAM model [ACB88] presents a two-level view of memory but does not permit
pipelining. The follow-on model, the BPRAM [ACS89], permits pipelining, but only of
contiguous blocks of memory. This matches the realities of certain machines in which an
entire cache line or memory page can be transferred to cache or local memory as a unit. In
addition, the model is well-suited for message-passing machines that use long messages.

Arbitrary pipelining is clearly more flexible than block pipelining. It is also easier to
use, since the programmer does not have to ensure that values of interest are collected
into contiguous locations. If arbitrary pipelining were permitted in the BPRAM, then a
transpose of a \/n by /n matrix, or any other permutation of n data items, could be done
in O(n/p+ d) time on a model with p processors and communication delay d. This beats
the BPRAM lower bound for this problem given in [ACS89]. Arbitrary pipelining is better
suited to the task of simulating a program with parallel slackness, since for each machine
processor, one step in the program can correspond to a batch of memory requests that are
scattered throughout memory.

Block pipelining, however, has the practical advantage that a batch of values are gnaran-
teed to return in order. This simplifies the bookkeeping and buffering tasks at the processor,
and facilitates the use of vector coprocessors that may be residing in the same node as the
processor. Moreover, only one instruction to access memory is outstanding at a time. Ex-
isting uniprocessors, which typically permit only a few read instructions to be outstanding
at a time, can then be used as buildirig blocks for parallel computers (e.g. in the RP3
[PBG*85]). Finally, block pipelining can reduce the size of programs, i.e. save code space,
since a single instruction reads an entire block of memory.

A possible hybrid model, not studied to date, is to have block pipelining for read steps
and arbitrary pipelining for write steps. Having block reads means that the locations read
arrive in a fixed order and that existing uniprocessors can be used, while having arbitrary

pipelining of writes means that values from a processor can be placed in different blocks of
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memory, in anticipation of the next block read instructions. This simplifies programming,

and permits any permutation of n data items to be performed in O(n/p + d) time.

6.3.8 Limited concurrent access

Since the target machine does not have a combining network, simultaneous access to a
memory location by many processors must be avoided. Thus the EREW Asynchronous
PRAM is the most practical. However, concurrent reading and writing is convenient for
programming, so the compromise is to provide library routines (i.e. black box primitives)
with streamlined software emulation of these two primitives. A concurrent read or write is
converted by the compiler or run time support to instructions to fanin and/or fanout to the

desired location in a tree-like fashion.

6.3.9 Explicit cost measures

Throughout this paper, we have considered programming models and models of computation
to be closely related. We believe that this view is appropriate for our target programming
audience. A programming model for informed programmers must include a few select
cost measures, so that algorithms can be analyzed and compared, and programmers can
be guided to write faster programs without having to run the program first. These cost
measures should accurately estimate the true performance, encouraging good programming
practice for the parallel machine. Incorporating too many cost measures into a model results
in a model that is complicated for programming and analysis, and either possesses too many
parameters or is too machine specific and technology dependent.

Existing programming models such as the EPEX model have no explicit cost measures.
Instead, programmers rely on run time performance monitors to get feedback on their
program. Performance monitors are useful as a means for fine tuning a program, but have
not yet proven to be as effective as programming using a model with explicit cost measures.
In the sequential world, for example, a programmer must know the difference between an
O(n) and an O(n?) algorithm or suffer serious performance penalties. By the time the
O(n?) subroutine in a very large software system is detected as a performance bottleneck
by run time monitors, most if not all of the code likely has been written. By that time, it
can be quite costly to substitute in the linear time algorithm, as the required changes may
involve modifying widely used data structures.

On the other hand, the effectiveness of a model with a few simple cost measures is con-
siderably reduced in the parallel computing world, due to the complexity of the computation
itself and the degree of interference by other programs running on the same machine.
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6.3.10 Synchronous cost measures

In the Asynchronous PRAM model, “unit time” is the same for all processors. If each
processor executes a set of instructions that cost k and then participates in a synchronization
barrier, the model charges k plus the cost for the barrier. While for correctness, the program
must accommodate arbitrary delays in the completion of instructions, for enalysis, the
processors are viewed as executing in lock-step. Synchronous cost measures, as used in the
Asynchronous PRAM, are best-suited to approximating machines where arbitrary delays
occur, but (a) long delays are infrequent, and (b) they tend to be evenly distributed among
the processors, especially when the processors all have similar programs. We expect this to
be a reasonable approximation of the behavior of a machine with a symmetrical network
and identical, tightly-coupled processors.

Other cost measures are possible. In the area of distributed systems, there is typically no
notion of time. Instead the important parameter is the number of messages sent. Consider
a chain of k messages, in which processor 1 sends a message to processor 2, which then sends
a message to processor 3, and so forth, until finally processor k sends a message to processor
k+1. In these models, a chain of k¥ messages is not distinguished from & messages that can be
sent in parallel. Thus the measure is not suitable for parallel computers. Recently, Awerbuch
has introduced a model for distributed systems that distinguishes between chained messages
and parallel messages [Awe87].

