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ABSTRACT

The use of the joint space-spatial frequency representations has recently received
considerable attention; specially in those areas of science and engineering where nonstationary
signals appear. In that case, local energy distribution representations based in the local spectra
computation would be more appropriate. The Wigner Distribution (WD) that gives a joint
representation in the space and spatial frequency domain entails a rigorous mathematical
framework in the study of these local representations. In this paper, texture recognition is
performed through the extraction of features from the WD and a comparative study with other
methods is presented.A review of the state-of-the-art of the joint representations in different
areasof research, namely signal, speech and vision processing, is presented. Afterwards, the
importance of these distributions in the modeling of early vision processes has been con-
sidered, presenting a brief review about the physiological findings in order to have a quantita-
tive measure of the degree of biological plausibility.
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I. Introduction

The joint space-spatial frequency representations have received special attention in the field of
image processing, vision and pattern recognition. This interest is due in essence to three different
aspects: this class of functions display all image information in the conjoint domain where the
representation is defined; neurophysiological studies have suggested that some cells of the
primary visual cortex serve to encode some particular joint representation (Jacobson 1988); and
moreover, they have a high pattern separability. Nevertheless, the joint representations must
observe some conditions in order to be useful in those areas: the correct marginal distributions
should be contained for them, that is, the projections of the representation on the conjoint domain
must yield the local image power and the image spectrum; they also should have high resolution
in both domains; and they must be positive, in order to be interpreted as an energy distribution
onto the joint space-spatial frequency domain. On the other hand, the condition of bilinearity is a
logical one in the context of image processing. It has been claimed that the Wigner distribution
function (WD) has the best properties to be used in image processing, against other joint
representations of this kind. Thus, it has the best resolution, which is matched to that of the image
in both domains; it overcomes the resolution trade-offs that traditionally have limited the utility of
windowed power spectrum analysis. And besides, the WD is a joint bilinear representation, very
close to be positive, invariant within linear transformations, and it contains all image information.

These aspects will be explained more extensively below.

In Section II, the definition and properties of the WD for continuous functions have been
considered. However, an exact evaluation of this distribution is generally impossible. This is so
because the WD is defined, as it will see, by an infinite integral. There are two ways to deal this
problem: by computing optically the integral, or by converting the continuous function into a
discrete function, and defining discrete versions of the distribution. Then, a discrete version of this
distribution is presented, and the consequences of this discretization are discussed. At the end of
the second section, the space (time)-frequency distributions are discussed by using the Cohen’s
unified approach. And the WD’s interference problems, introduced by the bilinear definition, are

discussed in the context of pattern recognition and image analysis applications.

It has been said above that the WD can be computed analogically, or via digital. In Section II,
different implementations of this distribution are presented. First, digital implementations are
described in the case of images with 1-D and 2-D variations. The 2-D case could be considered a
generalization of the 1-D one, but it will imply excessive number of calculations and high storage

requirements. The WD has been computed through the different implementations. And, the
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inversion property was tested by recovering the image information.

From the point of view of image processing, it is very interesting that such kind of
representation retains all image information, since in this case this information could be retrieved,
and the WD meets this property. This suggests to use it in different image processing operations.
Nevertheless, it is necessary before its use to estimate the computer requirements that the
generation processing, and inversion of the distribution of an image implies. This evaluation bring
out the need of developing another class of Wigner processors, that in some case reduce those
resources. The hybrid processors take advantages of the best characteristics of the optical and
digital processors. In Section IILE, the interest of using VLSI technology in the generation of the
joint representations, and in particular the WD, has been considered.

Although an increasing corpus of evidence suggests the mammalian biological visual systems
are capable to a selective spatial frequency analysis, however the use of the classical Fourier
spectra to texture analysis have been partially successful (Sutton 1972, Weszka 1976). The main
reason for these dishearten results is due to the fact each frequency component contents global
information. On the other hand, the shift-invariance property of the Fourier spectra is obtained at
expense of the loss of phase information. However, as Oppenheim and Lim have demonstrated
many features of a signal are retained in the phase information but not in the amplitude
(Oppenheim 1981). This fact led to some researchers to consider the use of local image
representations by computing the power spectrum over subregions of an image. Bajcsy and
Libermann were the first to perform work in this area using local (windowed) measurements of
the image spectrum to compute the texture gradient (Bajcsy 1976). The use of space-frequency
distributions comes to overcome the shortcomings of the traditional Fourier analysis. Section III
deals with the application of the WD for texture discriminations and classification by using both
pairwise linear and discriminations analysis. Several textural features have been extracted from
the WD and a comparative study with the classical Fourier feature extraction methods has been
performed.

In section IV a review of the applications of space (time)-frequency distribution has been
presented emphasizing those which are vision oriented. Afterwards, the importance of these
distributions in the modeling of the early vision processes has been considered, presenting a brief
review about the physiological findings in order to have a quantitative measure of the degree of
biological plausibility. Some additional pointers have been included in the References Section for

its relationship with the present work.

2.
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I1. The Wigner Distribution.

A. Definition

The modeling of stationary linear processes, in the area of signal processing, can be done by
its spatial (or temporal) amplitude or by its spatial-or temporal- frequency; however the
assumption of stationary fails to be true in many applications. In that case, it would be more
appropriate to define a local power spectrum that combines the advantages of both descriptions.
The Wigner distribution (WD) that gives a joint representation in the space and spatial-frequency
domain, entails a rigorous mathematical framework in the study of these local representations.
The WD significance and usefulness would be pointed out by means a musical score (Bartelt
1980). The musical score constitutes a fairly good representation for the musician but is erroneous
from the mathematical point of view try to specify a monochromatic frequency in a given point of
time. It would be necessary to observe the signal at least in a period of time in order to define the
frequency of the signal.

The Wigner Distribution (WD) introduced by Wigner (Wigner 1932) as a phase representation
in Quantum Mechanics gives a simultaneous representation of a signal in space an spatial-
frequency variables. It belongs to a large class of bilinear distributions known as the Cohen’s
class, in which each member can be obtained choosing different kernels in the generalized
bilinear distribution definition (Cohen 1966, Claasen 1980c). The Wigner Distribution might be
interpreted as a local or regional spatial frequency representation of an image. It represents two
main advantages with respect to other local representations. First, the WD is a real valued
function and encodes directly the Fourier phase information. Second, the election of the
appropriate window size, which depends on the kind of analyzed information, is not required for
the computation of the WD,

The WD of a 2-D image is a 4-D function that involves Fourier transformation for every point
of the original image. This fact leads to consider different alternatives to compute the WD of
discrete images (see Section ILE). In order to overcome these problems, two possible alternatives
has been proposed. First, several hybrid optical-digital image processors have been proposed in
the literature to generate the WD of 1-D and 2-D signals. Second, some VLSI special purpose
architectures has been recently proposed for computing the distribution.

In this Section, we consider the auto-Wigner distribution function corresponding to 1-D
signals for notational simplicity, being the extension to 2-D signals straightforward. Let suppose a
continuous, integrable and complex function f(x). The symmetric definition of the Wigner
distribution W(x,) is given by
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where x and xq are spatial variables, @ is the spatial frequency variable and £°(-) means the
complex conjugate of f(-). The product function r(x,xg) is given by

) = f+ D f k=) 2.2

The auto-Wigner distribution gives a generalized autoconvolution at non-zero frequency (Szu
1982). From (2.1), it can be observed that the WD is the Fourier transformation, for a given point

Xq, of the image product f(-)f*(-). It may also be obtained from the Fourier transform, 7-),of f(-)
by

P o, O, o
We(w,x) = J'f(m+70)}*(co—~2—q)ej “do, (2.3)

According to (2.1) and (2.2) the following relation is observed
We(x, 0) = Wr(0,x) (2.4)

which shows the symmetry between the two conjugate domains (space and spatial-frequency).
The mathematical foundations of the WD were considered by De Bruijn in the context of
Quantum Mechanics applications (De Bruijn 1973). However they can be modified in many
instances to the field of signal processing.

The Wigner Distribution is closely related with the Ambiguity Function (AF) proposed by
(Woodward 1953) in the study of radar signals, which definition is given by

Ar(0,x) = _[f(x0+;)f‘k (xo—g)e_jm"dxo (2.5)

Both Eq. (2.1) and (2.5) could be considered particular occurrences of the generalized local
spectral signal representation complex-spectrogram (CS), defined by

s
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S (6 0) = [flxg+ g) g (xo- g) e oy, (2.6)
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The CS can be interpreted as a windowed process of the signal f(x) by a shifting window function
g(x) (rectangular, gaussian, etc.) and Fourier transforming the product f(-) g*(-). If the function f(x)
is chosen as window g(x), a self-windowed S version is obtained in (2.5). In that case, the Eq.
(2.5) and (2.6) are equivalent by the following relation

Ar(0,x) = Sff (x, ) 2.7

Comparing Egs. (3.1) and (3.5) leads to conclude that the Wigner Distribution is related with
the Ambiguity Function through a double Fourier Transformation

o oo

Wi 0) = [ [A(egxp)d e dxyda, (2.8)

— O

The AF can be interpreted as a signal autocorrelation in presence of Doppler shifts (Bartelt
1980).

