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Abstract

Godel showed in 1931 that given any reasonable (consistent and effective) theory of
arithmetic, there are true assertions about the natural numbers that are not theorems in that
theory. This "incompleteness theorem" ended Hilbert’s program of formalizing mathematics
and is rightfully regarded as the most important result in the foundations of mathematics in
this century. Now the concept of undecidability of a set plays animportant role in understanding
Godel’s work. On the other hand, the question of the undecidability of the Mandelbrot set has
beenraised by Roger Penrose. Penrose acknowledges the difficulty of formulating his question
because "decidability" has customarily only dealt with countable sets, not sets of real or complex
numbers.

Here we give an exposition of Godel’s result in an algebraic setting and also a
formulation (and essentially an answer) to Penrose’s problem. The notions of computability
and decidability over aring R underly our point of view. G6del’s Theorem follow from the Main
Theorem: There is a definable undecidable set over Z. By way of contrast, Tarski’s Theorem
asserts that every definable set over the reals or any real closed field R is decidable over R. We
show a converse to this result, namely: Any sufficiently infinite ordered field with this latter
property is necessarily real closed.






The Godel Incompleteness Theorem
and Decidability over a Ring'

Lenore Blum and Steve Smale

Section 1 Introduction

Godel showed [Godel, 1931] that given any reasonable (consistent and effective)
theory of arithmetic, there are true assertions about the natural numbers that are not
theorems in that theory.?2 This “incompleteness theorem” ended Hilbert’s program of
formalizing mathematics and is rightfully regarded as the most important result in the
foundations of mathematics in this century.

Now the concept of undecidability of a set plays an important role in understanding
Godel’s work. On the other hand, the question of the undecidability of the Mandelbrot set
has been raised by Roger Penrose [Penrose, 1989]. Penrose acknowledges the difficulty of
formulating his question because “decidability” has customarily only dealt with countable
sets, not sets of real or complex numbers.

Here we give an exposition of Godel’s result for mathematicians without background
in logic and also a formulation (and essentially an answer) to Penrose’s problem. The
notions of computability and decidability over a ring R as developed in [BSS)? underly
our point of view.

A generalization of Godel’s theorem and various intermediate assertions may be
formulated over an arbitrary ring or field R. If R=Z, the integers, the specialization is
essentially the original theorem. Our proof of it is valid in the case R is an algebraic
number ring (i.e. a finite algebraic extension ring of Z) or number field (a finite algebraic
extension field of Q). Using R=R, the real numbers, the undecidability of the Mandelbrot
set is dealt with, :

Suppose that R is a commutative ring or field (perhaps ordered), which contains Z,
and RF is the cartesian product, viewed as a k-dimensional vector space (or module) over
R. A set S C RF is decidable over R if its characteristic function

x:Rk—t{U,l}, x(x)=1if andonlyif x € S,

is computable over R in the sense of [BSS].
A set S C RF is definable over R if it is of the form

8§ = {(yl,...,yk) € R* | 3z,Vzo3z;3 - - - Vz,, such that (¥1,..., ¥k, T1,..-,Tn) € Y}

1 Partially supporicd by NSF grants and (the first author) by the Letis-Villard Chair at Mills
College.

2 This formulation of G&del’s Theorem, with consistency in place of w-consistency, is due to
[Rosser, 1936].

-3 We use [BSS] to denote our Main Reference [Blum, Shub, Smale, 1989].



for some constructible (o semi-algebraic) set Y in RF+n 4
A natural question is:
[D] Is a definable set over R necessarily decidable over R?

If R=Z, the answer is “No,” and this is the backbone of the Godel Incompleteness
Theorem. This may be interpreted (Section 2) as asserting there is a “polynomially
defined” set of assertions over Z,> and that there is no way of deciding which are the true
ones. The proof is in Sections 3 and 4 below, the Godel Theorem is proved in Section 5.

If R=R, the real numbers the answer is “Yes.” Tarski’s fundamental decidability result
[Tarski, 1951] for the case of the reals may be interpreted as this assertion.

These results extend to certain other rings and fields as well.

Julia Robinson extended Godel’s result. Robinson did not have the notion of
decidability over a ring and put her theorems in the context of “decidable rings” (or
fields). A ring R is decidable if the set of “first order” sentences true in R is decidable
in the traditional sense (of Turing, et. al.,, or decidable over Z in our sense). Her way
of showing a certain ring R is undecidable is to reduce the problem to Gédel’s Theorem
by defining Z in R. We use her algebraic results [Robinson, 1959, 1962, 1963] on the
definability of Z to answer [D] negatively for finite extensions of Z and Q.

On the positive side of [D], Tarski’s work was done in the generality of real closed
fields. His work also implies that [D] has an affirmative answer for algebraically closed
fields. Tarski’s arguments are a developed form of elimination theory, which in a sharp
complexity theoretic form can be seen in [Renegar, 1989].

What about the answer to [D] for the remaining rings and field? Let us say that R
has Property D, just in case every definable set over R is decidable over R.

