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Abstract

We characterize the computational complexity of counting the exact number of satis-
fying assignments of (XOR, AND)-formulas in their RSE-representation (i.e. equivalently,
polynomials in GF[2] [x 1,...,x]). This problem refrained for some time efforts to find a
polynomial time solution and efforts to prove the problem to be #P-complete. Both main
results can be generalized to the arbitrary finite fields GF[g]. Because counting the number
of solutions of polynomials over finite fields is generic for many other algebraic counting
problems, the results of this paper settle a border line for the algebraic problems with a
polynomial time counting algorithms and for problems which are #P-complete. In [Karpinski,
Luby 89] the counting problem for arbitrary multivariate polynomials over GF[2] has been
proved to have randomized polynomial time approximation algorithms,
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1 Introduction

Let us denote by kXOR the class of all formulas f of the form f = @ay A Ajeas i, for a 0-1
vector (a4)acq1,..,n} such that [A] < &k (or equivalently, kXXOR-formulas f are Galois polynomials
f € GF[2][zy,...,z,]of degree at most k). XOR = |J; kXOR. For a formula f € XOR with n
variables, denote #f = |{(z1,...,2a)|f(Z1,...,Zn) = 1}|. The counting problem for kXOR is the
problem of computing # f for any given formula f € kXOR.

In this paper we prove that the problem of exact counting the number of satisfying arguments of
3XOR-formulas (polynomials of degree 3 over GF[2]) is # P-complete. We design also an O(n?)-time
algorithm for the 2XOR-counting problem.

2 Some Auxiliary Lemmas on Polynomials over GF[2]

Suppose w; € GF[2][zi,...,%n], ?=1,...,m, define a polynomial u = P, w;z; for new variables
2 € {z1,...,2n}. Define by #s({w;}) the number of solutions of the system {w; = 0};=1,.. m. Fora
single polynomial u, #s(u) denotes the number of solutions of u, i.e. #s(u) = #{Z|u(Z) = 0}. With
this notation we formulate the following

Lemma 1.

#s(u) = #a({wh)2™ + (2" - #s({wi)))2"

Proof:
Suppose ¢ € s({w;}), then all the vectors z € {0,1}™ are solutions of v = @, w;z;. There are
#s({w;})2™ of them. Suppose now that z & s({w;}). Denote by K, = {i|lw;(z) # 0} the set of all
indices of polynomials w; so that w;(z) # 0.

Let us characterize the vectors y € {0,1}™ such that zy is a solution of u. y could be 0 or 1
everywhere besides the coordinates in K. On the coordinates of K, the number of 1’s must add
up to 0 (mod 2). There are therefore

2’“—|K:| Z ( 2: ) = 2m_|Kx|2|K=|_l = 21’.'1.—1
r=0

vectors y such that zy is a solution of u. We note that this number now is independent of the
particular form of K;. This gives for different z ¢ s({w;}) different solutions of u, and results in
(2™ — #s({w;})2m™~1) additional solutions of u. o

We derive some corollaries from Lemma 1.
Lemma 2. The system {w; = 0}i=1,..m has a solution iff #s(u) > 2n+m-1,
(#s(u) > 2n+t™-1 always holds.)

Lemma 3. -
#s({w:}) = #S(u)g:a—l

In the next section we shall make use of the Lemmas above.



3 3XOR-Counting and —Majority Problems are Hard to Com-
pute

We state now our main hardness result.

Theorem 1. Given an arbitrary 3XOR formula f € GF[2][z1,. .., Zs], the problem of computing
#f is # P-complete.

Proof:
Let us take a monotone 2DNF formula f = ¢; Ve V...V ¢, where ¢; = (a; A b;) and a;, b; are
variables. The problem of computing # f for any given monotone 2DNF formula is # P-complete
(cf., e.g. [V 79]). We define the system w; of polynomials by w; = a;b;, ¢=1,...,m and construct
the polynomial u = 7%, w;z; as in section 2.

By Lemma 3

" # — gntm—1
TR =t i

Therefore computing # f for monotone 2DNF formulas f is polynomial time reducible to computing
#35(u) for 3XOR formulas.

We characterize also Majority and Solutions’ Equilibrium Problems for 4XOR-formulas. (SAT
for polynomials f is equivalent with checking whether f = 0, trivially doable for explicitely given

)
For the corresponding results for the (A, V,=)-basis see [GJ 79].

Theorem 2. Given any 4XOR formula f € GF[2][z1,..., 5], the problems of deciding whether
#f>2"1 and #f = 2*! are both NP-hard.

Proof:
Let us take 3CNF formula f = AZ,(ai V b; V ¢;) over n variables 1,...,z, where a;,b;, ¢; are
literals (nonnegated and negated variables). We shall rewrite f into the system of m equations
{wi = (@i Vb; Ve¢;)® 1}iz1,...m in (XOR, AND) basis by writing

r=19z

and
(aivb;Ve)=a; Db @ c; @ aib; ® aic; ® bici @ a;bic;.

