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Abstract

Allen [ALLE83] adapted path-consistency techniques /MACK77] to heuristic reasoning
concerning intervals over linear time, by calculating the composition table of binary relations
on intervals, and using it in the path-consistency algorithm. We consider here a model of
branching time which is dense, unbounded, future branching, without rejoining branches. The
algorithm in fALLES3] works directly with branching-time intervals, provided only that the
composition table of the binary branching-time interval relations is used instead of Allen’s
table [LADK88]. Here we calculate the composition table which has to be used, which is
considerably more complex than the table for linear-time intervals. This provides a heuristic,
cubic-time algorithm for reasoning with branch-time intervals.
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1 Introduction

We focus in this paper on the structure of a particular branching model
of time, which is suitable for path-consistency computations on time inter-
vals [MACKT7T, MACKS87, ALLES3]. Path-consistency was adapted from the
constraint satisfaction domain by James Allen for temporal reasoning with
intervals over a dense, unbounded linear time model [ALLE83|. The alge-
braic nature of this heuristic reasoning technique has been investigated in
[LADKS8S8]. We shall assume some knowledge of both path-consistency com-
putations, and Allen’s adaptation of them to linear-time interval reasoning.

It was shown in [LADKSS] that, given a class R of binary relations which
is closed under the operations of union, intersection, complement, converse
and composition, (an algebra of relations in the sense of Tarski), one may use
path-consistency algorithms, which use just the intersection and composition
tables for the class of relations, for heuristic reasoning using networks of
constraints. It was also shown that one may start from a class A of binary
relations on intervals that are pairwise disjoint, and such that any pair of
intervals is in exactly one of these relations (a class of ‘atomic’ relations). If
the class R is finite, then one may construct all relations in R by taking all
possible unions of atomic relations (i.e. all unions of relations in A). Given
the table of compositions of atomic relations, one may calculate compositions
of arbitrary relations in R, and therefore apply path-consistency algorithms
to networks over R. This, in essence, is what was done by Allen [ALLES83]
for the case of R = linear-time interval relations over a dense, unbounded
linear order of points.

We first define a model of branching time suitable for our purposes. We
then define a class of atomic binary relations on intervals in this model, and
calculate the composition table. This information is sufficient to allow the
direct use of path-consistency algorithms on networks of these relations, in
the manner of Allen. In particular, if Allen’s routine Constraints is modified
to use the composition table for branching time interval relations which we
calculate, instead of his table, then his algorithm Add R(,j) may be used
unchanged for constraint satisfaction in the branching-time interval domain.
(This follows directly from considerations in [LADKSS]).

The need for branching time models in artificial intelligence and other
areas of computer science has been argued by others, as we note below. We
do not have the space to iterate these arguments here. In the next section, we



briefly introduce constraint problems and path-consistency. Section 3 gives
the underlying point model of branching time, section 4 the atomic relations,
and section 5 the composition table for the branching-time interval relations.

Other Work. Several different branching temporal models have been con-
sidered for use in various different areas of computer science, in particular
artificial intelligence, and concurrency theory. In a branching time structure,
each point is regarded as having many different possible futures, although
only one past [PNUE77, McDERS82, VanB88, EMERS89]. Other approaches
include parallel linear “worlds” [KAHN77, SHOHS88] and models based on rel-
ativistic space-time [GOLD80, RODR90a, ANGE90b]. More general models
based on a partial order of events are considered in [LAMP86], [ANGES9a].
Non-linear models attempt to represent the possibility of concurrent events
or the idea that there are many different ways that events could develop
depending on potentially unknown circumstances.

