A Mathematical Theory of
Self-Checking, Self-Testing and
Self-Correcting Programs

Ronitt Rubinfeld
TR-90-054
October 1990

Abstract

Suppose someone gives us an extremely fast program P that we can call as a black box
to compute a function f. Rather than trust that P works correctly, a self-testing/correcting
pairfor f allows us to: (1) estimate the probability that P(z) # f(z) when z is randomly
chosen; (2) on any input z, compute f(z) correctly as long as P is not too faulty on average.
Furthermore, both (1) and (2) require only a small multiplicative overhead (usually constant)
over the running time of P. A program result checker for f (as introduced by Manuel Blum)
allows us to check that on particular input z, P(z) = f(z).

We present general techniques for constructing simple to program self-testing/correcting
pairs for a variety of numerical functions. The self-testing/correcting pairs introduced for
many of the problems are based on the property that the solution to a particular instance
of the problem can be expressed as the solution to a few random instances of the same size.
An important idea is to design self-testing/correcting pairs for an entire library of functions
rather than for each function individually. We extend these notions and some of the general
techniques to check programs for some specific functions which are only intended to give
good approzimations to f(z).

We extend the above models and techniques of program result checking and self-testing/-
correcting to the case where the behavior of the program is modelled as being adaptive, i.e.
the program may not always give the same answer on a particular input. These stronger
checkers provide multi-prover interactive proofs for these problems.

The theory of checking is also extended to parallel programs [Rubinfeld]. We construct
parallel checkers for many basic problems in parallel computation.

We show that for some problems, result checkers which are much more efficient can be
constructed if the answers are checked in baiches, i.e. many answers are checked at the same
time. For these problems, the multiplicative overhead of checking the result can be made
arbitrarily small.

This research was supported by NSF grant CCR 88-13632, by the International Computer
Science Institute and by an IBM Graduate Fellowship.

Committee Chairman: Manuel Blum

Dedicated to my family
Jack, Rivka and Ilan Rubinfeld

Acknowledgments

There are many people to whom I am grateful for what they have given me during my graduate
school years:

I was extremely fortunate to have Manuel Blum as my advisor. Among the attributes that
combine to make him a wonderful and inspiring advisor are his amazing insights and ideas, his
enthusiasm and dedication both to research and to his students, and his support and encouragement.
However, these qualities do not quite capture everything that makes him a great teacher - sometimes
I think that he is some sort of magician.

I have had several conversations about research with Umesh Vazirani and I have learned a lot
from his creativity in solving problems. His comments on this thesis were very helpful and have
kept it philosophically consistent. I thank Dick Karp for his excellent courses, from which I learned
tremendous amounts, much of which I later found useful. He had many very useful suggestions
and insights about my research. Thanks to Raimund Seidel for his continual willingness to discuss
research and everything else. I would also like to thank Dorit Hochbaum for her helpful comments
on this thesis.

Mike Luby deserves special thanks. He has taught me much about research and ways of thinking.
He acted as a sounding board for my ideas, and helped me to extend them. In addition, he has
taught me a lot about writing and speaking by going over countless drafts of my papers (including
this thesis) and watching many practice talks. He has been a constant source of support and
encouragement and a great friend.

Many of the results in thesis were done in collaboration with Manuel and Mike: specifically
Chapters 3 (except Section 3.5), 5 and 7. The results in Chapter 3, Section 3.5, were done in
collaboration with Madhu Sudan. I am grateful for having had the opportunity to work with them.
It was very enjoyable, and I have learned so much from them in the process.

Sandy Irani is also deserving of special thanks. It is difficult to imagine having gone through
graduate school without her. Much of my research was done in collaboration with her and many
of my nicest hours at Berkeley were spent in her company.

Thanks to Oded Goldreich for his friendship, his confidence in me, and for everything that he
has taught me. Thanks to Silvio Micali for pointing out the general applicability of the initial
results that led to this thesis and for his enthusiastic support. Thanks to Cynthia Dwork and Joan
Feigenbaum for their advice and support. There are many people whom I have learned a lot from
and who and have made Berkeley such a nice place to be. Among them are Dalit Naor, Moni Naor,
Noam Nisan, Steven Rudich, Russell Impagliazzo, Sampath Kannan, Diane Hernek, Nina Amenta,
Dana Randall, Will Evans, Michael Braverman, Nancy Amato, David Zuckerman, David Wolfe and
Mark Gross.