B. Properties

A complete study of the properties of the WD was formulated by (Claasen 1980). The most
salient properties for image processing applications are listed below.

1. Realness

The WD of any real or complex function is always real since it is the Fourier transformation
of an hermitian product function (see Eq. 2.2). However, it is not possible to interpret this
distribution as a density energy distribution, because the WD is not always positive. This implies
that the phase information is implicitly encoded in the changes of sign of the distribution. The
importance of the Fourier-phase in image representation and analysis has been recognized for
different authors (Oppenheim 1981), (Behar 1988). The WD-phase information gives up the

spatial dependence correspondent to the spectral frequencies.
2. Space and spatial-frequency marginals

The WD integration over the spatial variable at a fixed frequency gives the spectral energy
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density at that frequency, and the WD integration over the frequency variable at a fixed point
gives the local power at that point

ij(x, @) dx = |F(0)|? 2.9)

1 oo
= j W (x, 0) do = |f(x)]? (2.10)
3. Finite support

In the case of space-limited signals, the WD is zero out of the range of signal definition. The
same property applies to the spatial-frequency domain.

if £(x)=0 for| x | >N

then Wi(x,0)=0 for| x|>N 2.11)
if FAw)=0 for |@|>M

then We(x,w)=0 for| @|>M (2.12)

4. Space and frequency shifts
Shifts in space and frequency domains give corresponding shifts in the distribution.
g(x)=f(x-xq) - Wo(x,0)=W(x-x0,®) (2.13)
G(w)=Hw-wp) — Wg(x,m)=wf(x,co-m0) (2.14)
5. Inversion

The product function re(x,xg) (see Eq. 2.2) can be recovered by a inverse Fourier
transformation

s x) = 5= [ Wyix, 0) o (2.15)

By introducing in (2.15) the variable transformation x;=x+xp/2 and xp=x-x¢/2, we obtain

" X tx @ (x, — x
FODF () = o= [ W2, 0) 2% P 2.16)

and by substitution in Eq. (2.16) x1=x; and x5=0,
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FOf O = o [ WG ) d*do @17)

The Eq. (2.17) can be also interpreted as the necessary condition that a function of two variables
must satisfy in order to be a WD. A more general study was be done by (de Groot 1972) that
includes the necessary and sufficient conditions.

6. Product and convolution

The WD of a convolution of two signals f(-)and g(-) is equal to the convolution of the
distributions in the spatial variable.

Wi, (x, @) = IWf(xo, ®) W, (x—xo, 0) dxg (2.18)

—0

The WD of a product of two signals f and g is equal to the convolution in the frequency variable.

Wy o (%, 0) [ Wp(x, 09 W, (x, - o) do, (2.19)

7. Interference.

The WD computation of a multicomponent signal introduces spurious “cross- terms” due to
its intrinsic bilinearity (Eq. 2.1). As recently has been pointed, the definition of a multicomponent
signal is a controversial issue, because any signal can be split-up in an infinite number of different

ways (Cohen 1989). The WD of the sum of two signals f(x)+g(x) is given by
Wi (2, 0) = Wf(x, ©) +W, (x, ®) +2Re [Wﬁg (x, )] (2.20)

where the last term in Eq. (2.18), that can be interpreted as the cross-WD corresponding to f(x)
and g(x), is called “cross-term”. The presence of cross-terms in the distribution, not necessarily
are always undesirable. The recent work of Choi and Williams (Choi 1989) exploring particular

members of the Cohen’s class in order to minimize the cross-terms but retaining the basic
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properties constitutes a major advance in the study of the time-frequency distributions.

C. Discrete Wigner Distribution

Although the WD was initially proposed for continuous variable functions, Claasen and
Mecklenbriuker proposed at the beginning of the eighties a first definition for discrete variable
functions (Claasen 1980b). However, one of the main disadvantages of the discrete definition is
that not all the properties of the continues WD are preserved by discretization due to aliasing
effects. In this sense several alternative definitions have been proposed in the literature in order to
overcome this problem (Chan 1982), (Claasen 1983), (Brenner 1983), (Day 1983), (Peyrin 1986).
It is shown that all the definitions are expressed by similar formulas and can be interpreted as a
smoothed (filtered) version of the original elementary definition (Pacut 1989). The discrete WD of
a sampled function f(n) is defined by

N-1 _
We(n,0) =23 fln+k)f* (n-k)e 2.21)
k=0

where n and @=2nm/N are the spatial and frequency variables, respectively. The Eq. (2.21) can be
interpreted as the N-point DFT of the image product

re(n, k) = f(n+k)f (n—k) (2.22)
for a given point n.

The discrete WD is periodic in the frequency variable with period 7, i.e. W(n,)=Wg{(n,w+r).
However, the signal’s Fourier spectrum periodicity is 2x. The discrepancies between the different
periodicity could be avoided by discharging the factor 2 in the exponent of the Eq. (2.21), but this
has the drawback that the components in f at ® occurs at 2 in the WD. This fact is a consequence
of the intrinsic bilinearity of the definition given by the Eq.2.21 and produces that the
simultaneous apparition of the even and odd samples occurs separately. This can result in aliasing
unless analytic signals will be considered or by signal’s oversampling by a factor of 2.

In the case of image applications, two problems arise in practice in order to compute the
discrete WD. First, the aliasing problem can be reduced by smoothing the original image using
low-pass filtering. One additional problem that appears in practice is the spectral dispersion or
leakage due to the window size, specially important in the case of small sizes. To reduce leakage

is necessary to introduce spatial apodization or truncation filters in order to minimize the spurious
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side lobes of the sinc function, as a consequence of the windowing effect.

The discrete WD definition given by Eq. 2.21 retain the basic properties of the continuous
WD, but introducing discrete-space signals. However, in that case the main difference comes

from the inversion property. In the case of discrete signals, inserting k=n in Eq. 2.21 allows one to

write
N
77 25
fenf ) = Y Winme " (223)
N

2

From Eq. 2.23 only the even samples can be recovered. Inserting k-1=n in Eq.2.21 leads to the
recovering of the odd samples

N—l

2 25 (n-1)
fen=-0f @ = Y Wf(n,m)e} - (2.24)
N
m=—§

In the case of image filtering operations the inversion property is crucial in order to manipulate

the image in the Wigner domain and returning backwards to the spatial domain.
D. Wigner representation of images

The WD doubles the number of variables of the represented image. In this way, the WD of 2-
D images is a 4-D function (2 spatial coordinates and 2 spatial-frequency coordinates). This fact is
shown in the Figure 2.1, where a sinusoidal grating of 256x256 pixels, and with 4 period/image
(Fig.2.1.a), as well as its WD (Fig 2.1.b) are displayed. Since the original image varies only in x
direction, its WD is a 2-D function. This representation of the distribution is similar to the
information diagram proposed by Gabor (Gabor 1946). The computation of this distribution
involves a Fourier transformation for every point of the original image. These facts lead to
consider the WD as a quite intensive process, that can limit the range of applications and image
processing can be a good example of this situation. Different alternatives have been proposed in
the literature in order to overcome these problems: optical processors, VLSI special purpose
processors, and hybrid optical-electronic systems.

The most of the applications of the WD in image processing have been carried out through
digital implementations (Jacobson 1982a, 1982b, Cristobal 1989, Gonzalo 1989, Gonzalo 1990b).
This is a consequence of the characteristics of this kind of systems, such as the flexibility of being

programmed, or the high speed and storage achieved for them in the last years.
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From the definition of the discrete Wigner distribution function WD (see Eq.2.21) is clear that
the first step to compute this distribution is to generate the corresponding product function
rf(n, k) = f(n+k) f" (n—k). Since here only real and positive value images will be
considered, the function f*(-) is equal to f(-); and then, the function rf(n, k) is obtained, for each
value of k, by shifting & pixels the image represented in the spatial domain from the origin to left
and to right, and multiplying these two images. For a particular test image, a composite
rectangular grating with 32,16 and 8 pixels/period (Figure 2.2), its corresponding product
function is shown in the Figure 2.3; each column represents a section of the product function
associated with each value of k. The WD is obtained by computation the 1-D Fourier
transformation of each column of the product function. The distribution of this composite grating
is represented in the Figure 2.4, The frequency variable is mapped along the vertical axis, and the
spatial coordinate along the horizontal axis.

