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Abstract

Previous work has shown the ability of Multilayer Perceptrons (MLPs) to estimate
emission probabilities for a Hidden Markov Model (HMM). The advantage to this approach
is the ability to incorporate multiple sources of evidence (features, temporal context) without
restrictive assumptions of distribution or statistical independence.

In our earlier publications on this topic, a hybrid MLP/HMM continuous speech
recognition algorithm was tested on the SPICOS German-language data base. In our recent
work, we have shifted to the speaker-dependent portion of DARPA’s English language
Resource Management (RM) data base. Both consist of continuous utterances (sentences)
and incorporate a lexicon of roughly 1000 words. Preliminary results appear to support the
previously reported utility of MLP probability estimation for continuous speech recognition
(at least for the case of this simple form of HMM).
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INTRODUCTION

We have been working on continuous speech recognition using moderately large vocabularies (1000
words)[1][2][3][4]. While some of our research has been in speaker-independent recognition [5], we have
primarily used a German speaker-dependent database ealled SPICOS [6]. Multilayer Perceptrons (MLPs)
trained with back-propagation-styled learning schemes have previously been shown to be useful for the
recognition of voiced-unvoiced speech segments [7], isolated phonemes [8], [9], [10], or of isolated words
[11]. These results indicate that "neural network" approaches can, for some problems, perform pattern
classification as well or better than traditional approaches. Our earlier frame classification results [13],
which showed static classification performance for 10 millisecond frames of speech, are consistent with
these conclusions. However, these results are not particularly mysterious. When traditional statistical
assumptions (distribution, independence of multiple features, etc.) are not valid, systems which do not rely
on these assumptions can work better (as discussed in [12]). Furthermore, networks provide an easy way
to incorporate multiple sources of evidence (multiple features, contextual windows, etc.) without restrictive
assumptions.

Recognition of words in continuous speech requires a system which does more than static pattern
classification. In previously reported work, we developed a hybrid MLP-HMM algorithm for this problem,
in which an MLP is trained to generate the output probabilities of an HMM [3]. Given speaker-dependent
training, we have been able to recognize 50-60% of the words in the SPICOS test sentences. While this is
not a state-of-the-art level of performance, it was accomplished with single-state phoneme models, no tri-
phone or allophone representations, no function word modeling, etc., and so may be regarded as a "base-
line" system. The main point to using such a system is simplicity for comparison of the effectiveness of
alternate probability estimation techniques; our system has very few "knobs" to turn. While we are work-
ing on extending our technique to a more complex system, the current paper describes the application of
the baseline system (with a few changes, such as different VQ features) to the speaker-dependent portion
of the English language Resource Management database [19]. This exercise is primarily intended to
confirm that the previous result, which showed the utility of MLPs for the estimation of HMM output pro-
babilities, was not restricted to the limited data set of our first experiments, and that it works for English
much as it does for German.

METHODS

As shown by both theoretical [2] and experimental [13] results, MLP output values may be con-
sidered to be estimates of Maximum A Posteriori (MAP) probabilities for pattern classification. Either
these, or some other related quantity (such as the output normalized by the prior probability of the
corresponding class) may be used in a Viterbi search to determine the best time-warped succession of
states (speech sounds) to explain the observed speech measurements. This hybrid approach (MLP to esti-
mate probabilities, HMM to incorporate them to recognize continuous speech as a succession of words) has
the potential of exploiting the interpolating capabilities of MLPs while using a Dynamic Time Warping
(DTW) procedure to capture the dynamics of speech. As described in [3], the practical application of the
technique for continuous speech recognition requires cross-validation during training to determine the stop-
ping point, division by priors at the output to generate likelihoods, optimized word transition penaltics, and
training sentence alignment via iterations of the Viterbi algorithm.

For the Resource Management data, initial development was done on a single speaker to confirm that
the techniques we developed for the German data base were still applicable. Although we experimented
slightly with this data, the system we ended up with was substantially unchanged, with the exception of the
program modifications required to use different VQ features (described below). Final reported scores are
given for the 11 speakers which were left out in the development. For each speaker, we used 400 sentences
for training, 100 for cross-validation, and a final 100 for recognition. A transcription for each sentence was
derived from the most likely pronunciations observed in a large speaker-independent database. For each
speaker, we initialized a Viterbi algorithm by assuming a segmentation obtained by assigning a length to
each phoneme in the phonetic transcription which came from a table of average phoneme length (normal-
ized to the length of the actual sentence). Relative frequency (i.e., counting) was then used to estimate the
emission probabilities. The Viterbi was then used iteratively to generate a final labeling. The final labels
were used to train an MLP on the 400 sentences for that person. Input features used were based on the
front end for SRI’s DECIPHER system [14], including vector quantized mel-cepstrum (12 coefficients),
vector quantized difference of mel-cepstrum, quantized energy, and quantized difference of energy. Both



vector quantization codebooks contain 256 prototypes. Energy and delta energy are each quantized into 25
levels. A feature vector is calculated for each 10 ms of input speech.

