The Computational Complexity
of (XOR, AND)-Counting Problems

Andrzej Ehrenfeucht! and Marek Karpinski?
TR-90-033
July 18, 1990

Abstract

We characterize the computational complexity of counting the exact number of satis-
fying assignments of (XOR, AND)-formulas in their RSE-representation (i.e. equivalently,
polynomials in GF[2] [x 1,...,x]). This problem refrained for some time efforts to find a
polynomial time solution and efforts to prove the problem to be #P-complete. Both main
results can be generalized to the arbitrary finite fields GF[g]. Because counting the number
of solutions of polynomials over finite fields is generic for many other algebraic counting
problems, the results of this paper settle a border line for the algebraic problems with a
polynomial time counting algorithms and for problems which are #P-complete. In [Karpinski,
Luby 89] the counting problem for arbitrary multivariate polynomials over GF[2] has been
proved to have randomized polynomial time approximation algorithms,

1Dcpt. of Computer Science, University of Colorado, Boulder, Colorado 80309

YInternational Computer Science Institute, Berkeley, California 94704. On leave from the University of
Bonn. Research partially supported by the Leibniz Center for Research in Computer Science, by the DFG
Grant KA 673/2-1, and by the SERC Grant GR-E 68297.

1 Introduction

Let us denote by kXOR the class of all formulas f of the form f = @ay A Ajeas i, for a 0-1
vector (a4)acq1,..,n} such that [A] < &k (or equivalently, kXXOR-formulas f are Galois polynomials
f € GF[2][zy,...,z,]of degree at most k). XOR = |J; kXOR. For a formula f € XOR with n
variables, denote #f = |{(z1,...,2a)|f(Z1,...,Zn) = 1}|. The counting problem for kXOR is the
problem of computing # f for any given formula f € kXOR.

In this paper we prove that the problem of exact counting the number of satisfying arguments of
3XOR-formulas (polynomials of degree 3 over GF[2]) is # P-complete. We design also an O(n?)-time
algorithm for the 2XOR-counting problem.

2 Some Auxiliary Lemmas on Polynomials over GF[2]

Suppose w; € GF[2][zi,...,%n], ?=1,...,m, define a polynomial u = P, w;z; for new variables
2 € {z1,...,2n}. Define by #s({w;}) the number of solutions of the system {w; = 0};=1,.. m. Fora
single polynomial u, #s(u) denotes the number of solutions of u, i.e. #s(u) = #{Z|u(Z) = 0}. With
this notation we formulate the following

Lemma 1.

#s(u) = #a({wh)2™ + (2" - #s({wi)))2"

Proof:
Suppose ¢ € s({w;}), then all the vectors z € {0,1}™ are solutions of v = @, w;z;. There are
#s({w;})2™ of them. Suppose now that z & s({w;}). Denote by K, = {i|lw;(z) # 0} the set of all
indices of polynomials w; so that w;(z) # 0.

Let us characterize the vectors y € {0,1}™ such that zy is a solution of u. y could be 0 or 1
everywhere besides the coordinates in K. On the coordinates of K, the number of 1’s must add
up to 0 (mod 2). There are therefore

2’“—|K:| Z (2:) = 2m_|Kx|2|K=|_l = 21’.'1.—1
r=0

vectors y such that zy is a solution of u. We note that this number now is independent of the
particular form of K;. This gives for different z ¢ s({w;}) different solutions of u, and results in
(2™ — #s({w;})2m™~1) additional solutions of u. o

We derive some corollaries from Lemma 1.
Lemma 2. The system {w; = 0}i=1,..m has a solution iff #s(u) > 2n+m-1,
(#s(u) > 2n+t™-1 always holds.)

Lemma 3. -
#s({w:}) = #S(u)g:a—l

In the next section we shall make use of the Lemmas above.

3 3XOR-Counting and —Majority Problems are Hard to Com-
pute

We state now our main hardness result.

Theorem 1. Given an arbitrary 3XOR formula f € GF[2][z1,. .., Zs], the problem of computing
#f is # P-complete.