We give some results (Section 6) in the direction of showing Tarski’s examples
exhausts all fields (sufficiently infinite) satisfying Property D. Here we follow [MacIntyre,
1971], and [MaclIntyre, McKenna, van den Dries, 1983]. Indeed, our results could be
considered an infinitary version of theirs. Note that Property D, as stated, is a non-
uniform property. That is, each decidable set might have a different decision procedure.
However, an immediate corollary to these results (for sufficiently infinite fields), is the
uniformity of Property D once it is satisfied.

We would like to acknowledge helpful insights gleamed from conversations with
Michel Herman, Adrien Douady and others concerning the mathematics underlying
the undecidability of the Mandelbrot set. The first author would like to acknowledge
helpful discussions with George Bergman, Lou van den Dries, Leo Harrington and Simon
Kochen; the personal influence of Julia Robinson is deeply felt.

[Friedman, Mansfield, 1988] and [Michaux, 1990] have results related to what we
are doing here.

4 Thatis, Y is a finite union of finite intersections of sets defined by polynomial equations and
inequations (and inequalities, if R has an order) over R. (See Section 2.)

5 By this we mean a set of sentences of the form {3z,¥z,323- - V2, P (2,21, Z5) = 0} em
where P is some polynomial over Z.



Section 2 Background

We give here some background on decidability and definability over a ring R. Then
we state our Main Theorem.

Let R be a commutative ring or field, which contains Z, and for the moment is
ordered. Let R* be the direct sum of R with itself k times. If k = oo, then x € RF
is a vector (X1,X2,...,;Xn,...) With x;, = 0 for sufficiently large n. In this section, we
may take k finite.

The notion of a computable function over R,

oM Ay — Rl,
is taken from [BSS] where Qs C R*, the domain of ¢y, is the halting set of a machine
M over R,

A set S C R¥, is called decidable over R if its characteristic function is computable
over R. We note that a set is decidable over R if and only if both it and its complement are
halting sets (over R). Halting sets may be naturally thought of as “semi-decidable” sets.

IfY C R¥and S C Y, say that S is decidable relative to Y over R if the restriction of
xtoY, x|y, equals ¢|y for some ¢ computable over R. (We might say that the set of
admissible inputs of the corresponding machine is ¥.) In that case, if Y' C Y, then SNY’
is decidable relative to Y’ over R.

Next a very brief review of definability over R is given. First suppose R = Z.

A subset S of Z* is called definable over Z if there is a polynomial P in n+k
variables with integer coefficients such that

S = {y = (yl, Vb ,yk) € Zk|EIx1Vx23x3...quP (yl, o3 ¥k, T1, ...,xﬂ) = 0} .

The “defining” formula 3z,Vz,3z3.. V2P (y1,. .-y, %1,...,25) = 0 contains an al-
ternating sequence of quantifiers which could begin or end with either 3 or V. In this
expression, y1,. ..,y are called free variables (and z1,...,x, bound variables). If we
replace each free variable y; by an integer y;, the expression becomes a sentence perhaps
true, perhaps false in Z. (If there are no free variables, the formula is already a sentence.)

Note, we have been using bold letters to denote elements (constants) or vectors and
non-bold letters to denote variables. Henceforth in the sequel we shall use non-bold
letters for both; the intended meaning should be clear from context.

Quantifiers 3z or Vz with a new variable z may be added at any place in a formula
without changing the set S. Thus the assumption of an alternating set of quantifiers places
no restriction on the notion of definability. Moreover, “not ¥’ is logically equivalent to
“ dnot”  Similarly, “not 3” is equivalent to “ V not.” Thus negations of formulas
could be incorporated using

P(y,z1,...,zpn) # 0.
But over Z, we have P # 0 if and only if
32132932332 (P - (14 3+ 2+ 2 + ZN(P+(1+22422+2+ z2)) =0)s
This assertion follows from the next Lemma. Suppose R is an ordered ring or field.
Then,



Lemma. If P(x) and Q(x) are polynomials in n variables over R, and = € K" then:

(a) P(z)#0 if and only if —P(z)>0o0r P(z) > 0.

() If R=2Z:
4

P(z)>0 if and only if Iz1,...,24 € Z such that P(z) = Zz? +1 (Lagrange).
i=1

(¢) P(z)=0 or Q(z)=0 if andonlyif P(z)Q(z)=0.

So over Z, negations of formulas are equivalent to formulas of the specified type.®
In the sequel, the following equivalences will also be useful:

(d) P(z)=0and Q(z) =0 if and only if P%(z)+ Q*(z)=0,
(e) Q(z) #0 if andonlyif —Q(z)>00r Q(z)=0.
Now for definability over a general ordered ring or field R, we must modify our
definition to incorporate semi-algebraic sets:
A basic semi-algebraic set X C R™ (over R) is defined as the set of z = (21,...,2xs)
satisfying basic conditions of the type
P($11"'1wn) =0
Qi(B15:0058y) 3 05 = Lywo yimy,
where P and Q; are polynomials over R. A set X C R" is semi-algebraic (over R) if it
is generated by basic semi-algebraic sets using a finite process taking unions (i.e. “or’s”
of basic conditions), intersections (“and’s”), and complements (“not’s”).