Each feature was represented by a simple binary input layer with only one bit ‘on’. Some experi-
ments were run with no context (i.e., only one frame was input to the network for each classification).
Other experiments were run with nine frames of input to the network, allowing four frames of contextual
information on each side of the frame being classified. As we found in our SPICOS experiments, a hidden
layer was not useful for this problem. The size of the output layer was kept fixed at 61 units, corresponding
to the 61 phonemes to be recognized. The input field contained 9x562=5058 units, and the total number of
possible inputs was equal to 3x10%, There were typically about 130000 training patterns (from the 400
training sentences). Of course, this represented only a very small fraction of the possible inputs, (or even
of the inputs which are plausible for real speech), and generalization was thus potentially difficult. Train-
ing was done by an error-back propagation algorithm [15][16], using an entropy criterion [17][18]. Ineach
iteration, the complete training set was presented, and the parameters were updated after each training pat-
tern. To avoid overtraining of the MLP, improvement on the cross-validation set was checked after each
iteration. If the classification rate on the cross-validation set had not improved more than a small threshold,
the adaptation parameter of the gradient procedure was decreased; otherwise it was kept constant. Training
ended when improvement on the cross-validation set went below a second threshold. Performance was
insensitive to the exact values of these thresholds. After some experiments with our development speaker
(dtd05), we settled on an initial adaptation constant of .05 with no momentum term. The threshold for
changing the learning constant was initially set at .5% improvement on the cross-validation set, but was
then teset to an infinite value (i.e., change the learning constant after every iteration) after the reduction
from the first learning constant. This heuristic appeared to cut learning time roughly in half without
adversely affecting performance. The learning constant was reduced by a factor of two for each change.
The final stopping parameter was set at .5% improvement on the cross-validation set.

The output layer of the MLP was evaluated for each frame, and (after division by the prior probabil-
ity of each phoneme) was used as the emission probability in a discrete HMM system. In this system, each
phoneme was modeled with a single conditional density, repeated D /2 times, where D was a prior estimate
of the duration of the phoneme. Only selfloops and sequential transitions were permitted. A Viterbi
decoding was then used for recognition of the first thirty sentences of the cross-validation set (on which
word transition penalties were optimized). The trained system was then tested on the final 100 sentences
for each speaker. Note that this same simplificd HMM was used for both the Maximum Likelihood (ML)
reference system (estimating probabilities directly from relative frequencies) and the MLP system, and that
the same input features were used for both.

RECOGNITION RESULTS

Table I shows the frame classification performance for the MLP and for single-frame Maximum a
Posteriori (MAP) estimates, where the latter were calculated from counting relative frequencies of the
features for each phoneme. For the explicit MAP estimate, it is not possible to use contextual information,
because of the high dimensionality of the input space. Further, we must assume the independence of the
four feature likelihoods so that we can estimate the joint density by their product. These restrictions
explain why the MAP (also called Bayes) classifier, which is inherently optimal for a given pattern
classification problem, is shown here as yielding a lower performance than the potentially suboptimal
MLP. The difference between the frame classification performance for the MAP classifier and the single-
frame MLP’s (second column) is statistically significant (p < .001 using a normal approximation to a binary
distribution for the null hypothesis), both for all individual speakers and for the multispeaker comparison.
Thus, for these VQ features, the MLP is somewhat better at estimating the joint density than the simple
multiplicative method. Statistics aside, the improvement is slight. However, the large improvement shown
for the 9 frames of context (last column) indicates that the MLP has found temporal correlations which
generalize to new data.

Table 1T shows the recognition rate (100% - error rate, where errors include insertions, deletions, and
substitutions) for the 100 test sentences. As observed for the frame-level results of Table I, the incorpora-
tion of context (last column) was the major effect. However, the improvement using the single-frame win-
dow was statistically significant for the multi-speaker comparison (p<.001), and was also significant
(p<.01) for 7 of the individuals. This technique was statistically equivalent to using ML probability esti-
mates (from counting) for another 3 of the speakers, The single-frame MLP gave significantly worse



results for only one of the 11 speakers (das12), and inspection of this case showed that the word-transition
optimization had done a poor job, resulting in an excessive number of insertions for this speaker. Finally,
the incorporation of 9 frames of context (the last column of Table II) provided significant improvement (p
<.001) for every individual case, as well as for the pooled data. Thus, the MLP-based methods consistently
show measurable improvement over the simpler estimation technique.