Insert Fig. 2.2, 2.3, 2.4 about here

The figure 2.5 shows the WD corresponding to a rectangular window test. In this case, the
distribution can be interpreted as a composite of sinc(-)=sin(-)/(*) functions represented along the
y-axis. Each one sinc’s comes through DFT of the different image products corresponding to the
different points selected in the spatial domain.

Insert Fig. 2.5 about here

The figure 2.6a shows an example of an aerial image with two main tree species, Eucaliptus
globulus and Pinus Pinea. Figure 2.6.b shows on the top two samples of the image product, and
on the bottom the corresponding samples of the WD.

Insert Fig. 2.6 about here

The WD constitutes an excellent framework in the study of local filtering operations.
Cristobal er al. (1989) have carried out some digital space-variant filtering of images with one
dimensional variation, and recovered the information of filtered image through the local spectrum
power. The results of the operations after coming back to the original domain is shown in figure
2.7. The test image is shown in the Fig. 2.7a, and the local image power of the filtered image is
displayed in Fig.2.7.b; a smoothing is obtained on the left hand side, and an edge sharpening on
the right hand side, since the samples of the WD corresponding with the left half of the image
were filtered with a low-pass filter, and the rest of the WD with a high-pass filter.
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Insert Fig. 2.7 about here

E. Hybrid and digital implementations

The implementation and application of the Wigner distribution function is very appropriate to
the characteristic of the hybrid processing. Since one of the main problems of this function is the
throughout of computer time required, the most of the calculations can be performed via optical
and to use the digital part to manipulate the information. The hybrid processors have a specific
character, i.e., each problem required a different architecture; in fact, different architectures
should be used to implement the same algorithm applied to different problems, this is the case of
the WD (Easton 1984).

The idea of combining electronic technology with optical systems as a means to use the fast
processing ability and parallelism of optics was proposed by Huang and Kasnitz (Huang 1967)
and subsequently developed by Casasent et al (Casasent 1974). The WD computation can be done
through the use of optical processors and storing the information in the computer for subsequent
analysis. '

Cristobal et al. (Cristobal 1989) presented a Wigner hybrid processor, based in the optical
setup developed by Bamler (Bamler 1983) and shown in Fig. 2.8. Also in this case, the output of
the optical system was 2-D spatial samples of the WD, associated with each point of the
represented image. Then, this local spectrum were fed, via a TV camera, into a digital image
processor, where the visualization and digital processing of this spectrum was possible. This
hybrid processor has been recently improved by Gonzalo et al.(Gonzalo 1990a).

Insert Fig. 2.8 about here

Heretofore, the most applications of the time-frequency analysis in which the WD is
computed correspond to the case of 1-D signals. As a result, Wigner analysis of speech, radar,
sonar and biomedical signals become a reality. Real-time implementations for computing the WD
of discrete signals have recently considered by the use of special purpose processors. In all the
cases, the FFT plays a central role for the WD computation. Chester (Chester 1983) proposed a
hybrid system in which a whole pre-processing: data acquisition, buffering, time reversal and
windowing operations were done by a conventional serial computer DEC LSI-11, whereas the
FFT was computed in special purpose hardware by using a dedicate microprocessor. The special
symmetry properties of the discrete WD definition allow the computation of 2 WD’s in one FFT
cycle.

-11-
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Boashash er al. (Boashash 1987) proposed the FFT computation by the use of a cascade of
many processors connected in parallel. This method is effective for real-time applications, but
increasing the system cost due to the large number of processors required. Sun et al. (Sun 1989)
have recently reported an alternative system by using a pipeline implementation for the WD
computation. The concept of pipeline processing besides in to divide the computational task in
several sub-tasks, in such a way each sub-task is processed by a simple stage. Chester er al.
(Chester 1989) have proposed more recently a hybrid system fully programmable capable of
implementing discrete versions of the Cohen’s class of functions, and in particular the WD. The
implementation allows to capture wideband signals, by filtering and analytic baseband signal and
decimating by a programmable rate. Once the baseband signal is generated, the WD is computed

by using vector processors under the control of a RISC control processor.

In the case of images, the use of special purpose processors for time-frequency analysis have
mainly been considered for the computation of the Gabor scheme of representation. Einziger
(1986) proposed the use of VLSI modules for the computation of the elementary and/or auxiliary
functions inherent in the Gabor scheme. Cristobal (1990) has recently proposed the use of cellular
neural networks for the Gabor’s receptive field computation. A machine vision based in the Gabor
scheme should be implemented in special purpose VLSI hardware in order to take the advantages
of the parallel architectures in computing the early vision processes, specially in the segmentation
and feature extraction procedures. Hierarchical structures of computation retains the advantages
of the local computations performed by the cellular automata, but simultaneously obtaining a
capability for global computations. The pyramid structures may be considered as a combination
of cellular arrays and tree structures (Tanimoto 1987). In the case of image processing
applications, the main advantages of the pyramid schemes derive from the multi-resolution data
representation. The pyramids have been considered as a general framework for implementing
highly efficient structures of computation in which image compression, texture analysis and
image motion are some illustrative examples of their use (Burt 1984). The pyramid structures are
well suited for its implementations in VLSI circuits due to the fact one can be concentrated in a
chip design that provides a “basic building array” of a reduced number of cells (i.e. 5x5 or 9x9
arrays). The whole architecture can be constructed by the interconnection of these basic structures
(Tabernero 1990).

F. Cohen’s unified approach and related distributions

It is interesting to introduce briefly some historical remarks about the origin and posterior
advances of the joint time (space)-frequency distributions. Although this study is based on the

B
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Wigner distribution, a more exhaustive discussion about the relations between the WD and other
time-frequency distributions have already been considered elsewhere (Claasen 1980c), (Cohen
1989). Wigner was the first to have found, in the context of Quantum Mechanics, a function that
simultaneously describe the position and momentum of a particle (Wigner 1932). In his first
paper, he formulated that a bilinear distribution in the wave function v, satisfying the marginals
(Eq. 2.9 and 2.10), cannot be always positive (the concept of a wave function Yy in Quantum
Mechanics is formally identical to the concept of a signal f). This leads that the WD cannot be
interpreted as a energy density function. However, this interpretation has minor significance in the
image processing applications. When the positivity is a major requirement, different smoothed
distributions has been proposed in the literature in order to obtain positive distributions,
maintaining the rest of the properties. More details can be found in a recent paper by (Cohen
1989). Subsequently, Ville derived in the area of signal processing the distribution that Wigner
proposed in Quantum Mechanics (Ville 1948). Many other authors use later also the Wigner-Ville
or Ville distribution to denote the same distribution.

In the context of the time-frequency analysis it would be considered crucial the contribution
of Dennis Gabor in his famous monograph “Theory of Communication” (Gabor 1946). The basic
idea of the Gabor’s theory implies the representation of a signal in terms of quanta of information
named “elementary functions” or “logons”, introducing the joint representation of signals by
using the “diagram of information”. He proved the principle that this kind of simultaneous
representation is limited by the uncertainty relation. Following a proper formalism in Quantum
Mechanics, Gabor derived by the use of the Schwarz inequality, which family of elementary
signals minimizes the uncertainty relation between time and frequency. These elementary
functions (now called Gabor functions) are gaussians modulated by sinusoids of the form

(x=xg)?

2

fx) =e & I (2.25)

where  represents the frequency of the sinusoid wave and xg and « represents the position and
spread of the gaussian envelope.

The mathematical properties of these functions are discussed elsewhere (Baastians 1981). We
will consider in Section IV the relevance of the Gabor’s theory in the context of image
applications.

Kirkwood in 1933 proposed another distribution, conceptually simpler than the WD given by

-13-
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(Kirkwood 1933)
Clx ) = %f(x)f* (@) €% (2.26)
n

yor

Rihaczek derived some time later the same distribution that he named complex energy spectrum
giving some interesting insights about its physical interpretation (Rihaczek 1968). The Rihaczek
distribution is related with the WD by a double convolution

Cx0) = 5= [ [2e7797% (4 — ) dryda, 227)

1
2w
The distribution given by Eq. (2.26) is complex, but its real part is also a distribution that satisfies
the marginals.

Page in 1952 proposed a new distribution named the instantaneous power spectra (see Table
I), but the study was done by Mark (Mark 1970) by introducing the physical spectrum, which is
basically the same concept of spectrogram, is worthwhile for its extensive use in different areas of

research. The physical spectrum is related with the WD by
1 oo
S (5 0% = — [ W, (xg=x, 0 - ©) W, (xo, 0)) dxoded, (2.28)

where w(x) represents a window function. The Mark’s physical spectrum coincides with the

square modulus of the complex spectrogram.