Proof:
Let us take a monotone 2DNF formula f = ¢; Ve V...V ¢, where ¢; = (a; A b;) and a;, b; are
variables. The problem of computing # f for any given monotone 2DNF formula is # P-complete
(cf., e.g. [V 79]). We define the system w; of polynomials by w; = a;b;, ¢=1,...,m and construct
the polynomial u = 7%, w;z; as in section 2.

By Lemma 3

" # — gntm—1
TR =t i

Therefore computing # f for monotone 2DNF formulas f is polynomial time reducible to computing
#35(u) for 3XOR formulas.

We characterize also Majority and Solutions’ Equilibrium Problems for 4XOR-formulas. (SAT
for polynomials f is equivalent with checking whether f = 0, trivially doable for explicitely given

)
For the corresponding results for the (A, V,=)-basis see [GJ 79].

Theorem 2. Given any 4XOR formula f € GF[2][z1,..., 5], the problems of deciding whether
#f>2"1 and #f = 2*! are both NP-hard.

Proof:
Let us take 3CNF formula f = AZ,(ai V b; V ¢;) over n variables 1,...,z, where a;,b;, ¢; are
literals (nonnegated and negated variables). We shall rewrite f into the system of m equations
{wi = (@i Vb; Ve¢;)® 1}iz1,...m in (XOR, AND) basis by writing

r=19z

and
(aivb;Ve)=a; Db @ c; @ aib; ® aic; ® bici @ a;bic;.

Let us construct a polynomial u € GF[2][z1,...,Zny Tnt1s- -y Znsm] @S in Section 2. For k =
n+ m, the problem of deciding 3CNF SAT is polynomial time reducible to the problem of checking
whether #s(u) > 281 or #s(u) = 25-1, a

Remark: Using Valiant’s result (cf. [GJ 79], p. 251) on systems of algebraic equations over
GF[2], we can analogously prove that the Majority and Equilibrium Problems are NP-hard already
for 3XOR-formulas.

4 2XOR-Counting Problem

We are going to design an algorithm to count the number #f for arbitrary f € 2XOR (f €
F[2][z1,...,2,], fis polynomial of degree 2).

Theorem 3. Given arbitrary 2XOR-formula f, there exists an algorithm working in O(n®) time
for computing #f.

We shall call f € GF[2][z1,...,zn] read-once if every variable z; in f appears in f at most once.
The proof of Theorem 3 will be based on the following sequence of results.

Lemma 4. Given arbitrary 2XOR-formula f, f €GF|[2][z1,...,2.], there exists a read-once
2XOR-formula g €GF[2|[y0,:..,¥m)s ™ < n, a nonsingular m X n matrix T = (¢;;) and an m
vector C = (¢;) such that

1 T k]
g(@tgjmj + ¢g, @tlja:j + e, ...,@tm_uzj‘ + em-1) = f(Z1,..-,2n).
j=1 i=1 =1

There exists an algorithm for computing matrix T = (%;;) and vector C = (¢;) for arbitrary 2XOR-
formulas f working in O(n3) time. The form of ¢ can be chosen to be

4= DNy D...0 Yn—2¥mn-1© 2 or

I=%NDYNYBD. . .0 In-2Yn-1 D2
where 2z € {0,1}.

Proof:
We shall describe an algorithm for computing matrix T' = (i;;), vector C = (¢;) and constant z. The
algorithm will be by recursion on the set of variables Var(f) = {z1,...,z,}.

Recursion Stage z;:

Let z := z;
Rewrite f as f = za @ § where « is a linear form, and g is the rest of f.

Represent (recursively)

B=%DyY DYy D...0 Yk—2Yk—1 D 2 typel

or
B=utn ®nyz®...0yn--2yn-192 type II

where z € GF(2] and corresponding nonsingular k x (n — ¢) matrix T3 and vector Cjz. Note that
k<n-—i.

Consider the following cases:

Case 1. a = 1.