Finally, I would like to thank my family, Jack, Rivka and Ilan Rubinfeld for their love and
support.

Contents

1 Introduction
2 Program Result Checking
20 TheMiodel v e as o s s 8 B HEs s DR EF I S REEFE M ERE A
2.1.1 Correctness of Result Checker < . ¢ i « cv v v v vvi v o v o vis v wsinasa
Bt EIRCIRIET waw o 5 o 1os = % % 3 G600 W % K OORE © % K O K R R AN B E B S B W I e
22 Examples e
221 SOMME v s g et ks e B NE B R A EEE SR EAE A R EE e b
2:2.2 Matrix MalbipHestion.: « o« o s o o s %o o v v 4w o 5w wvs @ 6 4 i B 8 5 S 4
3 Self-Testing/Correcting Programs _
81 Belated Work o o o5 55 25 50 5 58 5.0 600 0l i nmmos o nomoom o ws s s s s
F2 THOBEBEE covu cvsegoips s DR A S S SEEH EE5 90 85 3 84 ¥ %575 &
33 BelECOITEEtINE « o vov wovm wow wos o mom o % 2 5 @ & £ 5 5 5 0 b S Ba § E B G E S G
331 The Mod Function o it i it i ittt e et e e e e e e e e
3.3.2 Generic Self-Correcting Program 0vuu'un..
33.3 ImtegerMullipication . s s wive s u v oo s s h e ¥ s @ 655 0.0 o als oo
3.3.4 Medular Maltiplication. .« . s cvvvsn v sqamoss s moas v o sesioo
3.3.5 Modular Exponentiation e e
3.3.6 Imteger Division. o i i it i it e e e
3.3.7 Matrix Multiplication i e e .
3.3.8 Polynomial Multiplication
3.3.9 Multivariate Polynomial Function
3.4 Linearity and Self-Testing « oo vt v oo i et o et i s ae
341 ModFunction ot i ittt e e e e
342 Generic Linear Self-Testing - « o v v v v oo i 60 i ans v s 6 a0 5sis s
3i4.3. Integer Maltiplieation. « « ¢ v s v v suw s v v u s S v v v vy 8§ 20 5 § %
Sk Modular Mulfiplicallon. « < » oo v o v m v o 605w o 0 5 5 v 5 w0 w5

13
13
14
16
16
16
g

3.4.5 Modular Exponentiation« ¢ v v v v v i b it e e e
346 Integer DIviSION . v o o v i o v v 3% o s @5 a7 e o 6% oia & 80 i o35 % % Wids
3.5 Self-Testing Polynomial Functions ¢ it i iine e,
3.6 Bootatrap BelETesEINE v v o v 6w v o v 0 s s 5 0 6 omi e s 5 5o 6 x %0 ® % X &
3.6.1 Matrix Multiplication i e
3.6.2 Polynomial Multiplication v v v v v v i e e e
363 ModularToverse: o o cw v oo s n @ e o u W@ ¥R e E R R a e w8 S 8
364 Modular ESPonGHIEEIGN , « « o x « s wow om0 im0 50w 0t 6 o 0 e k% ow p e 8
Approximate Result Checking and Self-Testing/Correcting
4.1 Approximate Self-Correcting o iiiii
W 13 LI 051707 11 P PArSRO E FO
4.1.2 Generic Approximate Self-Correcting Program
4.2 Approximate Linearity and Approximate Self-Testing
421 Quotient FUunetion . .« ¢ s ¢ s v s vov c v a v wwan s o o w w e & 5w e s
4.2.2 Generic Approximately Linear Self-Testing
4.3 Open Question v v v i i it n i i e e N EREG EEE
Libraries and Linear Algebra
Bl DERBITHOHE « 5 s b v 5 o 5 ¢ & e 0 B se e w % B B R & % % de K ¥ R W 5 R b e s
5.2 The Linear Algebra Library
5:2.1 Matrix Multiplication : i ms s i @i s a d i o8 0 dbsn a4 s
522 MattieInversion o o ¢ oow v v v s 6w 6 v e 8 E 2 % R W E S RS R R B S
B3 Doloriilitaiil « o v v v mm o n b o € 0 5 %@ 8 % 53 aHO & LB B N N eie s
5.24 Matrix Rank o i e e e
Result Checkers for Parallel Programs
6.1 The Parallel Program Result Checking Model -
6.2 Simple Parallel Result Checkerst ..
6.3 Computability by Random Inputs0 i v vt i i i it e e
831 Any SymmetricFunctionon o Bits« v v ess os s awm 38 w585 g s
6:3.2 Special Symmetric Functions « c s v i s s s ww v s s wmw vo s ws o5 am s
6.3.3 Randomly Self-Reducible, Linear and Smaller Self-Reducible Problems
6.4 ConsiStency v v v v v v i i e e e e e e e e e e e e e e e
6.4.1 Problems that can be solved using Dynamic Programming
642 All Paits Shortest Path . v csswpav o s mmv e s v vy o & ¢ 5 s 4
0.8 DHRIHY oo v sim e o s mmm v kom S0k 2 % 8 S0 e F R wEs R ¥ K B 8 8 6 e BB B S @