Another accounting scheme for asynchronous computation is due to Lynch and Fischer
(LF81]. In this scheme, in one time unit or “round”, each processor executes at least one
instruction. As mentioned in section 2.3, this scheme forms the basis of the APRAM model
[CZ89]. Round-based cost measures are suitable for nonrepeatable programs, even programs
without explicit synchronization. However, they are more difficult to use than synchronous

cost measures, and they do not account for the non-unit time latency to global memory.

6.4 Shared Memory vs. Message Passing

Thus far, we have limited our discussion to shared memory models, such as the Asyn-
chronous PRAM, and shared memory parallel computers. In this section, we characterize
the differences between the shared memory and the message passing models of processor
communication. It has been observed by many (e.g. [AS88]) that each of these models can
accommodate the other. However the emulations between the two are not practical: a ma-
chine streamlined for one model will not efficiently support the other model. Moreover, the
emulations obscure the differences in the types of programming paradigms induced by each
model. In what follows, we highlight seven important distinctions between shared memory
and message passing.
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Message semantics. In the shared memory model, messages have very simple seman-
tics: a message is always directed to a shared memory bank, and can mean one of two
things - either read (and return) the value of some memory cell or write a given value into
some memory cell. In a general message passing model, messages can have arbitrarily com-
plex semantics, and can directly invoke actions from various system components (not only
memory banks). Special hardware might be required to handle (and interpret) messages
efficiently. There is a clear relationship between hardware complexity at the receiving node
and the complexity of the message semantics. The hardware mechanism for implementing
only shared memory access can be quite simple.

Active vs. passive communication. In the shared memory model, the only way for
a processor to obtain information on the actions or state of other processors is by reading
a shared memory cell, i.e. it has to perform a global action. Thus when two processors
want to communicate it requires two global actions and careful timing (write before read).
Message passing permits a “passive” mode of communication - a processor can wait for
other processors to send it information. This mode of communication enables, for example,
implementing certain efficient synchronization schemes that cannot be performed on pure
shared memory models, such as methods based on interrupts rather than polling.

Possibility of combining messages. Since shared memory messages are so limited,
it is feasible to use a combining network to reduce network traffic and avoid certain serial
bottlenecks. For arbitrary messages, however, combination seems much harder to imple-
ment. Furthermore, messages to the same processor in the message passing model are often
unrelated and cannot be effectively combined.

Buffering requirements and switching strategies. Shared memory has short mes-
sages. (eneral messages could be very long and require either large buffers or certain
switching strategies such as circuit switching or wormhole routing ([AS88]). However, we
should point out that some shared memory models, e.g. the BPRAM discussed in section
6.3.7, allow transfers of whole blocks of memory. Permitting block transfers as an atomic
operation has strong implications on the machine architecture for issues such as combining
and routing schemes.

Memory bottleneck. In the message passing model processor communication is sep-
arated from the the memory hierarchy, which is the usual bottleneck in traditional unipro-
cessor computers. Furthermore, less address bits need to be sent than in shared memory,
since typically the number of processors is much smaller than the number of words in global
memory. However, in message passing the receiving processor usually needs to get involved
in storing the message (see next paragraph).

Processor participation in handling messages. A processor can be involved in
several levels of parallel communication. The trend in current systems has been to relieve the

processors from playing a role in the communication network (such as routing), while keeping
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them involved in issuing and interpreting messages. In general, processor participation
would be higher in message passing models than in shared memory ones. This is because
processors need to respond to potentially complicated messages, and also might need to
help in memory management (of their mailboxes).

Programming models supported. The two communication models induce different
ways of thinking about solving problems, and therefore promote different programming mod-
els. For example, message passing can better support ob ject-oriented models and paradigms
in which processors distribute work to other processors. Shared memory, on the other hand,
is more suitable for the PRAM model and its extensions. In shared memory the sender and
receiver are decoupled in identity and timing, and communication is in the style of a bulletin
board rather than personal mail.

In summary, even though shared memory and message passing can be viewed as compu-
tationally equivalent (in the sense of mutual emulation), they deserve distinction because of
their different implications on programming models on one hand and machine architecture
on the other,
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Chapter 7

Conclusions

Parallel machines with hundreds to thousands to millions of processors are being proposed
and developed as a vehicle for high performance computing. Four primary bottlenecks to
effective use of large scale parallel computing are the latency to global memory, contention
in the network and at the memory banks, synchronization overheads, and asynchronous
communication. Based on these four, we believe the fastest (general purpose) shared mem-
ory parallel computers of the near future will be tightly-coupled, asynchronous machines
with (nearly) identical processors and symmetrical networks. Each such machine will have
a large shared memory comprised of a collection of memory banks that are accessible to
all processors via the network. This network will provide sufficient bandwidth to support a
high degree of pipelining of memory requests.

