A Pipelining Model Which
Pipelines Blocks of Code

Joachim Beer!
TR-90-053
October, 1990

Unternational Computer Science Institute, 1947 Center Street, Berkeley, CA 94704 USA

A pipelining model which
pipelines blocks of code

Joachim Beer

International Computer Science Institute
Berkeley, CA

Abstract

This paper presents a new technique of software pipelining and an ar-
chitecture to support this technique. Rather than attempting to pipeline a
sequence of individual instructions, the presented technique tries to pipeline
entire blocks of code, i.e. the units to be pipelined are chunks of code,
instructions within each code block might or might not be pipelined them-
selves. In this model blocks of code are identified which can be-executed in
a pipelined fashion. Neighboring blocks of code do not need to be data in-
dependent; pipeline stages can feed results and/or synchronization markers
on to the next pipeline stage. The architecture can be seen as an attempt to
use classical pipelining techniques in a multiprocessor system. The architec-
ture consists of a circular pipeline of ordinary microprocessors. Advantages
of the architecture are: unlike supercomputers and VLIW architectures the
system can be based on commercial micro-processors, it avoids the high
overhead of process startup, and it is not restricted to vectorizing only
inner-loops. Simulation studies show the viability of the architecture and
the associated execution model.

Introduction

This paper presents a new technique to pipeline blocks of code and an architecture
to support this technique. Pipelining the execution flow of a program is of course
nothing new. There is probably not a single field within the realm of information
processing where it has not been successfully employed. Pipelining principles can

be applied at various levels:

e Pipelining at the micro-instruction level.

While one micro-instruction is executing, the next micro-instruction will
be fetched. Requirements: independent micro-instruction sequencer and

execution unit.

o Pipelining at the machine(macro)-insiruction level.
Assembler instructions are independently fetched, decoded, and executed.
Requirements: autonomous fetch, decode, and execution units (possibly sev-
eral independent execution units).

o Pipelining of blocks of code.
Requirements: a pipeline of tightly coupled independent processors.

It should be obvious that these concepts are orthogonal. Whereas nowadays
pipelining at the first two levels is supported by every micro-processor, it is not
so clear how large blocks of code can be overlapped in a pipeline fashion.

In traditional architectures pipelining is usually performed at the machine in-
struction level. Classical supercomputers achieve their performance through the
use of multiple execution units capable of performing vector operations and clever
instruction sequencing to keep all units as busy as possible [Sch87]. Lately VLIW
architectures have entered the field [Fi83, Ra89]. VLIW architectures and the
concept of software pipelining arose out of work done on automatically compact-
ing microcode operations to schedule operations to be executed in parallel [Fi81].
VLIW architectures and their compilers try to take the use of multiple functional
units and instruction scheduling one step further and to apply it to general in-
struction sequences and not just vector operations [El186, Ra89]. However, these
pipelining schemes work on the instruction level, i.e. through scheduling of ind:-
vidual instructions.

Rather than attempting to pipeline a sequence of individual instructions, the
technique presented in this paper tries to pipeline entire blocks of code, i.e. the
units to be pipelined are chunks of code, instructions within each code block
might or might not be pipelined themselves. In this model blocks of code are
identified which can be executed in a pipelined fashion. Neighboring blocks of
code do not need to be data independent; pipeline stages can feed results and/or
synchronization markers on to the next pipeline stage.

Multiprocessor systems also attempt to executed independent code chunks in
parallel; however, in most multiprocessor systems the high overhead of starting
a process on a remote processor and the cost of subsequent inter-processor com-
munication make these systems only a viable alternative for very large processes.
The proposed architecture can be seen as an attempt to use classical pipelining
techniques in a multiprocessor system. Figure 1 shows the global system archi-
tecture which consists of a circular pipeline of ordinary microprocessors. Each
microprocessor executes a block of code and initiates the next block to be ex-
ecuted on its right neighbor. Since it is a whole block of code which is being
executed on a pipeline stage this block can contain complex conditionals as long
as these conditionals don’t affect the execution order of the following blocks. This
is in contrast to the scheduling of individual instructions in which conditional
statements always cause a severe problem. Other advantages of the the presented
architecture are: unlike supercomputers and VLIW architectures the system can

2

Data Memory

Insiruction Memory

Local Memocy

l I-Cnlal:el D-Cache
Pri
Local Memory

Y Y 4=an+°|=.