From the above Lemma, and by adding and substituting new variables, and by de
Morgan’s laws, it easily follows:

Proposition 1. Every semi-algebraic set X C R" can be expressed as a finite union of
basic semi-algebraic sets (and conversely).

Intersections are eliminated using (d) and complements using (a) and (e).

Definition: A set S C RF is definable over R if there exists a semi-algebraic set |
X C R* x R" such that

S ={(y1,---,yx) | Iz VzoIz3 - -Vz,, such that (y1,...,yx,1,...,25) € X}

Note that the image of a definable set in R¥ x R under the projection R x R! — R* is
a definable set. Indeed, definable sets over R are precisely those sets that are “derivable”
from semi-algebraic sets by means of a finite sequence of projections and complements.

A (defining) formula over R for the above S is 3z1Vzo3zs ... V2 ® (y1,... , Yk, T1,-+ -, Tn)
where @ (y1,..., Yk, 1,...,Zn) is a finite disjunction of basic semi-algebraic formulas,
ie. @ is

(P! = 0&Q} > 0&... &Qh, > 0) or-+-or (P'=0&@Q} > 0&...&Qp, >0),

®  Note here, and in the sequel, we are implicitly moving quantifiers to the front of formulas,
changing variables as necessary to avoid clashes and to maintain logical equivalence.
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the P’s and Q’s being polynomials over R (in the variables ¥, ..., Y%, €1,...,2,) that
describe the basic semi-algebraic pieces of X in a union as given by Proposition 1.
Definitions for free/bound variables and sentences over R can be given as above for Z.

We remark that for ordered rings, our notion of definability over R is equivalent to the
classical notion of definability given in “first order” logic over the language containing
the mathematical primitives +, X, = as well as > and constants from R. That is, the
sets defined are the same.

For consistency we need

Proposition 2. If R = Z, our two notions of definable coincide.

But this follows from Proposition 1 and the Lemma since we can eliminate occur-
rences of > using (b), “and’s” using (d), and “or’s” using (c). '

Both the concepts of decidability and definability over a ring can be developed without
>, retaining # 0. For decidability one uses machines with branch nodes of which divide
according to h(z) = 0 versus h(z) # 0. For definability, one omits all constructions
requiring >. Semi-algebraic sets are replaced by what are usually called constructible
sets, finite unions of sets satisfying basic conditions of the type

Pilxisiaosoa) =05 1= Lisssik
Q(!El,...,:lfn)-?é(]-

Similarly, a basic constructible formula is of the type P, = 0& - - - &P, = 0&Q # 0 and
a formula over R is a finite disjunction of basic ones.

The following results apply to rings and field with an order, or without.

Main Theorem. Supposes R is a ring (of “algebraic integers™) which is a finite
extension of Z, or a field which is a finite extension of the rationals Q. Suppose & < oo.
Then there is a set S C R* which is definable over R, yet not decidable over R.

The Main Theorem may be interpreted as saying that there is a reasonable family of
sentences over R, but there is no way of deciding which are true in R. It is an immediate
consequence of Propositions A and B below.

Suppose R is as in the Main Theorem. Then:

Proposition A. For k < oo, there is a halting set S C R* (of a machine) over R which
is not decidable over R (i.e. § is a “semi-decidable” undecidable set over R).

Proposition A will be proved in Section 3.

Proposition B. For k < oo, any halting set $ C R* over R is definable over R.
Proposition B will be proved in Section 4.



Remark. We remark that over the reals R, Proposition A is true (see [BSS]). But by
[Tarski, 1959], the Main Theorem must fail over R for each k < oo, and thus so must
Proposition B. See Section 6 for more discussion and results along these lines.

Section 3 Decidability: Proof of Proposition A

Proposition A is proved in part in [BSS] (see Proposition 2 below). Friedman and
Mansfield have a complete proof [Friedman, Mansfield, 1988]. But to keep our paper
accessible to non-logicians, we indicate in this section a proof of Proposition A.

Say that subsets S; C R¥, Sy C R are computably isomorphic over R if there is a
bijection f : S; — Sy such that f,f~! are computable over R.

Proposition 1. If R is as in the Main Theorem, there is a computable isomorphism
f:R—-Z*CR"

over R where n is the degree of the extension.
T
Proof. Let R = Z[wy,...,wy] andfor z = Y zjw; let f(z) = (21,...,%a).
: i=1
Clearly f~! is computable over R. Now list the elements of Z* with norm non-decreasing.
A comparison machine using this list shows that f is computable.
Similarly, if R is a finite extension of Q of degree n, then R is computably isomorphic
to Q™ over R. To finish the proof note that if R is any extension field of Q, then there
is a bijection ¢ : Z — Q with g,¢g~! computable over R.