Let us construct a polynomial u € GF[2][z1,...,Zny Tnt1s- -y Znsm] @S in Section 2. For k =
n+ m, the problem of deciding 3CNF SAT is polynomial time reducible to the problem of checking
whether #s(u) > 281 or #s(u) = 25-1, a

Remark: Using Valiant’s result (cf. [GJ 79], p. 251) on systems of algebraic equations over
GF[2], we can analogously prove that the Majority and Equilibrium Problems are NP-hard already
for 3XOR-formulas.



4 2XOR-Counting Problem

We are going to design an algorithm to count the number #f for arbitrary f € 2XOR (f €
F[2][z1,...,2,], fis polynomial of degree 2).

Theorem 3. Given arbitrary 2XOR-formula f, there exists an algorithm working in O(n®) time
for computing #f.

We shall call f € GF[2][z1,...,zn] read-once if every variable z; in f appears in f at most once.
The proof of Theorem 3 will be based on the following sequence of results.

Lemma 4. Given arbitrary 2XOR-formula f, f €GF|[2][z1,...,2.], there exists a read-once
2XOR-formula g €GF[2|[y0,:..,¥m)s ™ < n, a nonsingular m X n matrix T = (¢;;) and an m
vector C = (¢;) such that

1 T k]
g(@tgjmj + ¢g, @tlja:j + e, ...,@tm_uzj‘ + em-1) = f(Z1,..-,2n).
j=1 i=1 =1

There exists an algorithm for computing matrix T = (%;;) and vector C = (¢;) for arbitrary 2XOR-
formulas f working in O(n3) time. The form of ¢ can be chosen to be

4= DNy D...0 Yn—2¥mn-1© 2 or

I=%NDYNYBD. . .0 In-2Yn-1 D2
where 2z € {0,1}.

Proof:
We shall describe an algorithm for computing matrix T' = (i;;), vector C = (¢;) and constant z. The
algorithm will be by recursion on the set of variables Var(f) = {z1,...,z,}.

Recursion Stage z;:

Let z := z;
Rewrite f as f = za @ § where « is a linear form, and g is the rest of f.

Represent (recursively)

B=%DyY DYy D...0 Yk—2Yk—1 D 2 typel

or
B=utn ®nyz®...0yn--2yn-192 type II

where z € GF(2] and corresponding nonsingular k x (n — ¢) matrix T3 and vector Cjz. Note that
k<n-—i.

Consider the following cases:

Case 1. a = 1.



— B is of type L
Construct new variables
Yo = Yoz
yroi= oy t=1,.0,k—1
— 0B is of type IL
Construct new variables
v = 2
Vi = u =0 cengki=1
Case 2. a is linear independent of the variables of 8 (@ cannot be expressed as a linear combination of
the rows of matrix Tj). Note that in this case, k < n — 1.

Construct new variables

U = i=0,...,k-1
Yo =T
Yepp == @
Case 3. « is linear dependent on the variables of 3.
0
Leta=y;,®...0%, @ 1

3.a. y¥; and ¥ in o form a term of §.

B2y DY O Y = ... (2O Y) T BY) B T
an 'extra' ¢
Construct new variables

y; = YDz

v = puda

3.b. y, is in a but its ’partner’ y in a term of § is not in a.
e DTY O YsYr = .. Ys(T D Y1)
Construct new variables
Ys = Us
Y o= u e
3.c. §isof typel.

— « is independent of yp and the number of ’free’ z is odd.
Construct new variable

v = %@z
— o is dependent of yg and the number of 'free’ z is odd.
Bz BBz =...z28 1w l)d1

Construct new variables

zZ = zd1
Vo= Y i=0,...,k-2
¢ = Cip P00y nan do=2
3"}2-1 = %
Chey = co+1
0 = @
¢ = 1

¢ is of type II.



— « is dependent of 1y and the number of 'free’ z is even.

BT ®yw=...(28 Ly

Construct new variables

CA —
vo= i t=0,...,k—2
& = et i=0,...,k=2
y’k-—-l = Yo
by = o
Y =
¢ = 1

g is of type IL
3.d. G is of type Il and the number of 'free’ z is odd.
Construct new variables
o= 2
Yign = U i=0,...,k—-1
g is of type L

It is not difficult to check that the algorithm produces the substitution matrix T = [¢;;] as defined
in Lemma 4.

The algorithm works in n recursive steps and each step runs in O(n?) time. ]
We complete the proof of Theorem 3.

Lemma 5.

#f=#g2""

Proof: Obvious from linear algebra.
Finally, the direct counting arguments give us the following.
Lemma 6.
1. Given a 2XOR-formula g € GF[2][z1,...,Zn],
g=0172P 324D ... D zp—2Zn—1 D Zn,
dg=om1,

2. Given a 2XOR-formula g € GF[2][z1,...,2x),

G=21290PT3T4H ... Dra_12Z4
n—-2

fy= 2=,
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