A general formulation of the bilinear time-frequency distributions was given by Cohen
(Cohen 1966). Each member of the named Cohen'’s class is given by

o3 oo oo

X —J (Oxy— Wx +
C(x, 0;®) = 2—1[ [ If(y+-29)f* (y-'%)cb(x,m)e” 0T gydxodw,  (2.29)

— e O e D

where the signal f(x) appears in the habitual bilinear form, and P is a so-called kernel function.
The different members of the Cohen’s class will be obtained as particular occurrences of the
kernel ®. For example, the WD and the ambiguity function can be obtained by taking ®=1 and
D=5(x-X()d(-wy), respectively. This formulation has the advantage to give a general framework
to a more systematic study of this time-frequency distributions. An interesting consequence of

this formulation is based in the idea that placing constraints on the kernel one obtains a subset of

-14-
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the distributions that have an particular property (Cohen 1966). Table I presents a summary of the
main distributions and their corresponding kernels.

Table 1. Some distributions and their kernels. Adapted with permission from (Cohen 1989)©1989
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We will discuss here a remarkable work published by Choi and Williams (Choi 1989) in the
study of new distributions with desirable properties but simultaneously reducing the presence of
undesirable effects. Some researchers have considered the WD as a masterform distribution from
which the rest of distributions can be derived (Bartelt 1980), (Jacobson 1988), (Reed 1990). Choi
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and Williams found that by an appropriate kernel selection, one can reduce the presence of cross-
terms for multicomponent signals but retaining the rest of desirable properties (see Table I). The

parameter O in the kernel. G2t
D(w,x) =e ° (2.30)

regulates the presence of cross terms. In the limit G—eo the Choi and Williams distribution
becomes the WD. The presence of cross-terms is reduced for small values of o, and the rate of
cross-term decreasing is proportional to 1/ (/o) . Several different applications of the use of this
new distribution has been reported in the study of speech, cortical event related potentials (ERPs)
and electromyograms (EMGs) (Williams 1989). The importance of this work would be reflected
in the different methodology to obtain distributions with desirable properties. Instead to modify
the WD in order to reduce the cross-terms, one is interested to change the kernel for which the
spurious values of the distribution are minimal. The definition of the Choi-Williams distribution
kernel (Eq. 2.26) includes only a modifiable parameter o, but the same method can be explored in
the future to find new distributions with desirable properties.

The presence of cross-terms can be obscured the importance of the auto-terms specially for
such applications in which the signal discrimination and recognition is a critical issue. For
instance, in the analysis of speech signals the presence of these artifacts can be lead to a
misunderstanding of the presence of formants. In the case of medical applications these artifacts
can be difficult the signal analysis and hence the posterior diagnosis. Recently, Sun et al. (Sun
1989b) have proposed the elimination of the cross terms via pre-processing filtering based in the
use of averaging or median filters. The basic idea is to consider the pseudo-Wigner distribution as

an image with polarity eliminating the negative values by using classical convolution masks.

Another alternative to the reduction of the cross-terms is the use of the analytical signal rather
than the real signal itself. This fact has the advantage to retain the original WD definition without
introduce a smoothing factor in the kernel. Zhu et al. (1990) have reported recently the use of a 2-
D Hilbert transform for Wigner analysis of 2-D real signals. They proposed a 2-D continuous
Hilbert transform based in the Read and Treitel discrete Hilbert transform (Read 1973). The
theoretical performance of the 2-D analytic signals in the WD computation was illustrated by Zhu
et al. (1990) by using simulated and real images. However, the 2-D analytic signal, unlike the 1-D
analytic case is not unique. Then, it is necessary to decide which 2-D analytic signal can be used
in order to reduce various possible interference terms. In general, the appropriate choice of the 2-
D analytic signal depends of the spectral signal characteristics. Recently, Zhao et al. (Zhao 1990)
and Atlas et al. (Atlas 1990) have also proposed the use of a gaussian kernel in order to reduce the
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interference terms but retaining the finite-time support and good frequency resolution.

Further research is needed both in the study of smoothing kernels and/or the 2-D analytic
signals for image feature extraction and pattern recognition by using the WD spectral analysis.

7
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ITI. Image Analysis through the Wigner Distribution

Texture is one of the attributes employed to characterize the surface of an object. However,
there is not a unique definition of the notion of texture. Its definition has been formulated in terms
of an enumeration of properties such as fine, coarse, etc. Conceptually, texture could be defined as
the arrangement or spatial distribution of intensity variations in an image (Jernigan 1984). The
two major characteristics of a texture are its coarseness and directionality. Since the spatial
frequency domain representation contains explicit information about the spatial distribution of an
image, one could expect to obtain useful textural features from the spatial frequency domain.
However, the texture methods that embody spatial frequency information have met mediocre
results (Sutton 1972), (Weszka 1976), mainly due to the fact that the Fourier transform is an
intrinsically global transformation, i.e. each frequency component contains global information
about the whole image. Even reducing the window size to contain homogeneous texture sub-
images was not an advantage in comparison with the spatial methods based in the use of second-

order probabilities (co-ocurrence methods).

Here we have considered the use of the space-frequency representations, namely the WD, in
the case of image analysis applications. A recent review about the use of the joint representations
mainly in the areas of signal and speech processing can be found in (Cohen 1989). In Section VI a
summary of these applications is presented, considering also the use of these representations in

the image and vision modeling research.

Recent studies have suggested that the visual texture discrimination ability is achieved locally
(Gagalowitz 1981), (Julesz 1983). The WD entails a rigorous framework in the use of local
representations, in such a way it embodies the spectral local variations that can improve the
texture discrimination and segmentation processes. In this way, we have considered the use of the
WD for texture discrimination and classification, in the statistical approach.

Texture features can be described by generalized filtering techniques through image
transforms. Fourier spectral analysis has been applied for discrimination of terrain types (Lendaris
1977) and for detection and classification of lung diseases by comparing the normal and abnormal
textural features (Kruger 1974). In the present study, the WD based method for texture
classification has been applied to four Brodatz texture field examples (Brodatz 1966). A complete
archive of digitized images, including the Brodatz textures, can be found in (Weber 1989). Figure
5.2a represents the four textures selected (clockwise from top left) sand, straw, raffia and cotton
canvas. The texture samples were digitized and converted into 256x256 picture arrays with 8 bit/
pixel from (Brodatz 1966). One of the advantages in the use of the WD is that the window size
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selection is not required. However, in order to reduce the computational requirements it’s
necessary to relax the definition and to define a specific window size. Different window sizes have
been proposed in the literature to obtain a good statistical resolution (Ashjari 1980), (Pratt 1980).
Here we have used N=16 texture fields of 64x64 pixel each.

A. Feature extraction

The first order statistics of all textures have been normalized to uniform distributions using
histogram equalization, so that differences in luminance and contrast are eliminated in the
discrimination process. The histogram of an image represents the frequency of ocurrence of the
gray levels along the image. By histogram equalization we can obtain an output image in which
the gray levels of the picture are more uniformly distributed than in the original image. Figure 3.1

shows an example of the resulting histogram equalization of the intensity mapped image

118 128 130 146 158 160 170 180 198 288 218 228 238 240 258

(a)

H Wik R

18 28 3@ 40 58 6@ 78 BA 98 188 118 128 138 148 158 168 178 184 198 28@ 218 228 238 248 250

(b)
Figure 3.1. (a) Original Girl (Lenna) histogram. (b) Equalized histogram corresponding to
Fig.3.1a

The histogram-modeling techniques has been considered as a powerful approach to the image
enhancement applications. An example of the utility of these techniques is the case of images with
narrow histograms (low-contrast images). By histogram equalization one can increase the image
contrast as a consequence of the histogram stretching (Gonzalez 87), (Jain 89). After performing
histogram equalization on textures, a complete homogeneity of the data is reached, and any result
from the computation is solely due to the intrinsic texture structure and not to undesired
luminance biases. Figure 3.2a shows the four preprocessed Brodatz textures selected in the
forthcoming study (Brodatz 66). Figure 3.2b shows the corresponding Fourier spectra.
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Insert Fig. 3.2 about here

The evaluation of the WD’s categorization capabilities requires the election of the most
discriminant features. The method proposed here is based in the computation of the auto-WD at
N=16 different points of the texture separated by 2 pixels, and the corresponding selection of
features from such distributions to obtain the texture feature vector. The auto-WD was sampled in
I=16 annular regions and H=8 angular sectors, using a similar sampling scheme to the Fourier
power spectrum methods (Stark 1982). The features extracted from the WD were the following
(Cristobal 1989)

I
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wy = i=1L-1i m Y (I, m)inringi (3.1)

WWAS
I m

I
b3 [ZZ(P‘WJZW}(”’")] o
Wy = i=1k i m Y (I, m)inringi (3.2)

;;@@m
H
Y [2291«1@ ( m):l
h=1-1 m

Y (I, m) insectorh

= 3.3
W3 ZZW;U’ " (3.3)
I m
I
2[5 @-wy) W (hm]
_ =1t m YV (I, m) insectorh
Wy = 3 (3.4)
YW m)
I m
ws 1 (3.5)

) [W2(0,0) — W2 (0, 0)|

where WZ(O,O) is the mean value of the WD at the N selected points, and p, 6 are the polar
coordinates in each local WD spectrum. The physical interpretation of the proposed features is as
follows. The feature wy gives a measure of the mean spatial frequency content of the image. It
will have low values for images with a limited grade of detail and increasing in the case of

sharpness images. The feature wy is a variance estimation of the feature wy and gives a measure
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of the contrast or the amount of the luminance local variations of the image. The feature w3 and
wy give a measure of the mean directionality and its variance, respectively. The feature wsis a
measure of the homogeneity of the image. This measure is based in one of the properties of the
Fourier transformation: the value at the origin represents the mean value of the original image
(Bracewell 86). These features has been arranged as a 5-D pattern vector w which constitutes the
input to the classification process (see Fig. 3.3).