The next step in our development (see [BSS]) is to associate to each machine M over
a ring R, a point ¢ (M) € R*, its “code.” This substitutes for the usual Godel code
which uses prime number factorization of positive integers. One can then construct a
universal machine U which on input (¢ (M),z), = € Uy, outputs ¢y (z) and does
not halt on other inputs. Then

Proposition 2. For any ring or field R, the halting set Qy C R is not decidable over R.
The proof is an adaptation of the Cantor diagonal argument.

Proposition 3. Suppose R is as in the Main Theorem. Then for any & < oo, R and RF
are computably isomorphic over R.

Proof. The case R=Z is done using the Cantor pairing function. (See e.g. [Davis,
1982].) Next use Proposition 1 to obtain a computable isomorphism as the composition
R — Z® - (2% > R~

Propositions 2 and 3 now combine to yield Proposition A.

As remarked earlier, it is shown in [BSS] that Proposition A holds for R=R (although
Proposition 3 does not).



Problem. Find k, R such that Proposition A fails, i.e. such that every halting set S C R*
is decidable over R. (See also [Friedman, Mansfield, 1988].)

Section 4 Definability: Proof of Proposition B

Suppose S C R¥ and f: § — R%, k, | < co. We say f is definable over R if the
graph of f = {(z, f(z)) | = € S} is definable over R. Note that if f is definable over R
then both S and f(S) are definable over R, and if in addition f is a bijection then f~!
is definable over R.

Remark. For the proof of Proposition B it suffices to consider finite dimensional
machines. (See footnote p. 28, [BSS].)

So suppose M is a finite dimensional machine with input space 1, output space O,
and state space S, each of the form RF. for some k < oo (although not necessarily the
same k).

Recall [BSS] that the computing endomorphism of Misamap H: N xS =+ N xS
defined by the pair (next node, next state). Here N = {1,...,N} is the set of node
labels (1 being the label of the input node, N of the output node), and M is assumed to
be in normal form. From [BSS] it is clear that H is definable over R.

The halting register equations associated to M are given by (1), (2), and (3) as
follows:

(1) z0 = (1,1(y)), where I : T — S is the input map, a polynomial map.
(2) H(zi-1) = 2i,i=1,2,...,T, z e Nx S.
(3) z2r = (N,z), some z € S.
The halting set Qp C T may be described by
Qy = {y €1|3T€Z% z,...,2r € R*!, 2 € R* such that (1),(2),and (3) are satz'sfz'ed}.

However, this expression for £3; does not make ;; definable over R because the
number of equations and variables is not a fixed finite number. It depends on T. So
we need more.

Generalized G6del Sequencing Lemma. Let R be as in the Main Theorem and
k < co. There is a map o : N x R¥ — RF such that

(a) given ay, .. .,a, € R*, Ju € R* such that o(t,u) =a;, i=0,...,m, and

(b)if k < o0, o is definable over R.

We now combine the register equations of a given finite dimensional machine M as
above with the function o of the Gédel lemma to show that 4 is definable over R.

Let F(y) denote the following “formula.”:

3T €ZtuIrVieZ [If0<i<T then
o(0,u) = (1,1(y)), H(e (i - 1,u)) = o(i,u), and o(T,u) = (N, z)).



Here R* of the Godel Sequencing Lemma is identified with R x S.

Now on the one hand, Q3 = {y | F(y) i3 true in R}. This follows from the proper-
ties of the register equations and of (i, u) of the Gédel lemma. On the other hand, the
above expression for F(y), and the definability of H and o, and Z (also Z*and N) in R
[Robinson, 1959, 1961, 1965], gives us the definability required in Proposition B.’

It remains to consider the Godel lemma.

First observe that if the Gddel lemma is true for k=1, then it is true for general k.

This can be seen as follows. Suppose o is the map of the Godel lemma for k=1. Then
let o : N x R* - R* be defined by

oi(i,u) = (o(z,u1),0(z, u2),...) where u = (uy,ug,...).

Now let k=1. For R=Z, we have the original Gédel lemma [Gdodel, 1931]] which is
derived from the Chinese Remainder Theorem. The general case now follows by noting
the isomorphisms given in the proofs of Proposition 1 and Proposition 3 in Section 3
with k¥ < oo are definable over R.

Problem. For which commutative rings R is the following true? If Z is definable in R,
then for each k < oo, any halting set S C R* over R is definable over R (and conversely).

Section 5 Incompleteness

In this section, the Godel Incompleteness Theorem is formulated and proved using
the Main Theorem.

First fix a ring or field R, with or without order. Let ¥ r be the set of all first order
sentences over R, i.e. the set of sentences in the first order language with mathematical
primitives +, x , = (possibly >) and constants from R. (See for example [Cohen, 1966].)%
The sentences over R described in Section 2 are first order sentences and can be considered
in “normal form” since each first order sentence is equivalent to one of these.