Figure 1: Global system architecture

be based on commercial micro-processors, it avoids the high overhead of process
startup, and it is not restricted to vectorizing only inner-loops.

Architecture and Execution Model

The proposed architecture is shown in Figure 1 and consists of a pipeline of proces-
sors, where every processor is connected to its right neighbor via pipeline buffers.
The last processor is connected with the first one, thereby creating a circular ar-
rangement of processors. Between adjacent processors a set of pipeline buffers
buffer and synchronize the data exchange of the processors. The pipeline flow is
unidirectional from left to right. Hardware semaphores built into the buffer guar-
antee that the right processor can only access buffer cells after the left processor
has transferred data objects into the respective buffer cells. In order to keep bus
contention to a minimum the proposed system contains separate -data and in-
struction buses and respective caches in front of the processors. Every processor
also has a local memory which might contain instructions and/or data. However,
many of these design parameters are not important for the basic execution model.

The basic execution model which allows to pipeline blocks of code can be
explained through an example which shows how function calls can be pipelined in
the proposed system. Consider the following fragment of a C program:

p(int A, int B, int C);
{i=8

J=A*B;

a(C,j);

main()
p(5, array(1,3], X);

}
A function p (with 3 scalar arguments) is called and in turn calls another function

g. Even in this simple example we can identify blocks of code which can be
pipelined. Consider how this little program would typically be compiled:*

1\We shall assume that the actual parameters are being passed in special argument registers,
Al,...,An.

load #5,A1

address
calculation for
array(1,3]

load array[1,3],A2
load X,A3

call p

p: allocate
activation record
i=9
j=A1*A2
load C,Al
load j,A2
call q

The prologue to the function call and the function body itself are two code
segments which are, except for the function arguments, data independent. For
example, why should the function p not allocate its environment, and maybe even
perform some local computation, while the actual arguments are being set up?
The function p can also start using those arguments that are already known;
why should a procedure always have to wait until all its parameters have been
determined? In the proposed system the caller of a function would proceed as
follows:

e Load the entry and return address of the function into the pipeline buffer
(typically the first and second words of the buffer are reserved for this pur-

pose).
e Load one-by-one all the arguments of the function into the pipeline buffer.
Concurrently the callee proceeds as follows:
e Read the entry address of the function to be executed.
e Start executing the function.

e Whenever actual arguments of the function are accessed which have not
been provided by the left neighbor stall the processor until they become
available.

For our particular example the execution would look as follows:

Processor 1 Processor 2

call_left p,ret =
load #5,A1* = p: allocate
. activation record
address call left q,ret
calculation for i=5
array[1,3] J=AL % ..
; delay until A2 is available
load array[1,3],A2* == A2
load X,A3* = load j,A2
stop load A3 Al
stop

Instead of waiting until all the arguments® have been set up the function call is
issued right away, thereby enabling the next processor to start execution of the
called procedure. Note that it is necessary to explicitly name the return address
since the return address is not the next instruction following the call instruction as
in the sequential case. The return address can be determined by the compiler and
the caller can keep executing code as long as it can be guaranteed that no conflicts
with concurrently executing code on other processors can arise. When possible
conflicts might arise the current block is terminated with a stop statement. When
a stop statement is reached the processor will look in its left pipeline buffer to
see if a new entry address has been provided for the next thread of code to be
executed. Note that a function which has started execution on one processor does
not also need to terminate on the same processor. In the example above there s,
for instance, no code to deallocate p’s activation record. The “stop” statement at
the end does not mean it is the end of the function body, but rather serves as a
barrier beyond which execution can not progress. In this particular case whenever
the function g returns it will push the return address as an entry address to the
next processor which will then continue with the remaining body of function p.