DISCUSSION

These results (all obtained with no language model, i.e., with a perplexity of 1000 for a 1000 word
vocabulary) show some of the improvement using MLPs for continuous recognition (over simpler probabil-
ity estimators) which one might expect from the frame level results (Table I). As described above, each
table shows results for 11 speakers (plus the multi-speaker mean) and for cases of 1 and 9 frames of input
context for the network. MLPs can sometimes make better frame level discriminations than simple statisti-
cal classifiers, because they can easily incorporate multiple sources of evidence (multiple frames, multiple
features), which is otherwise difficult to do in HMMs without major simplifying assumptions. In general,
the relation between the MLP and ML word recognition is more complex, because of interdependence over
time of the input features. The incorporation of multiple frames of context for the MLP might seem to be
an "unfair" basis of comparison to the ML case; however, no claim is made for the MLP as the unique
method of incorporating temporal context in probabilistic estimation for HMM’s, only that it appears to be
a good method. An alternate approach is to use dynamic features, which in fact were already in use in our
example (the SRI features include delta features). Other experiments not reported here [5] have shown that
higher order dynamic features (e.g., acceleration) may also be used to good advantage by the MLP. Our
current belief is that the further use of such features can improve the performance of the MLP/HMM sys-
tem for single-frame inputs. Nonetheless, it is clear that the MLP can make good use of temporal context
to generate probability estimates.

The features we have been using were chosen for their effectiveness in HMM systems, and different
combinations may prove to be better for MLP inputs. In particular, we would expect that feature combina-
tions that have not been vector-quantized should have more useful dependencies (both within-frame and
over time) that the MLP may be able to learn and exploit. We are exploring this possibility currently.
However, despite the potential performance advantages for continuous features, VQ features are still of
interest because of significant advantages for hardware implementation (e.g., no multiplications are
required).

Results reported here are somewhat better than those we reported for the SPICOS study. Since we
are using essentially the same system, we attribute the difference to the improved features (four features
rather than 1, including delta features) and to the fact that the SPICOS test set included many words that
never occur in the training set.

SUMMARY

Previous results [3], using a German speaker-dependent database, showed that an MLP could make
effective use of temporal context to generate effective estimates of likelihoods for use in an HMM-based
continuous speech recognition procedure. A new experiment has been performed that shows that this
result holds for an English language data base, the speaker-dependent part of Resource Management [19].
In particular, for each of the 11 speakers that were not used for development, the contextual MLP reduced
word recognition error significantly (from 48% to 39% on the average). This was observed using a
simplified HMM system with single-state monophone models, no skips or insertions, no language model,
and no function word models. Now that we have confirmed the principle, we are beginning to develop a
complete system, which will incorporate context-dependent sound units. We are also working on further
incorporation of speech knowledge in the design of the MLP.
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speaker name | MAP | MLP(1) | MLP(®9)
jws04 54.6 56.9 69.0
bef03 51.4 529 65.0
cmr(2 514 529 67.2
dtb03 51.3 524 64.6
dasl12 53.5 55.9 72.2
ers07 50.9 52.0 64.4
dms04 55.8 57.0 72.1
tab07 54.8 56.3 70.3
hxs06 52.8 54.8 69.9
rkm03 45.0 45.8 56.8
peh01 46.2 52.1 64.9
mean 51.6 53.5 67.0

Table I — Frame classification in % correct for MAP estimate from counting, MLP with 1 frame
of speech input, and MLP with 9 frames of context as input.

speaker name | ML | MLP(1) | MLP(9)
jws04 48.2 53.6 56.0
bef03 39.3 46.6 52.3
cmr(2 59.5 64.4 66.6
dtb03 49.8 52.0 58.1
das12 63.8 55.8 71.7
ers07 454 49.2 53.8
dms04 58.0 58.8 67.1
tab07 60.8 50.6 66.6
hxs06 60.9 65.5 71.3
rkm05 37.9 46.4 48.7
pghO1 504 571.3 60.4
mean 52.2 55.4 61.1

Table II — Word recognition, in % correct for Maximum Likelihood estimate from counting,
MLP with 1 frame of speech input, and MLP with 9 frames of context as input.
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