One may consider L as a subset of R* by an appropriate natural coding. For
example, one can use pairs (y1,y}), (y2,¥4),. .. where either y; or y} is zero. If y; # 0,
then it stands for a logical symbol, not in R normally, but thus coded by an element of
R.If y; =0, then y:- € R plays its role as an element of R, as for example the coefficient
of a polynomial used in the sentence.

One may use the codings of polynomials and rational functions of [BSS] for example.

7 Here we are also using the logical equivalence of the expressions “if P then Q” and “not P
or Q.

8 One can think of a "first order sentence over R" as an ordinary mathematical sentence that is
- made up of variables (x,y,z,...), quantifiers (V meaning "for all", 3 "there exists"), connectives (-
meaning "not,” & "and," V "or," — "implies"), parentheses and mathematical symbols (=, +, X,
perhaps > and constants from R). A sentence (as opposed to a "formula") has no free variables,
i.c. all variables must be quantified. "First order" means that quantification is over elements (e.g.
"there exists an element x in R such that for all elements y in R"), not over subsets.

8



It makes sense to talk about the subset of sentences T C X that are true in R. For
each sentence o € X, either o € Tg or not o (the negation of o) € Ty (completeness),
but not both (consistency). A set of axioms Y over R is simply a subset Y C Tg. Of
course Y could be empty. _

Given a set of axioms Y, we will define the derived set Yp, Y CYp C Tpg, via
(finite application of) a set of rules of inference. Then Yp is the body of theorems, or
theory, generated by the axioms in Y.

The rules of inference, which are convenient for our purposes are Rules A-G, pp.
9-11 of [Cohen, 1966].

As an example we state

Rule B. If A and A — B are sentences, then so is B.

Thus, if A and A — B both belong to ¥, Yp must include B. A similar situation
prevails with the other rules.

Recall [BSS] that S C R,k < oo, is an output set over R if there is a computable
function ¢ : Qy — R* over R with w(y) = S.

We have the following:

Proposition 1. If Y C £p C R™ is an output set over R, then so is the derived set Yp.
For the proof we use the following Lemma.

Lemma. For each finite Y' C Zp, Yj, is a halting set over R. Indeed, there is a machine

M’ such that Q0 = U {(y15-.,9n)} x Yp.
Y'={$1,..ya}CEr

Now suppose ¢({lys) = Y. Define F : Q33 x Egp — Zp via

o if ((¢(z1),...,p(zs)),0) € Qe
unde fined otherwise.

F((:c;, sy ) = {

Any element in Y} is in some Y}, for some finite Y C Y. So by the above Lemma, the
range of F is Yp and F is computable if ¢ is.

Proposition 2. If R is as in the Main Theorem, a finite extension of Z or Q, then the
output sets and halting sets over R coincide.

One directly checks Z and Q. (This is quite classic essentially). The general case
follows from Proposition 1 of Section 3.

Godel Incompleteness Theorem. Fix a ring R, a finite extension of Z, or a finite
field extension of Q. Let Y C Tg be any set of axioms which is a halting set over R
(ie. an “effective” set of axioms). Then Yp, the body of theorems derived from Y, is
not T'p, the true sentences of R.

If R=Z, this is the usual Gédel Theorem.



The proof goes as follows. On the one hand, the Main Theorem asserts there is an
undecidable definable set over R. This implies Tg is not decidable (i.e. not a decidable
subset of X ) over R. For if it were, then a decision procedure would restrict to decide
any definable set X C R* since z € X if and only if the sentence ¢ (z) is in Tr (where
w is a given defining formula for X).

On the other hand, by the above, Yp is a halting set over R. But any complete and
consistent theory T which is a halting set is necessarily decidable: Let T be the halting
set of machine M. Given o € X, to decide whether or not o € T input both ¢ and noto
into M. Since one and only one of these inputs is in 7, M will halt on one and only one
of them, thus deciding whether or not o € T. Thus Yp # Tr. Q.E.D.

Section 6 Decidability over R and Property D

In the following, R will denote R_ (a commutative ring or field of characteristic 0)
or R. (an ordered ring or field). L will denote the corresponding (first order) language
L_ with mathematical primitives {=,4+, x,0,1} or L with the additional primitive
<. In case R is a field we will also assume the primitive + is included. Without
loss of generality we may assume L has constants for each integer or each rational as
appropriate. In general, if C C R, then L will denote the corresponding first order
language allowing additional constants from C.

Now let I denote the set of sentences in L, and T¢ the subset frue in R.

Recall that in the classical setting, a ring or field R is said to be decidable iff Tj
(viewed as a subset of Z%, as in Section 5) is decidable relative to £y over Z. This is
what is meant for example when one says that the reals are decidable. But often one
really has more. Thus, in the case of the reals, we see that T _ (C R*) is decidable
over R, by a machine with parameters from Z. This follows immediately from Tarski’s
Theorem that R admits uniform elimination of quantifiers.’

Thus we are motivated to extend the notion of decidability over a ring.