52
54
55
55
56
57
58
61

62
63
64
64
65
67
67

6.6 Constant Depth Reducible Functionso,
7 Adaptive Programs and Cryptographic Settings

Tl Rolabed WOTK « « sion o w5 v o o w v 5 o 9 5 e s @ % 6 st 1 % % Wi = & 8 08 8 8 3 R 8

7.2 Private/Adaptive Checkero e

7.3 Open Questions . o s i 55 65 s e amaniod s oasiis s v e dse®ais s

8 Batch Result Checking

9 Conclusions

79
81
82
85

86

88

Chapter 1

Introduction

In his book, Memoirs of a Computer Pioneer [65], Maurice Wilkes writes :

By June 1949 people had begun to realize that it was not so easy to get a program right
as had at one time appeared. I well remember when this realization first came on me
with full force. The EDSAC was on the top floor of the building and the tape-punching
and editing equipment one floor below on a gallery that ran round the room in which
the differential analyser was installed. I was trying to get working my first non-trivial
program, which was one for the numerical integration of Airy’s differential equation.
It was on one of my journeys between the EDSAC room and the punching equipment
that “hesitating at the angles of stairs” the realization came over me with full force that
a good part of the remainder of my life was going to be spent in finding errors in my
own programs. Turing had evidently realized this too, for he spoke at the conference
on “checking a large routine”.

His prediction that software faults would be one of the most crucial issues for programmers proved
correct, and the issue of software reliability has been plaguing computer programmers since the
earliest days of the field. In many cases, these bugs can have serious implications. !

More is known now than in 1949 about programming and ways to minimize errors in programs,
yet the problem still flourishes because programs are being developed to solve more complicated
problems, and need to be clever in order to maximize efficiency and to take advantage of more
complicated computer architectures.

Traditional Approaches to Software Reliability The problem of software reliability has
been explored in the past with several classical approaches. As each of these approaches has its
own strengths and weaknesses, they should be viewed as supplementary, rather than competing
approaches. We describe two approaches of interest.

The first method, program verification, involves a formal proof of correctness of the program
code which is done only once, and before the program is ever used. Thus, using it does not affect

1Examples from recent history range from severe flooding to millions of dollars of losses for major phone companies:
In 1983, severe flooding along the Colorado River that killed six persons was attributed to a “monumental mistake”
in federal computer projections of snow-melt runoff. The underestimation of the runoff caused officials to dam up too
much water before the spring thaw. On January 15,1990, a bug in the newly installed software at AT&T temporarily
shut down half of the telephone system with hundreds of thousands of callers being unable to call or receive their
long distance phone calls.

the running time of using the program. Though programs for many problems have been formally
verified, these programs are usually quite simple and often much less efficient than other programs
for the same problem. Relatively simple data structure routines are very difficult to verify. Even
when a program is proven correct, the proof is often much longer and more complicated than the
program itself, and thus is at least as susceptible to errors. Since verification is too tedious of a
task to do by hand, efforts have been aimed at automating or semi-automating the process. Such
efforts have met with limited success. Additional complexity is introduced when programming on
parallel processors and distributed computing environments. These are among the reasons that
[27, De Millo Lipton Perlis] use to argue that program verification should not be the only way of
approaching the problem of software reliability. Furthermore, the proof of correctness only makes
a statement about the program as it is written on paper, not as it is typed into the file, nor the
compiled code generated from the file, nor the physical representation of the code loaded into the
hardware where the program is to be executed.