2 Path-Consistency Computations

We give here a brief introduction to path-consistency computations as used
in constraint networks. A binary CSP (constraint satisfaction problem),
or BCSP, is given by a formula (Pi(z1) A ..Pu(zn) A Pu(z,z,) A
Pisl@e8a) v v A Ph_in(Za-1,2a)), where the P; and P;; are predicate
symbols representing constraints on the variables z;. The constraints are
binary relations, i.e. sets of pairs of objects from some domain. In our
case the domain is intervals over branching time. Thus we may freely use
set-theoretic operations such as union and intersection on these constraints,
along with other operations specific to binary relations. A BCSP is satisfied
by finding values for the variables which satisfy the formula. The unary
constraints represent domain constraints on values for each of the variables,
and the binary constraints are usually of the form P;(z;,z;) = ((2;Riz;) V
........ (z;Ryz;)) where the R, are a fixed collection of disjoint ‘atomic’ relations
over the domain of interest. For examples, and bibliography, see the survey
[Mac87].

Given binary relations R(z,y), S(z,y), the composition R o S of the
relations is defined by

(Ro5)(z,y) & (32)(R(e,2) & 5(z,y))
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So (a,b) € (R o S) if and only if there is a value ¢ such that (a,c) € R and
(¢,b) € S. Now, suppose we have a CSP in the variables z,..,z,, and let
P;; be the relational constraint between z; and z;. Then for any satisfying
values ay, ..., a, for the variables ,, .., t, we must have, by the definition of
composition, {a;,ax) € Pix = (ai,ax) € P;j o Pj, for any ¢,j,k < n. This
necessary condition may be used as a pruning technique to narrow down
the potential choices of a; and a;. This observation is the motivation for
path-consistency computations. A path-consistency computation consists in
repeating the computation

For every triangle (¢, k,7) in A: do P;j «— P;; N (P o Pi;).

until for any 2,7,k < n we have Py C P;; o Pj. See [LADKS8] for more
details.

3 The Model

Among branching-time models, there are many different alternatives, cor-
responding to a number of fundamental choices: discrete, dense, or continu-
ous time; finite or infinite extent; branching into the past and future or just
branching into the future; branches can rejoin or remain forever separate.
We chose a model which is dense, of infinite extent, future branching,
without rejoining branches.

The branching-time model consists of a (strict) partially ordered set (T,
<) of time points satisfying the following additional conditions. We state the
conditions informally, since the formalisations are well-known.

(B1) (Unbounded) For all t in T' there exist t; and t; in 7' with ¢; < ¢ < #,.
(B2) (Density) For all ¢, t; in T there exists a ¢ in T" with ¢; < ¢ < ¢,.

(B3) (Future Branching) For all ¢; and ¢, which are incomparable (¢; is
neither <, >, nor = to t,: written ¢,||¢;) there exists a ¢ with t < ¢,
and t < t5, but there exists no ¢/ with ¢; < ¢/ and ¢, < ¢'.

(B4) (Greatest Lower Bounds) For all ¢, t; in T there exists a greatest
lower bound t = glb(ty,t;) in T. If ¢;||t2, the point ¢ is called a branch
point.



(B5) (Dense Branching) For any pair of comparable points ¢, < ¢; in T
there exists a ¢ in T such that ¢; < ¢ and ¢;||¢. (In other words, between
any two points in T there exists a branch point.)

Generally, a (temporal) interval over T thought of as a set of points
[ti,te] = {t: i St <ty ]

Notice that an interval defined in this manner is a linear (totally ordered)
structure.

We do not need to address questions of a topological or set-theoretic na-
ture, however, and the algebraic structure of interval relations suitable for
constraint satisfaction techniques is unchanged if we regard an interval in-
stead as simply an ordered pair of points (a, b) with « < b. This abstraction
allows the formulation of interval reasoning as a problem in relation algebra,
following [LADKS8S8]. We shall use the notation [a,b] for the interval repre-
sented by the pair of points (a, b). Thus issues such as whether the endpoints
are included, or not, have no interpretation in our formulation. However, we
do consider explicitly the branch points in our enumeration of atomic interval
relations. Relations in which one of the intervals starts at the branch point
are distinguished from relations in which neither do. This increases the total
number of atomic relations we have to consider.