Definition: R is (strongly) decidable over R iff Ty is decidable relative to X p over R
(by a machine with parameters from Z).

If R is decidable over R, then clearly the Main Theorem fails for each £ < oo, i.e.
R has Property D:

Definition: R has Property D iff for each k < oo, any § C R* definable over R is
also decidable over R.

Property D is a weak form of elimination of quantifiers:

%  Definition: (Classical) R admits elimination of quantifiers iff for each L-formula
@ (21,...,2%) there is a quantifier free L-formula v (zy,...,2%) such that ¢ and ¢ define the
same subset of R*. The elimination is uniform iff the map from ¢ to ¢ is computable over Z.
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Proposition 1. If R has Property D then for each Lz-formula @g (z1,...,;) there is
a finite set C' C R and an (effectively) countable set of quantifier-free L¢-formulas
¥% (z1,...,25) such that § = US;, where S, S; are the sets defined by ¢p, ¥
respectively. Furthermore, we can assume without loss of generality the 7, to be basic
semi-algebraic (or basic constructible) formulas.

Problem. Can we assume that C is just the set of constants occurring in ¢ p? If so,
we shall say R has strong Property D.

What is the relationship between the above notions of decidability?

Theorem. Suppose R is a field of infinite transcendence over the rationals. Then the
following are equivalent:

1. R admits uniform elimination of quantifiers.

2. R is strongly decidable over R.

3. R has strong Property D.

4. a. R is an algebraically closed field in case R = R-.
b. R is a real closed field in case R = R..

And these imply:
5. R is decidable.
Furthermore, if we add the condition “R is dense in its real closure in case R = R.,”1°
we can add to the above list of equivalences:
2. R is decidable over R.
3.> R has Property D.

Remark 1. The stipulations of uniformity in 1 and effectiveness (of the countable
decomposition of definable sets into semi-algebraic sets) as implied by 3 (or 3°) are not
necessary. These will follow from a simple analysis of the proof of the Theorem.

Remark 2. We note that in general, the notion of decidability is weaker than decidability
over R (or Property D). For example, R is decidable, bur since R is not algebraically
closed, the Theorem implies it cannot be decidable over R—.

Proof of Theorem. It is easy to see that 1 implies 2 which implies 3; 4 implies
1 by Tarski’s theorems [Tarski, 1951]. Clearly, 2 implies 5, and 2 implies 2’ implies
3’. Thus we are left to show that under the appropriate hypotheses, strong Property D
or Property D imply 4, ie. the closedness conditions. Here we are inspired by, and
indeed closely follow, the proof in [MacIntyre, McKenna, van den Dries, 1983] of the
converse of Tarski’s theorems.

10 R is dense in its real closure R, means; For each r and ¢ > 0 in R, there is an r’ in R such
that |7 — ¢/ |< e.
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We start with some preliminaries. In the following, R will be a field (of characteristic
0).

Fix n. Let Polyp (n) denote the space of monic degree n polynomials in one variable
over R. There is a natural identification, Polyp(n) ~ R* where

?‘g+---+?‘n_12n_l+2n “— T =(r0,...,?"n_1) € R".

Let S C R" correspond to the set of polynomials in Polyg (n) not solvable in R.
Note that

S={r e R"|f(r,z) has no root in R}

where f(r,z) = rg + --- 4+ rp_12" ! + 2" Thus § is defined by the L-formula
Vzf (zo,...,Zn-1,2) # 0. So if R has Property D, then by the Proposition 1, S = |J S

j€J
where J is countable and

Si={reR"|P/(r)=0,i=1,...,mj, @(r) #0} in case R=R.,

or
S; = {réR"|PJ'(r)=0,Qf(r) >0,i=1,...,m3'} in case R = R..

Here the P’s and Q’s are polynomials over Q(C), where C is a finite subset of R.

Proposition 2 Suppose R is of infinite transcendence. If R has an algebraic extension
of degree n, then for each finitely generated subfield K C R, S cannot be covered by
a countable union of proper algebraic varieties V; in R" defined over K (i.e. with
V; = {r €ER| Pl (r)=0,i= 1k3} the P’s being non-zero polynomials with
coefficients from K).

Modulo Proposition 2, we proceed with our proof.

We first consider the case R = R_ and suppose R has property D. Suppose R
is not algebraically closed, i.e. for some n, R has an algebraic extension of degree
n. So by Proposition 2 (and noting S # R"™) we may assume for at least one j,
S;={reR"|Q (r)#0} # 0, and so @’ # 0. Also S; C 5. So for r €
R", whenever @’ (r)+# Othen f(r,z)= 0 has no solution in R. This contradicts

Lemma 1. For each non-zero polynomial ) : R® — R, there is an r € R" such that
Q(r) #0 and f(r,z) has all its solutions in R.