Insert Fig. 3.3 about here

The same procedure has been applied for comparison purposes to the same data texture tests
by the computation of the Fourier transformation directly to the windowed images. The results are
illustrated in the next section.

B. Classification

The evaluation of the statistical texture measures can be done by using direct methods through
classification errors or by indirect methods which involves classification errors estimation via the
use of a figure of merit. In this study, the texture features proposed in Section A have been
evaluated with other methods according to their Bhattacharyya distance (B-distance). The B-
distance is a scalar function of the probability densities of the features of two classes, and is given
by

B(S1,8y) = ~In{[[p(x]S))p (551" %dx} (37

where x and p(xIS;) represent a feature vector and the conditional density probability for class S;.
In the case of bayesian classifiers the B-distance is monotonically related with the Chernoff bound
of the probability of classification error. This lower bound is given by (Fukunaga 1972),

55,5

P,<[P(S)P(Sy)]" % (3.8)

where P(S;) represents the a priori probability associated to the class i. For Gaussian probability

densities, the B-distance between a pair of texture classes is given by,

B %, 5 31 -1 [1(72) (B +5)|
B(Slssz)—g(m1‘m2)[ 5 J (my—my)" +5in [z, (3.9)
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m; and Z; represent the feature mean vector and feature covariance matrix of the class i (Fukunaga
1972). For equally likely texture field pairs, ie. P(S;)=P(Sj), a B-distance of 4 or greater
corresponds to a classification error of about 1% (see Table II)

Table II. B-distance versus the error probability, according to Eq. 3.7

B(S;, S)) Error bound (x1073)

1 184
67.6
24.9
9.16
3.37

(= "> I o

1.23

The selection of the image windowing process was done as follows. Figure 3.4a shows sixteen
product images cormresponding to the cotton canvas texture image at points (128,48),
(128,50)....,(128,80) and Figure 3.5a shows the corresponding product images for the straw
texture at these points. The associated Fourier transform at each point, i.e. its WD, is displayed in
Figures 3.4b and 3.5b respectively, that show the effects of the object periodicity and
directionality. Similar results would be obtained in the case of the sand and raffia textures.

Insert Fig. 3.4, 3.5 about here

The texture feature extraction method here is based on the features previously proposed in Eq.
3.1-3.5. The ability to discriminate texture pairs using the WD features was compared with the
classic Fourier’s spectral energy method. In the Fourier method, the sampling scheme used was
the summation within five concentric rings centered in each 64x64 spectrum, giving the feature
vector f=[fl,f2,f3,f4,f5]T. The results of the pairwise B-distance computation have been tabulated
in Table IIL
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Table III. Textural B-distance in the Fourier and Wigner Feature Extraction Methods.

Texture pair Fourier Method Wigner Method
Sand-straw 0.9 104.74
Sand-cotton 1.86 48.44
Sand-raffia 0.99 4.84
Straw-raffia 2.18 2431
Straw-cotton 0.76 71.92
Cotton-raffia 2.59 34.17
Mean pair 1.55 48.07

In the Fourier method the sand-straw pair is the most similar, i.e. the error probability is the
biggest, and the cotton-raffia is the least similar. In contrast, in the WD method the sand-raffia pair
is the most similar and the sand-straw pair the least similar. From Table IV one can argue the WD
discrimination of natural textures (generally random) outperforms the Fourier methods. In
contrast, the artificial textures (often periodic and deterministic) are well discriminated by the
Fourier methods as one can expect due to its intrinsic harmonic expansion. The B-distance has
been computed using a conventional statistical package (IMSL 1982).

In addition to the pairwise linear discrimination, we have considered multiple discriminant
analysis in order to obtain the 2-D subspace which maximizes the ratio of between class scatter to
within class scatter (Fisher’s discriminant) (Duda 1973). If w is the direction which defines the
linear discriminant plane, the Fisher ratio is given by,

Imy ‘m2|2

J(w) = (3.9)

2 2
Gl+02

where m; and m; correspond to the mean projections along the discriminant direction defined by

T

W, i.e. mj=m"w; m represents the mean vector associated to each class, and 0‘12 and 022 the

summed squared difference between the projected classes and the mean class, i.e.

2= ¥ W (x-m)|* (3.10)

XE O
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Projections of the samples from the 5-D space to this plane give a scatter diagram of the
texture classes, which is a suitable class’s discriminant representation. Figure 3.6a shows the best
scattered plane for the Fourier feature extraction method, and Figures 3.6b and 3.6¢c show the
corresponding scattered diagram for the co-ocurrence method and WD method, respectively (the
scales have been adjusted to aid the comparison). In these plots we can observe a higher interclass
discrimination in the WD method in comparison with the other methods used; in contrast, the
clusters are less compact (worse intra-class discrimination) than the Fourier or co-ocurrence
methods. The co-ocurrence methods are based on the estimation of the second-order joint
conditional probability density functions p(i,j | d,B), where each p represents the joint probability
from gray level i and j, given the intersample distance d and orientation 8. The estimated values
can be written in a matrix form, that constitutes a second order histogram. From this histogram
several textural features can be extracted. Conners and Harlow have proposed the use of five
descriptors extracted from the co-ocurrence matrices: energy, inertia, entropy, correlation and
local homogeneity (Conners 1980), originally proposed by Haralick (Haralick 1979). For a
discussion about the texture analysis methods see (Van Gool 1985).1

Figure 3.6 about here

C. Texture Discrimination

In this Section we will consider the WD’s texture discrimination abilities. Image description
requires segmenting it into regions which are homogeneously textured. One of the most
commonly methodologies to image segmentation involves edge detection processes where a
transition occurs from one uniform region to another. An alternative approach to segmentation is
region growing, starting from small uniform regions, and expanding the process until the

uniformity is broken.

The segmentation processes can be evaluated by the use of texture pairs. The significance of
texture pairs comes from the fact that any texture analysis problem can be split in an equivalent
texture pair (Davis 1981). A simple 1-D texture discrimination mechanism is proposed based in
the use of the WD. The pixel categorization of the texture pixels was formulated by (Davis 1981)
in terms of edge pixel, near-edge pixel and interior pixel. Here, the texture edge detection is based

1. A complete bibliography about vision is yearly published by A. Rosenfeld in the journal Computer
Vision, Graphics and Image Processing (Academic Press). An on-line version is located at host ads.com and
can be accesed via ftp at directory pub/VISION-LIST-ARCHIVE/ROSENFELD-BIBLIOGRAPHIES
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on the computation of differences between the WD in adjacent points along a selected direction
and the WD mean. Figure 3.7a shows a texture pair (cotton canvas-raffia) and Figure 3.7b shows
from left to right and top to bottom the WD at the 16 points selected along the x-axis. The window
size was 64x64 pixels in order to obtain a good statistical resolution. The evaluation of the edge
detection was realized by introducing the scalar parameter ey, for a given point (ig,jg). It is given
by

kK k
eW(io’jO) = z z |Wn(i:j) _W(I)J” (3-11)
i=1j=1
where W is the WD mean associated to the N points selected,
= 1 ¥
W@,j) = 5 > WL (LA (3.12)

n=1

Insert Fig. 3.7 about here

Figure 3.8(a-d) shows the plots of ey versus d (interpixel distance) for four texture pairs. A
pronounced minimum can be observed in the four examples, denoting the presence of a textural
border. This fact permits to conclude that the WD method might be give a good discriminability in
the case of edge pixels and near edge pixels.