The second method, traditional program testing, involves testing the program’s correctness on
some inputs. Traditional testing consists of generating random instances or special instances of the
problem and determining whether the program is correct on those instances. Testing overcomes
some of the problems of program verification, e.g. the testing is of the actual physical representation
of the code loaded into the hardware. Testing is also normally done in a preprocessing stage, and
does not affect the run time of the program. Since it is unreasonable to test the program on each
input, the programmer is never certain that the program is correct on the particular inputs for
which the correct result is needed. In addition, proper testing raises the following issues which
must be addressed:

1. Which input distribution should the program be tested on? In many cases, the input distri-
bution that will occur in practice is unknown and is not static.

2. What constitutes an acceptable test? Typically, either (1) the instances checked are generated
so that they are small enough or special enough to be checked by hand, which is insufficient
to test the general behavior of the program, or (2) an “independent” program is used to
calculate the answer. The “independent” program is often a previous version of the same
program that is being replaced, or one that is written by different people (who are likely to
make the same types of errors) and thus is not independent at all.

Program Result Checking Recently, Manuel Blum in [15, Blum] has proposed a promising
new framework, Program Result Checking, for allowing progammers to build result checkers into
their programs. People realize the importance of checking their own hand calculations, and have
developed ad-hoc methods for doing so: for example, when solving a system of equations, people
are taught to plug the solution back into the equations to verify the correctness of the result. In
fact, many programmers put checks into their programs to verify that the results being computed
are correct or are at least feasible solutions. Program Result Checking involves writing a result
checker program, to be run in conjunction with the original program, that checks the work of the
program, i.e. it obtains a proof of correciness of the result of the program on the specific input
that the program was run on. The result checker does not then verify whether or not the program
is correct, and in fact is not allowed to look at the program code: it simply verifies whether the
program gives the correct answer on the inputs on which it is called.

As in algorithm design, where a different algorithm is designed for each function, the result
checker is written specifically for the function that it is supposed to check. However, in algorithm

design, several techniques have been developed which can be used to write algorithms for large
classes of problems. Similarly, one of the partially fulfilled goals of the area of result checking is to
find techniques which can be used to write result checkers for large classes of problems.

This approach allows one to use programs written by other people without having to trust them:
since the result checker for a function is usually easier to write than the program for the function,
it is easier to use the untrusted program in conjunction with the result checker than to write a new
program for the function. Moreover, one can use programs that are based on unproven heuristics
for the problem. For example, many good heuristics exist for the graph isomorphism problem. If
a heuristic program is used, then the result checker either finds a mistake in the heuristic or else it
is very likely that the heuristic has output the correct answer on the given input.

This framework is meant to address computational problems that have well-defined input/output
specifications, rather than problems where the difficulty comes in deciding on the correct specifica-
tions. The result checker is written specifically for the function which it checks, but must work for
all programs that purport to compute that function. The result checker may call the program on
other inputs, but it may only access the program as a black box, and may not look at the program
code. Thus, result checking is inherently different than program verification. Result checking is
also of a different nature than verifying that the program is following an algorithm’s steps correctly.
However, we will see (Chapter 6) that some result checkers are in some sense using the program
to reconstruct the steps of a very simple algorithm for the problem, to be used as a proof of the
correctness of the result. If this can be done efficiently, then it becomes worthwile to use the faster
but more complicated algorithm rather than the very simple but slow algorithm. We define a
program result checker more formally in Chapter 2.

The first program result checkers for a number of important problems are given in [15, Blum],
[17, Blum Kannan], [23, Blum Raghavan] [39, Kannan]. Program Result Checking has been suc-
cessfully applied to a wide range of problems, including sorting, matrix rank, linear programming,
graph isomorphism, matrix multiplication, greatest common divisor [2, Adleman Huang Kompella],
[15, Blum], [17, Blum Kannan], [18, Blum Kannan Rubinfeld], [20, Blum Luby Rubinfeld 2], [23,
Blum Raghavan], [34, Freivalds],[39, Kannan].

The question remains of how to verify that the result checker program meets its specifications.
Although there is no final answer to this question, there are some partial answers. First, it has
been our experience that the code for the result checkers that have been designed is often much
simpler than reasonably fast programs for computing f directly, and is therefore more likely to
be correct on these grounds alone. Moreover, a lot of time can be spent in the design of a result
checker to try and ensure that it is correct, because a result checker can be used on all revisions
in the future to the currently used program for computing the function. Rather than trading the
assumption that the program is correct for the assumption that the result checker is correct, [15,
Blum] suggests that the result checker should be in some quantifiable way “different” than any
program that correctly computes the function directly, because then it is unlikely that the result
checker makes mistakes of the same type as those made by the program: specifically, [15, Blum]
suggests the requirement that the running time of the result checker (not including the running
time of the program on any of the calls that the result checker makes to it) be strictly faster than
the fastest program for computing the function. Thus, the result checker must do something other
than compute the function directly.