To see this let ¢ : R* — R"™ be the polynomial map given by the elementary
symmetric functions o1,09,...,0,, o is and algebraically independent map. So for
@ # 0, and since R is infinite, there is @ = (a1,...,an) € R"™ such that Q (¢ (a)) # 0.
I.frting r=oc(a)wehave Q(r) #0and f(r,2) = 01 (@)+022z- -+, () 2" 1 +2" =
Il (z — @;) . Thus, r has the required properties.

i=1
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Now we consider the case R = R. and suppose R has Property D.

Suppose first that some odd degree polynomial has no solution in R. This implies, as
above, that for some odd n > 1 and j in J, we may assume

Sj={reR"|Qf(r)>0,i=1,...,mj};Eﬁ.

Let 9 (c,z) be the formula @} (z) > 0&...& Qh, (z) > 0 where z = (z0,...,zn_1)
and ¢ € R™ is a vector of all the coefficients occurring in the Q’s. So, there is an
r € R" such that ¢ (c,r) is true in R and for all r € R", whenéver 1 (c,r) is true in
R, then f(r,z)=0 has no solution in R. Note if R has strong Property D, then without loss
of generality we may assume ¢ € Q™. Then, given the hypotheses of our Theorem, the
following Lemma will yield a contradiction.

Lemma 2. Suppose R is dense in R, its real closure, or that ¢ € Q™. Suppose ¥ (¢, 7)
is true in R for some r € R". Then there is an r' € R® such that  (c,r') is true in
R and f(r',z) = 0 is solvable in R.

Proof. Let
R,if Ris densein R
Q, in case c € Q™.

If 4 (c,r) is true in R, then v (c,r) is true in R, and so either trivially in the first
case, or by the transfer property for real closcd fields in the second case, 9 (¢, r*) is
true in F, some r* € F”‘ Now, f(r*,z) = (z—¢) (ao +a1z+- -+ a1z 1)
some §,aq,...,an-1 € F. For {,ay ...,a,_; € F, define r € F™ by F(rl2)=

(z=¢€)(ag+aiz+---+a,_;2"1). Since F is dense in F, we can choose

F={

¢,ap, ...,a;,_; close enough to £, ag, ...,a,— to guarantee 1 (c,r') is true in F, and
hence in R.

Now suppose some positive element in R has no square root in R ie. T =
{tER|t>0and\/f¢R} # 0. But then, {tr?|t€ T,r € R,r #0} C T, and so
if T # 0 then T must have an infinite number of algebraically independent elements.
(Recall the degree of transcendence of R over Q is infinite.) Now T is definable and
hence decidable over R. Thus, T can be decomposed as in the Proposition, and so there
is a ¢ € R™ such that either all element of T are a]gebralc over Q(c ), or else T contains
a non-empty interval 7' = (tl,tg) N R, some t1,t2 € Q (c) The former is not possible
as we have just seen, but neither is the latter:

For let F be as in Lemma 2, Then, TV = (¢1,¢2) N F # . But smcc F is dense in
F, foreacht e T", we can choose s € F close enough to 1/t so that s? will be close
enough to 7 to be in the interval (¢;,15), a contradiction to the definition of T.

We have thus shown modulo Proposition 2 that R is real closed.

"~ We now proceed as follows. Let X C R".
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Definition: We shall say X has property A iff for each finitely generated subfield K C R,
X cannot be covered by a countable union of proper algebraic varieties V; in R" defined
over K.

Lemma 3. Suppose R is of infinite transcendence. Then R" has property A.

The proof is by induction on n and is similar to the proof of a related result of
[Amitsur, 1956]:! Suppose R is an uncountable field. Then R" cannot be covered by a
countable union of proper algebraic varieties defined over R.

Remark 3. Here we cannot weaken the hypothesis of infinite transcendence. For
example, let R = Q (c), where ¢ = (ci,...,cmn) and let {P;(z)};-z+ be a listing of
all non-zero polynomials in one variable over Q(c). Then, R = Uj;ez+Vj, where V; =
{re R|Pj(r)=0}.

Remark 4. If R" has property A, then X = {r = (rg,...,7a—1) € R" | ri # 0 some i > 0}
n—1

has property A since R" = X U {r € R* | [] ri = 0}. More generally, if X C R" has
.=1
property A, then so does {z € X | z; # 0 some i € I} where I C {0,...,n—1}.

Remark 5. If X has property A, and X C S C R", then S has property A.

Lemma 4. Suppose F : R* — R" is an algebraically independent polynomial map (i.e.
for all polynomials g : R* — R, if g-F = 0 then g = 0). Then if X C R" has
property A, then so does F(X).

Proof. Let Y=F(X) and consider the following diagram:

XCR
g-F
Fl N
Y=FX)CR" Py R
First suppose {Y;};c; covers Y. Let X; = F~!(Y;). Then {X;},; covers X. Now
suppose Y; is a variety in R" defined by a (finite) set G; of polynomials over K C.R.