4 Atomic Branching-Time Relations

Figure 1 shows the thirteen atomic binary relations between two intervals in
linear time. The figure indicates that the relations can be typified by the
relations (<, >, or =) that exist between the endpoints of the two intervals.
In branching time, all these relations still pertain, but there is the further
possibility that the endpoints be unrelated. If the two intervals are [ = [I,,1}]
and J = [J,,Jy], then I,||J, implies that the intervals are completely unrelated
(a new relation, named U), while I, related to J; by <, >, or = implies that
one of the thirteen linear relations (defined by Allen) holds. If, however, I,
is related to J, but If||Jy, there are ten other new relations resulting from
the three choices of I, <, >, or = J,; and from the relative location of the
branch point, p = glb(Iy, Jy), with respect to I, and J,. Figure 2 presents



the eleven new atomic branching-time relations, completing the twenty-four
that exist. Figure 3 illustrates these same relations graphically.

It should be remarked in passing that without the axiom (B4) assuring
the existence of greatest lower bounds, other relations could be classified in
which there is no branch point, p. If the position of the branch point is
ignored and only the relationship of the endpoints considered, then only a
total of seventeen (rather than 24) relations emerges.

5 Compositions of Branching-Time Relations

As we have noted, the path-consistency technique adapts directly to the
branching-time relations, using just the branching-time composition table
instead of Allen’s table in his routine Constraints [ALLES3]. (This follows
from considerations in [LADK88.2]). Hence one needs to have available the
compositions of relations between intervals. One may do this by calculating
the table of compositions of the atomic relations, and the compositions of
more general relations (unions of the atomic relations) will follow from the
distributive laws [LADKS8.2]. In this section, we calculate the composition
table, which is complex for the case of branching time, in contrast with
the relatively simple linear-time case of Allen. This calculation is the main
content of this paper.

The composition table is of size 24 by 24, for the twenty-four atomic bi-
nary temporal relations between two intervals over our branching-time model.
Each composition is expressible as a disjunction of the atomic relations, a
greater number of terms indicating greater generality. The most general re-
lation possible is the universal relation, 1, indicating that the relation is the
disjunction of all atomic relations. Due to the large number of disjuncts
appearing in some compositions, a number of abbreviations besides 1 are
introduced in Tables 2-4. The tables become more compact and the patterns
which arise are easier to discern.

The table of compositions itself is presented piecemeal. Table 1 presents
the compositions of the eleven new branching-time relations with one an-
other, while Table 2 gives their compositions with the twelve linear-time
relations. Although one might imagine that the compositions of the twelve
linear-time relations with themselves would remain the same as in the linear-
time model, this is not the case. For instance, if i O~ j and j O k, in linear
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time it can be concluded that
i(( +M+O+F- +D7 +5+=+5" +D+F+0~ )k

while in branching time the same composition allows, for example, 7 pO &.
Only the compositions of the linear-time relations which change in branching
time are presented in Table 4. The rest of the table of compositions of linear-
time relations may be read directly from [ALLE83] and we do not repeat it
here.

To understand how the tables of compositions are obtained, it should first
be observed that for any relations r and s,

(r;s)= = (s7;3r~)

This allows almost half of the complete table to be deduced mechanically
from the other half; in particular, the 12 by 11 table of compositions of linear-
time relations with the branching- time relations is completely derivable from
Table 2 using this identity and hence is not shown.

For an example of the calculations, in order to find A;A , suppose that
(L5, 1s) A [Js,J] A~ [K,Kf]. Then I, < J, = pl and K, < J, = p2, where
pl = glb(l;,Jy) and p2 = glb(J;,K; ). :

It follows that pl = p2, so that glb({;,Kf) > pl and both I, and K, are
< pl. This allows all linear-time relations, and all relations which have the
branch point following the start of both intervals: pO and pO~ .

Since it is common for a composition to include all atomic relations that
satisfy some condition such as I; < J;, abbreviations are introduced for these
relations. In Tables 2-4,

[<s ] : disjunction of all relations between I and J with I, < J, and

{<s} : disjunction of all linear-time relations between I and J with 7, < J,.