Since result checking is done at run time, care must be taken so that it does not significantly
add to the total computation done. For many functions, the result checking task is significantly
easier than the task of computing the function value. We say that a result checker is efficient if the

9

total running time of the result checker, including the running time of the calls to the program, is
linear in the running time of the program. We would like the result checkers to be efficient, or as
close to efficient as possible.

The result checking is done with respect to the program being executed in the hardware. If
the hardware is assumed to be non-faulty, no further assumptions are needed. If the hardware
is assumed to be possibly faulty, then we assume that the simple result checker is loaded into a
smaller non-faulty portion of hardware (similar to what is done with the operating system kernel).
In this case, the result checker can even be used to find faults in the program due to hardware
errors that develop over time.

An advantage of the approach of [15, Blum] is illustrated by the following example. Suppose we
have a correct program which we want to run as fast as possible. We have two kinds of hardware,
non-faulty hardware and faster but possibly faulty hardware. There are two possibilities: (1) run
the program alone on the non-faulty hardware; (2) run the result checker on the non-faulty hardware
in conjunction with the program on the faster hardware. Because the result checking time is much
smaller than the running time of the program when run on equal speed hardware, the bottleneck
in running time in (2) is still the program. Thus, (2) can yield an overall gain in processing speed
over (1) without compromising confidence in the correctness of the output.

Self-Testing/Correcting Programs We introduce the notion of self-testing/correcting pro-
grams (Chapter 3), which is an extension of the theory of program result checkers:

Although a result checker can be used to verify whether the program is correct on a particular
input, it does not give a method for computing the correct answer in the case that the program is
found to be faulty. We show that for many functions, faulty programs which are nevertheless correct
on a substantial fraction of the inputs from a conveniently chosen distribution (determined by the
function), can be self-corrected, i.e. turned into programs that are always correct. For example,
we show how to convert a program for integer multiplication that errs on up to 1 /8 of the pairs
of n-bit inputs, into a probabilistic program that is correct on every input with high probability.
Self-correcting has implications for program design: It may be easier to write programs that are
allowed to err infrequently, because special cases can be ignored. As with result checking, we ask
that the self-correctors be quantifiably different than any program that computes the function.

We discuss a property of functions which allows them to be self-corrected, and give a general
technique for constructing self-correcting programs for all functions which have this property. Ex-
amples of functions which have this property include integer multiplication, integer division, the
mod function, matrix multiplication, polynomial multiplication, modular multiplication, modular
exponentiation and the evaluation of any function which is a multinomial.

In order to ascertain that the programs are usually right on the distribution chosen for the
self-corrector, we introduce the notion of self-testing programs. The design of the self-corrector
dictates which input distribution must be tested. We ask that the self-testers be be quantifiably
different than any program that computes the function, which does not allow the tester rely on the
existence of a “correct” program for the function in order to test the program. The theory of result
checking gives one way of satisfying this requirement: one calls the program on the test input, and
then uses the result checker to verify that the program gives the correct answer. The assertion is
true because of the restriction that the result checker is quantifiably different than any program for
the function, and therefore does not check the result by running another program for the problem
to see if it gets the same answer. We give other techniques which can be used to construct very

10

simple and efficient self-testers, without the use of a result checker for the function, for all of the
functions mentioned above.

A self-testing/correcting pair is a powerful tool. A user can take any program that purportedly
computes the function and self-test it, If the program passes the self-test then, on any input, the
user can call the self-corrector, which in turn makes calls to the program, to correctly compute
the function. Even a program that computes the function incorrectly for a small but significant
fraction of the inputs can be used with confidence to correctly compute the function for any input.
Furthermore, since either a fault is found in the program during the testing phase, or the correct
value of the function is computed, the self-testing/correcting pair can be used to construct a result
checker for the same function.

It is clear that self-correctors must be efficient (as was defined for result checkers), because they
are used at runtime. We will see that in many cases, testing must also be done at runtime rather
than in preprocessing, and therefore, the efficiency of the testing program is important.