Then
Xj={reR"|F(r)eY;}={r€R"|g-F(r)=0,allg € G;)

is a variety in R" defined by the (finite) set of polynomials {g-F' | g € G} over

K (ay,...,an). Here ay,...,an are the constants occurring in F.
So if {Yj}j csisa countable cover of Y by varieties over a finitely generated subfield
K, then {X;},.; is a countable cover of X by varieties over K (aj,...,am)-

If X has property A, then X; = R", some j € J. Soforallr € R", g- F(r) =
0, all g € G;. Thus, since R is infinite, ¢g- F =0 all g € G;. But F is algebraically
independent. Therefore g = 0, all g € G;. Therefore, ¥; = R" and so Y has property A.

11 We are grateful to George Bergman for pointing us to this paper.
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Now let R be the algebraic closure of R, and so " can be considered the space of
(sequences of all) roots of elements of Pofyﬁ(n).

The Viete map = : R (roots) — Rn (z Polyx (n)) is given by
7€) o [[(-&) fore=(&,....6) € R™

We consider the following diagram:

Polyp (n—1)x R* ~ R" x R" - R B (Space of roots)
Proj | \F | © (Viete map)

Polyp(n—1) ~ R* ——5—, §* ~ Poly= (n)

(Space of degree n — 1 polys/R) (Space of monic degree n polys/ﬁ)

Here P@ r (n — 1) is the space of univariate degree (n-1) polynomials over R which
is naturally associated with R® via

1

ro+ - +rpy" o r=(rg,...,rm-1) € R

And for r € R", @ = (ay,...,an) € R", Eval is given by Eval(r,a); =
o+ ---+ 7',,_106?_1, F =7-.Eval and F, (r) = F(r,a). Thus,

Remark 6. {Eval (r,a),-=1’"_,n} is the set of all roots of the monic polynomial asso-
ciated with F, (r).
Let RZ = {a g R | {ai}i=y . n are distinct conjugates of degree n over R} ;

- So, RZ # 0 just in case R has an algebraic extension of degree n. If £ € R?, then = (£)
is the minimal polynomial of ¢; over R.

Lemma 5. Suppose o € R?. Then
(a) Fo: R"— R and
(b) Fy is algebraically independent.
Proof. See [Maclntyre, McKenna, van den Dries, 1983].

Recall X = {r € R" | r; # 0,s0me i > 0}and S = {r € R" | f (r,z) has no roots in R}.

Corollary 1. If « € R}, then F,(X) C S.

Proof. Suppose @ € R}and r € R" ThenbyLemma5(a), Fy (r) €
R™. If in addition r € X, then Eval(r,a); ¢ R, i = 1,...,n. So by Remark 6,
Fy(r) € S.
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Corollary 2. Suppose the degree of transcendence of R is infinite. If R} # 0, then §
has property A. :

Proof. By Lemma 3 and Remark 4, X has property A. Let o € R}. Then, by Lemmas
5(b) and 4, F, (X) has property A. So by Corollary 1 and Remark 5, S has property A.

Thus we have proved Proposition 2.

Remark 7. Using a lemma of [Michaux, 1990], we need only assume as hypothesis in
the Theorem, in case R = R- (likewise, in case R = R<), that R be a commutative ring
without zero divisors (an ordered commutative ring) of infinite transcendence over Q.

Section 7 On the Undecidability of the Mandelbrot set over R

For a heuristic discussion of the problem of the decidability of the Mandelbrot set M
one can see [Penrose, 1989]. For the mathematics of M see [Douady, Hubbard 1984-5].

A well known and presumably difficult conjecture is: The boundary of M has
Hausdorff dimension 2. On the other hand, it seems much easier from the work of
Douady, Hubbard, Misiurewicz, Tan Lei and others that the following holds.

Weak Conjecture. The boundary of M has Hausdorff dimension greater than 1.

Proposition. If the Weak Conjecture is true, then the Mandelbrot set is undecidable
over R.

Proof. Suppose the contrary. Then M is the halting set of some machine over R and
hence is the countable union of basic semi-algebraic sets (see [BSS]). M is closed, and
the closure of a basic semi-algebraic set is a semi-algebraic set. Thus we may suppose,

M=u.7_S

t=1

where each S; C

dim(8M N S;) <
dimension.

If dimS; < 1 this is immediate. However if dimS; > 1, then dimS; = 2 since S;
is a closed semi-algebraic set. So dimdS; < 1. Next note that the interior of S; must
be contained in the interior of M. Therefore,

C = R2? is a closed semi-algebraic set. For each i, we claim:
1 where OM is the boundary of M and dim is the Hausdorff

8M N S; is contained in M N JS; and has dimension < 1.
So now we have,
OM = U2, (8M N S;) has dimension <1
contradicting the Weak Conjecture.
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Remark. It is easy to show that the complement of M is a halting set, so once more
we have (provisionally) an example of an undecidable “semi-decidable” set.

Added in proof. At the Smalefest in Berkeley (August 1990), Dennis Sullivan has shown
us what appears to be a direct proof that the Mandelbrot set is not the countable union
of semi-algebraic sets.
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