Insert Fig. 3.8 about here

Jau and Chin (Jau 1988) have proposed the use of the change in texture density (texture
gradient) as an estimator of surface shape. The method is based by measuring the high frequency
WD local contribution at each location of the image. From this measures, a map description can
be used to estimate the surface orientation. The method was implemented in the case of planar
surfaces. Recently, Reed and Wechsler (Reed 1990) have proposed the use of a relaxation method
for the boundary edge detection in the case of synthetic textures and Brodatz textures. The region
labeling was performed by a double process of averaging and squashing transformation.
Afterwards, they have presented the segmentation results in the case of synthetic textures
different in phase only (identical power spectra) showing that due to the fact the WD encodes the
magnitude and phase information, the formulation of features to take account the phase is not
required. Finally, they have applied the relaxation mechanism to the Gestalt (proximity)

clustering. However, the results reported on the use of the WD for image segmentation require
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further study and extension to a large image database.

Related works on the use of space-frequency distributions for image segmentation purposes
have been reported in the literature. Mostly of them are related with the use of the Gabor
representation. Porat and Zeevi (Porat 1989) have proposed a texture feature extraction and
segmentation based in the use of Gabor expansion coefficients. Perry and Lowe (Perry 1989) have
proposed the use of an iterative edge segmentation mechanism by local Gabor filters. Malik and
Perona (Malik 1989) have considered the use of radial and directional gaussian derivatives filters
in the fitting of the receptive field data according to the Young’s model (Young 1985). They
applied the model for texture boundary detection in the case of natural and artificial scenes, and
evaluated the degree of discriminability for different textured pairs used in psychophysical

experiments.

On the other hand, a computational approach for analyzing textures based in multiresolution
schemes of representation (also known as multichannel or pyramidal schemes) through the use of
space-frequency distributions have been recently considered. Bovik et al. (Bovik 1990) have
proposed a multichannel scheme of representation, based in Gabor filters, by encoding the images
using multiple narrow band-pass and orientation channels. By comparing the magnitude of the
response of different channels, textural border information can be extracted. The scheme was
applied in the case of natural and synthetic textures for segmentation purposes. Tan and
Constantinides (Tan 1990) have proposed a similar multichannel system based in the use of Gabor
filters for texture segmentation for natural and artificial textures, reporting very satisfactory

segmentation results.

The importance of the local phase in the feature detection and texture segmentation has been
considered recently in different works. It is well known that the symmetry of edges and lines is
reflected in the phase spectrum. Concetta and Burr (Concetta 1988) have proposed a biological
plausible model of feature detection based in the use of the local phase through filters in
quadrature and reporting some remarkable experiments on the prediction of the position of
perceived features. Zeevi and Porat (Zeevi 1988) and Behar et al. (Behar 1988) have reported the
use of the localized phase by using Gabor filtering for image reconstruction. Finally, Bovik et al.
(Bovik 1990), in the same work already referred, have considered the use of the local phase for
image segmentation. The use of the localized phase is specially useful to detect boundaries
between textures having identical amplitude spectra. A pair of mirrored images constitute a good
example of this situation. In these cases the amplitude-based methods fails to discriminate

between the different regions with the same amplitude spectra.
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IV. Applications of the space (time)-frequency
representations

A. Review of applications

In this Section we will consider the different areas of research in which the space (time)-
frequency representations have been applied. Obviously, the use of this kind of representations is
quite appropriate for every field where nonstationary signals appear. As Cohen has pointed in a
recent review (Cohen 1989), the applications can be broadly categorized according to two basic
ideas: the extraction of relevant information from the distribution, or the use of a particular
property which clearly represents the space (time)-frequency contents. Table IV presents an
update survey about the application areas in which the use of these representations have been
considered. The classification has been done according with the main topics of interest in which
the distributions have been applied: signal, speech and vision. The vision and speech applications
are separately considered from the rest of applications due their importance in the study of
perceptual signals. Here, the vision applications have been emphasized, and the next section is
concerned with the importance of these distributions in the modeling of the visual early processes.

In relation with the signal processing applications (see Table IV), perhaps the two main
domains considered up to now would be the seismic signal exploration and the biological signal
processing. Boashash was the first to use features extracted from the Wigner Distribution in the
computation of the dispersion and attenuation of seismic signals (Boashash 1978). In the case of
biological signal processing, these distributions have been applied in the analysis and design of
ultrasonic transducers (Marinovic 1986) for medical imaging purposes. The time-frequency
representations constitutes an excellent aid to the transducer design by means of which the desired
response can be modified and visualized.

One of the main difficulties on the analysis of the speech signals derives from its intrinsically
nonstationary character, i.e. the signal’s frequency content varies with the time. This fact justifies
the considerable interest in the use of time-frequency representations specially in the earlier
stages of speech processing. From the pioneering work of Gabor, on the use of joint
representations in the analysis or hearing (Gabor 1946), different speech applications have been
considered in the literature. Table IV summarizes the applications reported in the area of speech
applications.

Recently, the interest for the use of space-frequency representations has been extended to the
vision research through the use of the Wigner Distribution (Jacobson 1982a, 1982b, 1984),
(Cristobal 1986, 1987,1989), (Gonzalo 1989, 1990a), (Zhu 1990). The WD gives an image joint
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representation suitable for the study of the non-stationarities such as spatial-variant degradations:
progressive blurring, motion, texture, etc. Therefore, the WD entails a powerful framework for
image analysis due to its intrinsic local nature (see Table IV). In a recent study, Jacobson and
Wechsler have concluded that the resolution (uncertainty) attained by the WD, cannot improved
by some other different joint representations derived from the Cohen’s class, as a consequence of
the smoothing effect derived from the kernel’s election (Jacobson 1988). However, a considerable
number of works have been reported on the application of the Gabor transform in image
applications, some of them have been summarized in Table IV. Perhaps, the principal reason for
this interest is due to the fact the Gabor scheme of representation is biologically plausible, and
hence able to serve as a suitable vision model at the retinal ganglion cells, the lateral geniculate
nucleus and the primary cortex (De Valois 1988), (Van Essen 1990). The same argument can be
applied in the case of speech signals, in which some neurophysiological (Kay 1972) and
psychophysical (Mgller 1978) studies have demonstrated that a large population of the auditory
cells in the mammalian cochlear nucleus do not respond optimally to continuous tones, but
instead responding to different preferred modulation slopes (directional selectivity).

Table IV. Survey of time(space)-frequency applications

Area I: Signal Processing

Subarea Comments Sources
Seismic exploration Absorption and dispersion measurements by the WD (Boashash 1978),
id. (Bazelaire 1987)
Pattern Recognition Classification of lingar FM signals by the WD (Kumar 1983)
Loudspeaker design Extraction of optimization criteria by the WD (Janse 1983)
Turbulence microstructure Analysis of temperature gradient records by WD (Imberger 1986)
Ultrasonic transducers (Marinovic 1986)
Machine noise Signaturing, detection and identification by WD (Boashash 1988)
Muscle sounds Signal analysis by using the Choi-Williams distribution (Choi 1989)
Temporomandibular sounds WD-based non-invasive diagnosis technique (Zheng 1989)
Radar imaging (Boashash 1989)
ECG analysis Detection of P-waves by the WD (Abeysekera 1989)
Body surface potential mapping series of ECG’s (Usui 1990)
Sonar Use of cone-kemel for range-doppler estimation by WD (Atlas 1990)
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Area II: Speech Processing

Subarea Comments Sources

Speech discrimination Analysis of hearing by joint representations (Gabor 1946)

Study combined representations {Preis 1982)

Speech recognition (Chester 1983)

id. Time-delay representations (Waibel 1989)

id. Time-varying filtering by short time Fourier transform (Asi 1990)

Survey bilinear representations  Analysis of hearing by joint representations (Szu 1987)

Speech and musical analysis Formant’s visualization by wavelet transforms (Kronland 1987)

Formants structure Speech formant segmentation by the WD (Riley 1987,1989),

id. Analysis consonant-vowel transitions (Velez 1989)

id. Cone-kemel definition to reduce cross-terms by the WD (Atlas 1990)
(Zhao 1990)

Area III: Vision Processing

Subarea Comments Sources

Conformal mapping Invariant pattern recognition through the WD (Jacobson 1982a,b, 1984)

Image analysis

id.

Speckle Imaging
Optical flow

id

Image restoration
id.

Texture analysis and clustering
id.

id.

Shape from texture
Stereo

id.

Motion

Image compression
id

Face recognition

Texture classification and discrimination through the WD

Analysis of local spectra by using analytic signals
Discrimination using Gabor filters
Spatiotemporal velocity analysis through the WD
Spatiotemporal motion-energy Gabor filters
Spatial-variant filtering using the WD

Segmentation through the WD

Feature extraction using Gabor filtering
Segmentation by Gabor and wavelet filtering
Surface orientation by texture gradient using WD
Local disparity information by Gabor filtering

Spatio-temporal energy filtering using Gabor filters
Gabor filtering encoding by neural network relaxation
Multiresolution techniques by wavelet filtering

Graph matching by Gabor filtering
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By the time this review will be appear, a monograph on recent time-frequency applications
will be edited by (Boashash 1990).