To minimize busy waiting for the next entry address each processor has been
provided with a set of pipeline buffer blocks. The pipeline buffer blocks serve
as queues which contain executable code blocks. If a program exhibits sufficient
parallelism there will always be some blocks which contain executable tasks.

Of course, this execution model is not restricted to only pipeline function
calls. The compiler can take any code sequence and try to partion it into code
blocks which can be executed in a pipeline fashion. And this is were the real
power of the execution model lies. A prime candidate for pipelining are loop
iterations.®> Consider for example the following matrix multiplication code to

2The argument registers have been denoted A1-A3. Register Ai* refers to the ith argument
register of the right neighbor. Hence the register which the left processor refers to as Ai* is
being referred to by the right neighbor as Ai.

30r recusive function calls. The execution model does not make any distinction between

calculate A # B = C (without loss of generality we assume A, B, C' to be square
matrixes with dimension dimn):

for (i=0;i<dim;i++)
for (j=0;j<dim;j++) {
ci](il = 0;
for (k=0;k<dim;k++)
} cfili] = <fili) + ali]{kI*blk](];

By turning the outer-loop into a recursive loop invocation this nested loop can be
transformed into:

Matrix_multiply: if (i<dim) {
PUSH_RIGHT(Matrix_multiply,i+1,a+dim,c+dim);
for (j=0; j<dim; j++) {

cli] = 0;
for (k=0; k<dim; k++)
L=l S

STOP;
}

Continue: ees
where PUSH_RIGHT(label,arg,, arga, ..., arg,) pushes the entry address and the
arguments of the code block to be executed next to the current processor’s right
neighbor.! In this particular example the entry address is the begining of the
outer loop and the arguments are the loop index and pointers to the respective
row vectors®. In this case we do not need to provide an explicit return address
because the continuation is statically known.

It is immediately obvious that by unrolling the outer loop the maximal paral-
lelism of this example is given by the dimension of the matrixes. If the dimension
of the matrixes is greater than the number of processors in the pipeline computa-
tion will wrap around the pipeline, i.e. the last processor will deposit a new task
into the first processor’s pipeline buffer.

However, rather than unrolling the outer-loop the compiler can also choose
to unroll the middle loop. This will yield a much higher degree of parallelism as
there are now dim? iterations which can be pipelined. The following code segment
shows the unrolling of the middle loop:

iteration and recursion.

40f course, this is only a high level representation, the compiler is free to pass the arguments
of PUSH_RIGHT in any order and in any non-contigous way in order to optimize the code.

5t would have been sufficient to only pass the loop index; however, this would have required
the loop body to recalculate the row vector addresses.

Matrixmultiply: if (i<m) {

PUSH_RIGHT(Row.multiply,i,j=0);

STOP;

Row_multiply: if (j<m) {
PUSH_RIGHT(Row_multiply,i,j+1);
c[i]lj] = 0;
for (k=0; k<m; k++)

clilfi] = cHlf] + allik*bk;

STOP;

}
PUSH_RIGHT(Matrix_multipy,i+1);

STOP;
Continue:

For clarity’s sake only the loop indexes are passed as iteration parameters;
however, the code can be optimized by passing row and column vector pointers
through the pipeline®. Figure 2 gives a schematic picture of the execution when
the middle loop of the matrix multiplication progam is unrolled and pipelined on
n Processors.

Inside the code blocks which execute on individual processors any code that
does not affect the execution order of the other blocks can be executed. This
is in sharp contrast to conventional pipeline/vector processors in which complex
conditionals can prevent any parallelism.