— B is of type L
Construct new variables
Yo = Yoz
yroi= oy t=1,.0,k—1
— 0B is of type IL
Construct new variables
v = 2
Vi = u =0 cengki=1
Case 2. a is linear independent of the variables of 8 (@ cannot be expressed as a linear combination of
the rows of matrix Tj). Note that in this case, k < n — 1.

Construct new variables

U = i=0,...,k-1
Yo =T
Yepp == @
Case 3. « is linear dependent on the variables of 3.
0
Leta=y;,®...0%, @ 1

3.a. y¥; and ¥ in o form a term of §.

B2y DY O Y = ... (2O Y) T BY) B T
an 'extra' ¢
Construct new variables

y; = YDz

v = puda

3.b. y, is in a but its ’partner’ y in a term of § is not in a.
e DTY O YsYr = .. Ys(T D Y1)
Construct new variables
Ys = Us
Y o= u e
3.c. §isof typel.

— « is independent of yp and the number of ’free’ z is odd.
Construct new variable

v = %@z
— o is dependent of yg and the number of 'free’ z is odd.
Bz BBz =...z28 1w l)d1

Construct new variables

zZ = zd1
Vo= Y i=0,...,k-2
¢ = Cip P00y nan do=2
3"}2-1 = %
Chey = co+1
0 = @
¢ = 1

¢ is of type II.

— « is dependent of 1y and the number of 'free’ z is even.

BT ®yw=...(28 Ly

Construct new variables

CA —
vo= i t=0,...,k—2
& = et i=0,...,k=2
y’k-—-l = Yo
by = o
Y =
¢ = 1

g is of type IL
3.d. G is of type Il and the number of 'free’ z is odd.
Construct new variables
o= 2
Yign = U i=0,...,k—-1
g is of type L

It is not difficult to check that the algorithm produces the substitution matrix T = [¢;;] as defined
in Lemma 4.

The algorithm works in n recursive steps and each step runs in O(n?) time.]
We complete the proof of Theorem 3.

Lemma 5.

#f=#g2""

Proof: Obvious from linear algebra.
Finally, the direct counting arguments give us the following.
Lemma 6.
1. Given a 2XOR-formula g € GF[2][z1,...,Zn],
g=0172P 324D ... D zp—2Zn—1 D Zn,
dg=om1,

2. Given a 2XOR-formula g € GF[2][z1,...,2x),

G=21290PT3T4H ... Dra_12Z4
n—-2

fy= 2=,

5 Acknowledgements

We are thankful to Avi Wigderson, Dick Karp, Mike Luby and Thorsten Werther for the number of
interesting conversations.

References
[AW 85] Ajtai, M. and Wigderson, A., Deterministic Simulation of Probabilistic Constant Depth
Circuits, Proc. 26'* IEEE FOCS (1985), pp. 11 - 19

(G77] Gill, J., Computational Complexity of Probabilistic Turing Machines, SIAM J. Comput.
6, pp. 675 - 694

[GJ 79] Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman and Company, New York (1979)

(KL 83] Karp, R.M. and Luby, M., Monte-Carlo Algorithms for Enumeration and Reliability Prob-
lems, Proc. 24t IEEE FOCS (1983), pp. 56-64

[KL 85] Karp, R.M. and Luby, M., Monte-Carlo Algorithms for the Planar Multiterminal Network
Reliability Problem, J. of Complexity 1 (1985), pp. 45 - 64

[KL 89] Karpinski, M. and Luby, M., Approximating the Number of Solutions of a GF[2]-
Polynomial, manuscript, 1989

[KLM 89] Karp, R.M., Luby, M. and Madras, N., Monte-Carlo Approximation Algorithms for Enu-
meration Problems, J. of Algorithms 10 (1989), pp. 429 - 448

[V 79] Valiant, L.G., The Complexity of Enumeration and Reliability Problems, SIAM J. Comput.
8, pp. 410 - 421

[W 87] Wegener, [., The Complexity of Boolean Functions, John Wiley, New York, 1987