B. Trends towards biological image modeling.

One of the actual trends in the vision research is concerned with learning as much as possible
from the biological visual systems, for its implementation in artificial systems. From the
pioneering experimental work on neurons of Hubel and Wiesel in the visual cortex (Hubel 1962),
different biological-based models have been considered in the literature (Marcelja 1980);
(Daugman 1980); (Young 1985). In most of them, the main interest is centered on the
specification of the basic primitives of the early vision which can be inferred from the
experimental biological recordings. The receptive field profiles in the retina and the visual cortex
can be approximated by Gabor functions. However, it is necessary to remark which alternate
mathematical descriptions of receptive fields are possible, with equal or even better results, as far
the physiological data modeling concerns (Young 1885), (Koenderink 1990). The Gabor approach
is related with the representation of time-varying signals in terms of elementary functions
(“logons”) that are simultaneously localized in time and frequency. Following a Quantum
Mechanics’s formalism, Gabor proved, by the use of the Schwarz inequality, the family of
functions that achieve the lower bound of uncertainty in the joint time-frequency domains. In the
frequency domain, the Gabor functions constitute a family of band-pass filters which captures the
most salient properties of spatial frequency and orientation selectivity. The compactness of Gabor
functions in the frequency domain also implies that the Gabor’s original scheme should be nearly
locally complete (i.e., close to encode all the input information with negligible aliasing) (Geisler
1986).

The Gabor scheme of representation is defined by a filtering process based in the use of

complex-valued weighting functions given by:

h(x,y) =f(x,y) +jg (xy) = f(xy) —jF (x) (4.1)
where f(-), g(-) are real valued functions, and ¥ (x,y) represents the Hilbert transform of f(:). In
signal analysis and optics, the complex function h(-) is known as the analytic signal associated to
f(-). The Hilbert transform g(-) is referred as the quadrature function of f(-). This scheme of
complex filtering can be implemented in a real visual system by a pair of receptive fields in

quadrature. The family of Gabor filters is given by gaussians tapered by sinusoids

{5+ (=2)]

f(x,y) = e cos {27 (uy (x —xp) +vo (y—¥p)) } (4.2)

i
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(=) (=]

where oy and oy, represent the gaussian spreads at 1/e along the x-axis and y-axis respectively.

gx,y) =e sin {27 (uy (x—xg) +vo (¥ —yo)) } 4.3)

The parameters ugy and v represent the tapering sinusoidal modulation envelope which define the

frequency magnitude: f = Ju§+ v

according with the direction 6, = 1g™" (vo/up). If a
circularly symmetric condition is imposed (0=04x=0y), the Gabor filter is uniquely defined by
three parameters o, f and 8. The Fourier transform of the complex filter #{u,v) defined by Eq.

4.11s

[F(u,v) +sgn (u) F(u,v)]

H(u,v) = 5

(4.4)

for a given v, where (u,v) represents the Fourier transform associated to f(x,y). From Eq. 4.4, it is
obvious to see that positive spatial frequencies #{-) is identical to #-) and for negative
frequencies is equal to 0. This means that the complex filter h(-) transmits the same information
that its real part f(-). Similar relations could be obtained in Eq. 4.4 by using the function sgn(v). If
f(-) is a Gabor filter (gaussian tapered by a sinusoid) then g(-) is given by the quadrature filter
(gaussian modulated by a co-sinusoid). Figure 4.1 shows a pair of Gabor filters in quadrature in
the case of 1-D signals.

Insert Fig. 4.1 about here

Figure 4.2 represent in a 3-D space a parametric plot of the analytic filter associated to the same
quadrature filters defined in Figure 4.1.

Insert Fig.4.2 about here

Once the parameters of the filtering process have been defined, the extraction of the local
energy and local phase can be done by

e(x,y) =i(xy) ®f(x,y) (4.5)

o(x,y) =i(x,y)®g(x,y) (4.6)

T(xy) = Je(xy)2+0(xy)? 4.7
_ —1- O(X,y)

o(x,y) =1g [e (x,y)i| (4.8)

31-



Space-frequency distributions G. Cristobal

where i(-) represents the input image and f(-) and g(-) are the filters in quadrature. Eq. 4.7 gives the
amplitude of the analytic signal and provides an information about the local energy that is
independent of the phase. This operation embodies a half-wave rectification mechanism. The
rectification process has a biological foundation in the fact that neurons can give only non-
negative response. A mechanism that compute the square-outputs of a quadrature pair of filters is
known as an energy-mechanism. The importance of the remaining information encoded in the
phase (Eq. 4.8) has been pointed by (Zeevi 1988). In the cited work, they demonstrated that the
local phase-mechanism preserved most of the edge information contents of an image (in a similar

manner to the Fourier phase-analysis).

In this section, we summarize some experimental results in order to have a quantitative
measure of the degree of biological plausibility. In the physiological experiments the recordings
are generally reported from cat and monkey retinal ganglion cells, lateral geniculate cells and
cortical cells (area 17, layer IV) due to the high degree of similitude with the human visual

system.

As already was mentioned, Hubel and Wiesel (Hubel 1962) studying the cat’s visual cortex,
reported that most cortical cells have orientation and frequency selectivity. From a qualitative
approach, they described the receptive field response of the cortical simple cells as a composition
of excitatory and inhibitory response. De Valois has recently reported that the bandwidth of the
macaque cortical cells range from 0.5 and 8 octaves, being the median spatial frequency
bandwidth of about 1.4 octaves (de Valois 1988). Quantitative measures of the receptive fields
have been recently obtained by (Movshon 1978), (Webster 1985), (Field 1986), (Jones 1987),
(Hawken 1987), (Emerson 1987), (de Valois 1988).

Next, we will give a short historical perspective about the receptive field’s modeling. Mach in
1868 was the first to suggest that retinal interactions can be described in terms or second
differential operators (laplacian operators) (Ratliff 1965). Kovasznay and Joseph were the first to
apply the laplacian operator to image processing (Kovasznay 1953). Marr and Hildred have
proposed the use of the laplacian of a gaussian for the early visual edge detection, showing that
the simple difference of gaussians (mexican hat filters) can be approximate to the cat ganglion cell
receptive fields (Marr 1980). Marcelja and Daugman have proposed the use of Gabor filters for 1-
D and 2-D signals respectively (Marcelja 1980), (Daugman 1980). One alternative to the use of
Gabor functions is the use of directional gaussian derivatives proposed by (Young 1985). The
receptive field description is basically the same in both models, being the location of the zero-

crossings the main difference. The similarities between both models are not surprising because in
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the limit the two theories become the same. More recently, Canny has proposed an edge detection

method based on the use of directional derivative gaussian functions (Canny 1986).

Another important characteristic is related with the receptive field symmetry. Hubel and
Wiesel also reported the presence of even-symmetric and odd-symmetric cells, responding
optimally in phase quadrature (Hubel 1962). Pollen and Ronner have obtained some recordings in
the cat striate cortex from two adjacent simple cells, and found one member of the pair to be even-
symmetric and the other to be odd-symmetric (Pollen 1981). More recently, Field and Tolhurst
have found that pairs of adjacent cells differ by n/2 but appearing in a variety of different forms
(not necessarily into even- and odd- symmetric categories) (Field 1986). A more detailed
psychophysical study concerning the importance of the phase can be found in (Concetta 1988).

The experimental works reported here lead to conclude that the Gabor scheme or the gaussian
derivative model not necessarily provide the best possible fit to all the recordings registered. In
fact, some other mathematical functions can be tested. Young tested many other mathematical
functions (Bessel, sinc, parabolic cylinder, etc.), and he found that the gaussian derivative as well
as the Gabor functions provided the best fits to the recordings registered (Young 1985). However,
one can say the main advantages of the Gabor/gaussian derivative models come from their
effectiveness in providing a good fitting of the receptive field shapes with a limited number of free
parameters (three in the case of the Gabor models). Signal expansions based in the use of Hermite
polynomials has been recently considered as an alternative to the receptive field modeling which
leads to a basic Gaussian derivative scheme (Martens 1990a). The Hermite polynomials proceed
from the Quantum Mechanics wave functions corresponding to an harmonic oscillator. In this
polynomial expansion Gaussian windowing functions are considered as well as a square sampling
lattice. One of the advantages of this approach is the reduced number of free parameters: the
Gaussian spread G and the sampling distance T. Applications in hierarchical image coding and
pattern classification have been recently reported by (Martens 1990b).