However, loop iterations might exhibit data dependency across iterations. If
the data dependency exists between successive iterations the dataflow through
the pipeline buffers will synchronize the iterations. If data dependencies across
several iterations exist we can use “strip mining” techniques to bring the iterations
together. Consider the following example:

for (i=5,1 < 100, i++)
ali] = a[i-5];

This loop can be transformed into:

for (i=5,1 <= 95,i+5)
for (j=0, j < 5, j++)
afi+j] = ali+j-5);

The data dependency is now across successive outer loop iterations and the
outer loop iterations can again be pipelined. Note that if the data dependency
between iterations is of distance greater than the length of the pipeline no special
measures need to be taken. This is due to the wrap around pipeline and the fact

§The Appendix gives the assembler listing of the optimized version.

Initiate the next outer loop iteration

N Pt)

Pipelining of the inner loop iterations

Figure 2: Schematic picture of execution when the middle loop iterations are
pipelined

that every single iteration is executed until termination. Whenever an iteration
i is executed it can be guaranteed that all iterations < ¢ — n have terminated,
where n is the length of the pipeline.

Research on compilers for supercomputers has provided a wealth of algorithms
on how to detect data dependencies and how to perform code transformations to
eliminate them; the techniques are of course applicable to the proposed execution
model as well [Po88, Wo89]. If everything else fails the shared memory can of
course be used to synchronize execution explicitly.

Simulation

We used the matrix multiplication example to simulate the execution model. The
simulation was done on a register transfer level. It was assumed that every in-
struction executes in one cycle except for branch instructions which took 2 cycles.
The simulation took into account bus conflicts and wait states due to the memory
latency. Furthermore, it was assumed that the code was fetched from local mem-
ory so that instruction fetches did not contribute to the bus conflicts. The data
caches were assumed to be fast enough to not cause any wait states. Loading a
cache word from memory took between 1 and 4 processor cycles. The bus arbi-
tration cycle could be overlapped with data movements. For simplicity the cache
line size was assumed to be one word. After the initial loading of the caches the
cache hit ratio was 100%.

All results are normalized with respect to the ezecution time of the matriz
maultiplication program on a single processor. The single processor machine uses
the same instruction set and the code is optimized for the sequential ezecution.
The single processor is assumed to operate with zero-wait-state memory.

Figure 3 shows the speedup attainable by unrolling the outer loop of a 30x30
matrix under various cache configurations. The different configurations were:

1. Cache disabled, i.e. all data is fetched from shared main memory. Memory
access time was assumed to be one processor cycle. This curve shows the
effect of bus contention even if the memory is fast enough not to cause any
wait states.

E\.‘J

A simple data cache where every processor had to fill its own cache. Loading
the cache took again only one cycle.

3. Pre-loading cache. The compiler knows that data objects are needed by
other processors as well. The cache controllers are set to accept whatever
is on the bus even if the current bus transaction was initiated by another
processor. This is basically a broadcast operation in which all caches read
what is on the bus.

4. All data is stored locally. This is the ideal case without any bus conflicts
and a zero-wait-state memory.

10

speed up

1) no cache
2) simple cache

o

28.00 £

30.00

26.00

24.00

22.00

20.00

18.00

1
!
I
]
:
:
.‘
(
I
1
f
)
t
1
:

16.00
PSR T S R ER L it

14.00 L

£
12.00 ; ot
f

10.00 - l:.-'
8.00

=
. //7 ¢ _..,, ~7
4.00 /

2.00 /-

o B # processors
0.00 10.00 20.00 30.00

Figure 3: Effects of various cache configurations on a 30x30 matrix multiplication
program with outer loop iterations pipelined.

11

It is interesting to see how the performance goes down when we reach 15 processors
in configuration 2. Whenever the number of tasks is a multiple of the number of
processors we can utilize all processors. Adding more processors will not increase
performance until all tasks can again be evenly matched with the processors. As
case 2 in Figure 3 shows it can even be detrimental to add more processors.