The corresponding meanings are assigned to {=,}, [=;], {</}, etc. In a
similar spirit, {1} is used to represent the universal relation in linear time
and hence the disjunction of the thirteen linear-time relations. Finally, since
relations of the form O+pO and M+pM arise frequently, the shorthand

Rel* is used to mean Rel + pRel

for any of the relations Rel for which pRel is defined. As an extension of this
notation, {1}* denotes the disjunction of all linear-time relations together
with all the seven relations of the form pRel.
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CONDITION RELATION SYMBOL
Ir< Jy I before J &
(T 2 I after J >
Iy =J, I meets J M
L= I met by J M-
Iy < Js < Iy < Jg | I overlaps J O
Js < Iy < Jy < Ip | I overlapped by J | O~
Iy o dy = Jy I finishes J F
I, < Js, Iy = Jg | I finished by J =
Iz d, Iy < Jy I during J D
Lo Jigy dp B Iy I contains J D
I, =Js, Iy < Jy | I starts J S
lo=ds df 2 Jy I started by J 5
Iy=J Ip = J; I equals J =

Figure 2:

Two Intervals I = [I,,I;] and J = [J;,Jy]

The Thirteen Linear-Time Interval Relations Between

CONDITION | RELATION SYMBOL
p < I;, p < J, | unrelated U
Isi= P dy adjacent A
L= dy=p touching T
Iv< p<d, partially precedes p<
Ipk Jy=p partially meets pM
L= Jds<<p partially starts pS
I,<Ji<p partially overlaps pO
Ji = p< L converse of adjacent | A~
Js € p< converse of p< p<
oIy i L= converse of pM pM™
Js<I;<p converse of pO pO~

Figure 3: Relations Unique to Branching Time




TABLE 1

Compositions of Branching Relations

ol pO+{A,<B,} pp : p(P+M+0) (A, strictly first)
o ¢ pD+{A>B,} ¢ . T+A+pM” (X=A,)

¥ pS+{A=B} pA : p(S+0+D) (X strictly last)
[>]: all relations in which A >B,

[ <] : all relations in which A <B,

[ =] all relations in which A =B,

{A>B,}: all of Allen's relations in which A >B,
{A <B,): all of Allen's relations in which A, <B
{A=B}: all of Allen's relations In which A B v



TABLE 2
Compositions of Allen’s and Branching Relations

where

A = (A,,A)Is an interval starting at A, and finishing at A,

pRel : If Xis the branch paintand A, < X < A, then A pRel B ("A partially Rel B")
means (A X) Rel B.That is, the branch pointis in A and the initial segment
of A up to the branch point is in the relation Rel to B.

Rel* : Rel+pRel

X : The branch peint

\Y : U+A"+pP” (X<A))

o : T+A+pM™ (X=A,)

[<f] : P+M+O+S+D  (A<B)

A : S+0+D (=[<f]-B)

pA  : pS+pO+p0O” (X strictly last)

p : P+M+O (Allen's Rels with A <B )

pp : pP+pM+p0O (A, strictly first)
B 1 P+M (Allen's Rels with A<B,)



in the Branching Time Model

7ABLE =2
Compositions of Allen's Relations that Change

P M o D S
P I AT+ +pp | o+pp” a"+pp” o’ +pp
M” A+o+pp Y pM +x” pM”+x” pM +x
Q" a+pp pM+k YHKHK X K -
D" o+pp pM+x K YHK4K K
S o+pp pM4x ) mt.c K (=s]

where
= (A_A) is an interval starting at A, and finishing at A,

pHel If X is the branch point and A <X <A, then A pRel B
("A partially Rel B") means (A X) Rel B That is, the
branch point is in A and the initial segment of A up 10
the branch polint is in the relation Rel to B.

Rel* Rel+pRel

X . The branch point

T . D4+F

p : P+M+O (Allen's Rels with A <B, and A<B))

pp . pP+pM+p0O (A, strictly first)

B : P+M (Allen's Rels with A<B,)

vy . pS+{=s} = pS+S+57+1'

[=s] : T+ (All Rels with A =B,)

K . pO+HA<B<Al = pO+O+D +F

o ¢ pO+{«s} = pO+P+M+O+F“+D = pO+p+1
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