Mallat has recently pointed the use of the Gabor transform in computer vision presents
several drawbacks when applied to image analysis (Mallat 1989a), (Mallat 1989b). The main
difficulty comes from the constant resolution in the spatial and spatial frequency domains. This
fixed resolution introduces some troubles specially if the image have important features of very
different sizes. In other words, it is difficult to analyze simultaneously both the fine and coarse
structures. In order to overcome these inconveniences, Grossmann and Morlet defined a
decomposition scheme based on expansions in terms of translations and dilations of a unique

function named ‘wavelet’ W(x) (Grossmann 1984). The wavelet transform of a function f(-) is
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given by N
¥ (a,b) = — [f@vED)dx 49
f J!?l_m a

where () is the basic wavelet. The parameters a and b can be chosen to vary continuously or
discretely. The wavelet transform and the Gabor transform have many features in common. Both
transforms analyze the frequency content of a signal locally in space. But the wavelet transform
provides different resolutions for high versus low frequency wavelets, i.e. the basic functions y(-)
have variable width and they are adapted to their frequency range: the higher was the range, the
more narrow they are (Daubechies 1989). The different wavelet functions can be generated from a
basic one through the following expression:y, (x) = aa’"” zqr (ag"x— nby) , where ag and by
are constants and m and n define the position and size of the new function. Some particular

examples of wavelets have been obtained through the previous equation (Fig. 4.3).

Insert Fig. 4.3 about here

By using a multiresolution representation, Mallat has applied the wavelet transform to image
compression, texture discrimination and fractal analysis (Mallat 1989a). This kind of
representation is specially well suited for evaluating the self-similarity of a signal and its fractal
properties (West 1990). However, one of the main drawbacks of this approach comes from the
fact it is not invariant through translations, and therefore the interpretation in the case of pattern
recognition applications might be more difficult. The wavelet transform is an example of coherent
state decompositions used in Quantum Mechanics and renormalization group theory. The basic
idea is to decompose a function into building blocks of constant shape but different size
(Daubechies 1989, 1990).

Interestingly to remark a recent approach to the receptive field modeling proposed by Poggio
and Girosi by using gaussian radial basis functions (Poggio 1989), (Girosi 1990). The radial basis
function (RBF) method is well known in statistics as a possible solution to the real multivariate
interpolation problem. By using a factorizable radial basis functions schema (in the case of
gaussian functions), receptive fields can be readily implemented. The RBF method is closely
related to pattern recognition methods as Parzen windows and potential functions (Duda 1973)
and several neural network algorithms. In some sense, the use of RBF in the neural network
research has come to change the classical perspective of computation performing the

computations by gaussian RBF instead of threshold functions.
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Y. Conclusions

The Wigner distribution function (WD) is always real, encodes directly the phase information
of the Fourier transformation, has a high resolution in both space and spatial frequency domains,
and it is invariant within linear transformations. These are only some of the WD’s characteristics
that have motivated the use of this distribution in some areas of the image processing field, as in
image filtering and analysis. Moreover, the WD embodies a simultaneous space-spatial frequency
representation very suitable for encoding the main low-level image characteristics, including the
spectral local variation. The application of the WD in several image processing tasks has been
considered, specifically for filtering and analysis purposes. The previous step to obtain different
results in these areas is the generation of the distribution. In this work, we have tried to present an
extended vision of the different strategies of generating the WD, depending of the requirements of
a particular problem. Thus, the optical Wigner processors yield an useful tool of processing where
the decrease of the computer time is the more important aspect. In other cases, it may be more
interesting to work without spurious noise; then digital Wigner implementations can be a good
solution. In the most situations, a trade-off solution must be found between the last presented
aspects, and the hybrid Wigner processor is the best solution. More recently, VLSI special

purpose processors have been proposed for generating the WD and other joint representations.

Also, a discussion about the reduction of the cross-terms introduced by the bilinear nature of
the definition has been considered taking account the recent results reported about this issue.

The application of the WD for texture classification and discrimination has bee considered in
particular by using pairwise and multiple discriminant analysis. Several textural features have
been extracted from the local spectra generated by the WD in the case of Brodatz texture. The
results have been compared with the canonical Fourier spectral methods. On the other hand, the
WD’s texture discrimination capabilities have also been evaluated by using several pairwise
texture edge detection tests.

A review about the different areas of applications of space (time)-frequency representations
has been presented, emphasizing in particular the vision-oriented and detailing the specific areas
in which has been considered. The importance on the use of these distributions, in the modeling of
the early visual processes, has been remarked in the context of the physiological and
psychophysical experiments reported in the literature.

Although there have been a lot of contributions both considering the theoretical and
applicability issues, however further research is necessary to prosecute for a better knowledge

about the space (time)-frequency distributions. As Cohen has recently summarized, some
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problems still remain open as the consistency, i.e. to be useful in a broad range of different
situations, defining of the “best” distribution and the use of non-bilinear functionals (Cohen
1989). However, the use of these distributions constitutes an excellent tool for the analysis and

modeling of the neural systems, specially in the case of vision and speech application.
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Appendix I
Captions of figures

Figure 2.1: a) Sinusoidal grating object of 64 pixels/period; b) WD of a) for the x direction
and the autoconvolution profile ((0=0) with zoom x 2.

Figure 2.2: Composite rectangular grating of 32, 16 and 8 pixels/period. Reprinted by
permission from (Gonzalo 1989).

Figure 2.3: Representation of the function f(n+k) f*(n—k). The spatial variable n is represented
along the horizontal axis and the k parameter along the vertical axis. Reprinted by permission
from (Gonzalo 1989).

Figure 2.4: Discrete Wigner distribution function of Fig. 2.2. The spatial variable n is mapped
along the horizontal axis and the frequency variable along the vertical axis. Reprinted by
permission from (Gonzalo 1989).

Figure 2.5: WD for a rectangular window test in the y direction and the autoconvolution
profile (0=0) with zoom x 2.

Figure 2.6 a) Rectangular grating test; b) recovered image from the discrete DW results of
local digital filtering operations: low-pass filtering (half left) an filtering (half right).

Figure 2.7: Hybrid Wigner optical digital processor used to obtain space variant filtered
images. L) Fourier transforms the shifted image f(x+x/2,y+y/2). The mirror M reflected its
spectrum, and L yields f(x-xg/2,y-y(/2) performs the Fourier transform of the product function of
the two images and Ly inverses it

Figure 3.2: a) Preprocessed Brodatz textures (clockwise from top left): sand, straw, raffia and

cotton canvas; b) Fourier spectra associated to each texture of Fig. 3.2a.

Figure 3.4: a) Product images corresponding to cotton canvas texture at points (128,112),
(128, 114),..., (128,142) (origin at top left); b) WD associated to these points.

Figure 3.5: a) Product images corresponding to straw texture at points (128,112), (128,
114),..., (128,142) (origin at top left); b) WD associated to these points.

Figure 3.6: a) Two dimensional scatter diagram associated with the Fourier spectral energy
measures; b) Id. for the co-ocurrence method and ¢) Id. for the WD method.

Figure 3.7: a) Cotton canvas-raffia texture Brodatz pair; b) (from left to right and top to
bottom) WD associated to the points (128,112), (128, 114),..., (128,142).
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Figure 3.8: Results of the edge detection mechanism by using the WD. The plots represent the
edge operator versus the interpixel distance along a line perpendicular to the texture border: a)
sand-straw pair; b) straw-raffia pair; c) cotton canvas-raffia pair; d) sand-cotton canvas pair. The

range of ey has been normalized.

Figure 4.1: a). 1-D even-Gabor function corresponding to the signal
f(x) = exp[-n((x—32)2/144)] cos [0.66667 (x—32)] b). 1-D odd-Gabor function
corresponding to the functionf (x) = exp [-n ((x—32) 2/144)] sin [0.6666T (x —32) ]

Figure 4.2:Analytic signal associated to the Gabor functions represented in Fig.4.1a and Fig.
4.1b. This helicoidal pattern resembles the momentum states’s description in Quantum
Mechanics, giving an harmonic description in terms of pure tones corresponding to different
moment values that a particle might have. The projections of this helicoidal pattern onto the XY
and YZ planes correspond to the even and odd Gabor functions respectively.

Figure 4.3 a). Basic wavelet function corresponding to a second derivative of a Gaussian
function f(x) = (2/ (JS_’) yr~4 (1 —x2) exp (-—xz/ 2). This transform is often called the
mexican hat for its form.b). Example of wavelet associated to the previous function; it can be
obtained by a translation of x’=3+x/4 and by a reducing scale factor of 0.5. c) Id. by a translation
of x’=2x-15 and a scale factor of ﬁ
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