Figure 4 shows a comparison between the performance gained be unrolling
the outer or inner loop of the matrix multiplication program. Both cases were
simulated with pre-loading caches as in case 3 of Figure 3. Unrolling the middle
loop has more overhead associated with it; however, we get a much smoother
performance increase because we now have 900 tasks to hand to the processors.

Figure 5 shows the effect of the four different cache configurations of Figure 3
for the case when the middle loop is unrolled. If the caches are not pre-loaded
performance will decrease beyond 15 processor due to the bus saturation. The
spike in the simple cache case is caused by a lucky allignement of tasks and cache
data. When the middle loop is unrolled each processor calculates one element of
the result matrix by multiplying a row and a column vector. Ordinarily every
iteration needs to load this row and column vector. However, if the length of the
pipeline is a divisor of the dimension of the problem the tasks will, when they
wrap around the pipeline, fall on processors which still have the needed row or
column vector from a previous iteration.

Figure 6 shows the performance gained by unrolling the n:uddle loop for differ-
ent memory latency values. The case where all data is stored locally in zero-wait-
state memory serves as the reference curve. Note the sharp cutoff of this curve at
43 processors. This is the length of the pipeline at which the first processor be-
comes available again when execution has reached the last processor. The other
curves show the performance under increasing memory latency. The notation
“]_3cycle” means 1 arbitration cycle (can be overlapped with data movements) +
3 memory cycles to load the cache word.

The question remains how much of the performance is attributable to the
pipeline scheme. After all, rather then using pipeline buffers one could have used
shared memory in order to create new tasks, i.e. everything that is written into
the respective pipeline buffers could be written into dedicated memory regions.
However, if a task block is set up in shared memory processing of this task block
cannot commence until the task block creation has been completed. This is be-
cause main memory typically does not provide support for synchronized one-word
message passing. Furthermore, setting up task blocks in main memory will in-
crease the bus load. Figure 7 shows what happens when main memory rather
then pipeline buffers are used to create new tasks. In Figure 7 very favorable
assumptions were made for the case of creating task blocks in main memory. It
is assumed that only the writing of task blocks consumes bus bandwidth. This
means that any processor that will read this task block has the associated mem-
ory region already in its cache. In other words, when a task block is written
it is copied directly into some processor’s cache via the shared bus. Additional

12

speed up
outer loop

e e e TN
28.00 = Thner loop

26.00

24.00 '-‘.:'

22.00

20.00 —

18.00

16.00 5

14.00

12.00 -
10.00 z

8.00 /
. VA
wl A
£

2.00 /

0.00

'] ' ! # processors
0.00 5.00 10.00 15.00 20.00 25.00 30.00

Figure 4: Comparison between pipelining the outer loop iterations and middle
loop iterations in a 30x30 matrix multiplication program.

13

speed up
30.00

28.00
26.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00

3.00

6.00

4.00

2.00

0.00

|
/‘
(.
Fa
/_{ ra
/ﬂ/
/7
,
R
./]_
7
et
P
F
r
Fd
’/
pi 1
/ o
L —— i
A n" ~— ! |I
a & Iy
. B
y 4 "l__ £ &
/| | e b
/’,"__-] |
/
0.00 10.00 20.00 30.00

processars

Figure 5: Effects of various cache configurations on a 30x30 matrix multiplication
program with middle loop iterations pipelined.

14

speed up

42.00
40.00
38.00
36.00
34.00
32.00
30.00
28.00
26.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00

8.00

6.00

4.00

2.00

0.00

0.00

10.00

50.00

60.00

processors

Figure 6: Effect of memory latency on the pipelined execution of the middle loop
iterations of a 30x30 matrix multiplication program.

15

speed up

40.00
38.00
36.00
34.00
32.00
30.00
28.00
26.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00

8.00

6.00

4.00

2.00

0.00

//
,;f
//
N TPV
1=
/‘ f'.‘,.—.
£
L
/
/
0.00 20.00 40!00 60.00

processors

Figure 7: Effect of hardware synchronized pipeline buffers on system performance.