We have introduced the Asynchronous PRAM model of computation for the design and
analysis of algorithms for such machines. The Asynchronous PRAM differs from the well-
studied PRAM model in two important respects. First, Asynchronous PRAM processors
run asynchronously and there is an explicit charge for synchronization. Second, there is a
non-unit time cost to access the shared memory. The Asynchronous PRAM is one of the
first attempts to design an asynchronous model suitable for parallel computers and study
it in detail.

The Asynchronous PRAM model is based on two premises. For correctness, the program
must accommodate arbitrary delays in the completion of instructions. For analysis, however,
the processors approximate lock-step execution. We believe this is a reasonable model for
designing algorithms for machines where arbitrary delays occur, but (a) long delays are
infrequent, and (b) they tend to be evenly distributed among the processors, especially when
the processors all have the same or similar programs. We expect this to be a reasonable
approximation of the behavior of the machines described above.

An Asynchronous PRAM program is correct only if it works regardless of any run time
delays that may occur. These delays are often too difficult to analyze by the programmer
or compiler, and are best viewed as a form of indeterminacy in program execution. Sources

132



of delays in real machines include network congestion, memory bank contention, operating
system interference, cache misses, and page faults. Because of the difficulties of writing cor-
rect programs in the presence of this indeterminacy, we impose a structured programming
paradigm in which race conditions are eliminated. Any two competing references are serial-
ized in a predetermined order (the order may, however, be data-dependent). This simplifies
the use of our model, since each processor sees a deterministic view of the computation.

We have presented numerous algorithms, simulation results, and lower bounds for the
Asynchronous PRAM model. The post office gossip game was introduced to study the rel-
ative power of various pairwise synchronization primitives. New techniques, not needed for
synchronous models such as the PRAM, were developed for producing faster Asynchronous
PRAM algorithms and reducing the number of processors needed. We believe the resulting
algorithms are far more practical than algorithms developed for the PRAM.

We have provided evidence to support the practicality of the Asynchronous PRAM
model. We introduced the notion of a semi-synchronous programming model, a2 model
for repeatable asynchronous programs. Repeatable programs, in which the output and all
intermediate results are the same every time the program is run on a particular input, greatly
simplify the tasks of writing, debugging, analyzing, and testing programs. In addition,
we presented methods for supporting the Asynchronous PRAM efficiently in hardware,
including a cache protocol for the Asynchronous PRAM and a new technique for barrier
synchronization.

This thesis has introduced a number of new models and measures for studying complex-
ity issues in asynchronous parallel computation. The results presented here represent only
a few of the many interesting questions that can be studied. Many open problems exist that
may be easy to solve. Others will likely be more elusive. For example, algorithms can be
designed for problems not addressed in this thesis (e.g. dynamic tree contraction [MR85]).
It would be interesting to develop a fast sorting algorithm for the Asynchronous PRAM
that is more practical than the one given in this thesis (perhaps based on the Cole parallel
merge sort algorithm [Col88]). Many lower bounds remain open questions. For example,
there is a gap between the upper and lower bounds for list ranking in many variants of the
Asynchronous PRAM. Also, there is a gap for simulating the synchronous-LPRAM on the
Asynchronous PRAM,

Many problems on the gossip game model are still to be resolved. It would be interesting
to have stronger lower bounds for many of the gossip problems studied. Gossip game
models can be used to study the relative power of various synchronization assumptions and
primitives not addressed in this thesis, e.g. the relative power of one-way versus two-way
synchronization. Whereas in two-way synchronization, each processor waits for the other to
arrive at a synchronization point, in one-way synchronization, a “receiver” processor waits

for a “sender” processor but not vice-versa.
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We believe this work and other recent work on asynchronous models represent important
first steps towards a richer understanding of asynchronous parallel computation. Under-
standing the computational power of various synchronization assumptions and primitives
leads to an understanding of an important tradeoff in the design parallel machines: namely,
how important are particular synchronization assumptions versus how much it costs (e.g. in
dollars, memory access time, and machine cycle time) for the hardware to support these
assumptions.

This work does not answer the question of whether or not a semi-synchronous model is
practical. We have discussed its advantages, but we have no experimental data to reveal
how it compares in practice. This work is entirely a paper design. Few existing machines,
if any, match the description of our target machine. The hardware mechanisms described
have not been built. No compilers have been written.

More work is needed in the areas discussed in sections 6.2 and 6.3. We highlight two
of these. First, work is needed to develop an appropriate means of enforcing the semi-
synchronous model in programs and testing for violations of the model. This enforcement
and/or testing may be accomplished through some combination of programming language
constructs that forbid violations, compilers that detect potential violations, and run time
mechanisms that signal when a violation has occurred. Second, more work is needed to
study the extent to which compilers, debuggers, and cache mechanisms can exploit programs
written in a semi-synchronous programming model.

There are many difficulties to overcome before large scale parallel computers can be used
effectively for high performance computing. In these early stages of the field, with relatively
few machines built and/or programs written, many questions are not easily resolved. We
believe that research that addresses algorithms, software, and hardware together, as has
been attempted in this thesis, can best help accomplish this goal.
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