16

synchronization requirements were ignored. As can be seen from Figure 7 before
the bus becomes the bottleneck the lack of pipelining limits the performance. Re-
member that in the fully pipelined case a new task could begin executing, and in
turn create new tasks, before all the arguments for this task had been provided.
In the shared memory alternative the processors have to wait until the respective
task block has been set up in its entirety. This causes such a delay that after a
few steps the first processor becomes idle again.

Finally, Figure 8 shows that the proposed pipeling scheme also works well with
rather small problems. Problems of such small size cannot be effectively handled
by explicitly creating task blocks.

Conclusion

The proposed architecture allows the pipelining of blocks of code on a circular
pipeline of microprocessors. The proposed execution model is especially suitable
for the dynamic unrolling of loops and/or recursive function calls. If the caches
are designed in such a way that they permit to be pre-loaded with commonly used
data objects this simple bus based architecture can be scaled to several dozens of
Processors.

17

speed up

12.00 / T
I
11.00 " o

) / r lcycle-no_buffer
_-'
." F B
10.00 = '

/_,r"' >~
9.00 ;’ 7

y o

Fd

8.00

7.00 J

'ﬂ r
I 4
6.00 s

5.00 =

PR - - R e e B ot

4.00

3.00 /
2.00

processors
0.00 10.00 20.00 30.00

Figure 8: Performance for a 10x10 matrix multiplication with middle loop un-
rolled.

18

References

[E186]

[Fi81]

[Fi83]

[Po88]

[Ra89]

[Sch87]

[Wo89)]

Ellis, J.R.: Bulldog: A Compiler for VLIW Architectures, MIT Press,
Cambridge, Massachusetts, 1986

Fisher, J.A.: Trace scheduling: A technique for global mircocode
compaction, IEEE Transactions on Computers, C-30(7), pp 478-490,
July 1981

Fisher, J.A.: Very Long Instruction Word Architectures and the ELI-
512, Proceedings of the 10th International Symposium on Computer
Architecture, pp. 140-150, 1983

Polychronopoulos, C.D.: Parallel Programming and Comptlers, Kluwer
Academic Publishers, 1988

Rau, B.R. et al.: The Cydra 5 Departmental Supercomputer, IEEE
Computer Magazine, Vol. 22, No. 1, January 1989

Schneck, P.B.: Suppercomputer Atchitecture, Kluwer Academic Pub-
lishers, 1987

Wolfe, M.: Optimizing Supercompilers for Supercomputers, MIT Press,
Cambridge, Massachusetts, 1989

19

Appendix

The following listing is the machine code used in the simulation of the 30x30
matrix multiplication example. However, the code is more general in that it
allows multiplication of rectancular matrixes as well, the respective dimensions are
given as dim;, dim;,dimy. The machine instructions are based on 2 load_and_store
architecture. Actually this instruction set doesn’t even allow to read directly from
memory, as in read.mem(X,rl), where X is a memory location and rl a register
(all registers start with ‘r’), but rather requires the following: move(address of
X,r0) , read_mem(r0,r1). However, this makes simulation much easier since no
decoding needs to be performed. If anything, this idiosyncracy handicaps the
simulation of the pipelined execution scheme, and certainly doesn’t constitute an
unfair advantage.

As can be seen, the proposed execution model does not require any special
instructions. All operations can be performed with any standard instruction set.
In the code below stp() is a macro which just reads an entry address from the
pipeline buffer and starts execution.

label_O:
start QO
label_1:
move_val (i_addr,ri14) | i_addr is the location of
the outer loop index variable
read_mem (ri4,ri) get loop variable

|
I
|
move_val (dim_i,r2) | load the dimension into r2
|
|
|

cmp (r1,r2) i< dim ?

bge (label_5) if i >= dim then DONE
move_reg (rl,rtemp) increment loop counter
inc (rtemp)

and store it in memory

load the entry address into r3

and write r3 into the first location
(0) of the right pipeline buffer
clear the middle loop counter

pass the middle loop counter to the
right buffer in location 2

write_mem (ri4,rtemp) |
|
|
|
|
|
|

move_val (a_base,r4) | put the base pointer to matrix A
|
|
|
|
[
|
|

move_val (label_2,r3)
write_right(0,r3)

clear (rd)
write_right(2,r4)

move_val (dim_k,rtemp)| into r4 and determine the current

mul (r1,rtemp) row vector of A based on the current
add (rtemp,r4) outer loop index, push the row vector
write_right(3,r4) pointer to the right neighbor
move_val (b_base,rS§) push the base pointer of matrix B into
write_right(4,r5) the right pipeline buffer (location=4)
move_val (c_base,r6) as for matrix A determine the current

20

move_val (dim_j,rtemp)

mul (rtemp,rl)

add (r1,r6) | row vector of C and pass the row vector

write_right(5,r6) | pointer to the right neighbor

stp() | loock into the left buffer for more work
label_2:

move_val (dim_j,r0)
read_left (2,r4)

cmp (r4,r0)
bge (label_1)
move_val (label_2,r13)
vrite_right(0,r13)
ine (rd)
write_right(2,r4)
read_left (3,ri)
write_right(3,r1)
read_left (4,r2)
move_reg (r2,rtemp)
inc (rtemp)
write_right(4,rtemp)
read_left (5,r3)
move_reg (r3,rtemp)

inc (rtemp)
write_right(5,rtemp)
clear (r4)
clear (rtemp)

move_val (dim_k,r5)
label_3:

cmp (r4,r5)

bge (label_4)

read_mem (ri,ril)

read_mem (r2,r12)

mul (r11,r12)

add (r12,rtemp)

inc (r4)

inc (r1)

add (r0,r2)

branch (label_3)
label_4:

write_mem (r3,rtemp)
label_5:
stp()

check the middle locp index to see

if middle loop is done. If yes then jump
to label 1 to start with the next outer
loop iteration

othervise invoke middle loop iteration
again on the next processor

increment middle loop index and pass it on

get row vector of A and pass it on too

get base pointer of B. Increment the base
pointer and pass it on to the next iteration
the incremented pointer is really nothing
else but the column pointer of B

to the same to the base pointer of C

now go for the inner loop
rtemp is c[i][j]
inner loop done 7

read the elements from A and B
from memory

c[il[j] = <[il[j] + ali] (kI*b[k] (5]
k = k+1

pointer to a[i] [k+1
pointer to b[k+1][j] r0 is still dim_j

write the result c[i][j] back

21

The following is the listing of the sequential code which was used as a perfor-
mance reference. Again, this code can is not restricted to square matrixes.

label_0:
start();
label_1:
move_val
move_val
move_val
move_val
move_val
move_val
clear
label_2:
cmp
bge
move_reg
clear
label_3:
cmp
bge
move_reg
move_reg
clear
clear
label_4:
cmp
bge
read_mem
read_mem
mul
add
inc
add
inc
branch
label_5:
write_mem
inc
inc
inc
branch
label_6:
add

(dim_i,r0);

(dim_j,r17);
(dim_k,ri3);
(a_base,rl);
(b_base,r2);
(c_base,r3);

(r4);

(r4,r0);
(label 7);
(r2,r5);
(r6);

(r6,rl7);
(label_6);
(r1,r7);
(r5,8);
(x9);
(r10);

(r10,r13);
(label_5);
(r7,ri1);
(r8,r12);
(ri1,r12);
(ri2,r9);
(z7);
(r0,r8);
(r10);
(label_4);

(r3,r9);
(r3);
(r5);
(r6);
(label_3);

(r13,1r1);

r3=C
r4=i outer loop counter

r5=B[j]
r6=j middle loop counter

r7=A[k]

r8=B[k]

temp result

r10=k inner loop counter

inc

branch
label_7:

stp();

(r4);
(label_2);