Ifin the future somebody designs a faster program for computing the function then the same pair
can be used to self-test /correct the new program without any further modifications. Thus, it makes
sense to spend a reasonable amount of time designing self-testing/correcting pairs for functions
commonly used in practice and for which a lot of effort is spent writing super-fast programs.

The theory of self-testing leads to interesting mathematical questions about properties that
characterize a function. It is shown that certain properties that characterize a function which hold
everywhere can be replaced by the same property which only holds almost everywhere. For example,
suppose f is a function that maps a group G to a group H. We say that f is linear if it has the
property that for all z,y, f(z +6 y) = f(2) +u f(y) (where +¢,+y are the group operations
over the domain and range respectively). The results in Chapter 3 relax the condition required for
linearity in the following sense: they show that if for most z,y, f(z +¢ ¥) = f(z) +5 f(¥), then
there is a linear function g such that f(z) is equal to g(x) for most z. Thus f is still essentially
a linear function. A similar property and relaxation is shown to hold for polynomials. Since it is
computationally much easier to determine whether a property is satisfied most of the time than to
determine whether it is always satisfied, this relaxation is important for self-testing.

Programs that Approximate In the notions of a result checker and self-testing/correcting
pair considered so far, a result of a program is considered incorrect if it is not ezactly equal to the
function value. In Chapter 4, we extend the notions to approzimate result checkers and approzimate
self-tester/correctors which check whether or not the program gives a good approximation (defined
in terms of absolute error) to the exact value of the function. We give techniques which can be used
to construct approximate result checkers/self-testers/correctors for programs that approximate the
integer multiplication and integer division functions. The techniques also give approximate result
checkers/self-testers/correctors for the quotient function, for which no exact self-tester/corrector
or result checker is known.

Libraries Often programs for related problems are grouped in packages; common examples in-
clude packages that solve statistics problems or packages that do matrix manipulations. It is
reasonable therefore to use programs in these packages to help test and correct each other. In
Chapter 5, we extend the theory proposed in [15, Blum] to allow the use of several programs, or
a library, to aid in result checking, testing and correcting. We show that this allows one to con-
struct result checkers and self-testing/correcting pairs for functions which did not previously have

11

efficient result checkers, self-testing programs or self-correcting programs. The result checker and
self-testing/correcting pair is given a collection of programs, all of which are possibly faulty, and
may call any one of them in order to test or correct a particular program. Working with a library
of programs rather than with just a single program is a key idea: enormous difficulties arise in
attempts to check a determinant program in the absence of programs for matrix multiplication and
inverse. As an example of self-testing/correcting pairs written for a library of programs, we show
how to self-test/correct a library of possibly fallible programs for matrix multiplication, matrix
inverse, determinant and rank. A library of self-testing/correcting pairs based on similar princi-
ples can be constructed for the following functions: integer mod, modular multiplication, modular
exponentiation, and multiplicative inverse mod R. '

Result Checkers for Parallel Programs A user is unlikely to be willing to use a sequential
result checker to verify the correctness of a result produced by a fast parallel algorithm. In Chapter
6, we extend the program result checking framework to the setting of checking parallel programs
and find general techniques for designing such result checkers. For example, we find techniques for
result checking programs which compute certain types of functions that have the property that they
can be computed be computed “indirectly”, by calling the program on another, related input. We
also present a techniques based on quickly reconstructing the computation of a simple sequential
algorithm, on duality and on constant depth reducibility among problems. We find result checkers
for many basic problems in parallel computation and show that for many problems, checking the
parallel program’s answer does not increase the parallel computation time and total work done by
much.

Adaptive Checking and Interactive Proofs In the theory of program result checking intro-
duced in [15, Blum], the program is always assumed to be a fixed program, whose output on any
particular input is always the same. This is not always the case, as there are programs whose
behavior changes as they run, even though the functions that they supposedly compute remain
fixed. For example, hardware errors may evolve over time depending on the previous inputs that
the program has been run on, or, the software may be written such that running the program on
certain inputs may have unintended side effects on the program’s future behavior. We show how to
replace this assumption by the assumption that there are two copies of the program which do not
affect each other in Chapter 7. In [15, Blum] [17, Blum Kannan], the relationship between result
checkers and interactive proofs [37, Goldwasser Micali Rackoff] is studied. We discuss the rela-
tionship between result checkers and the multi-prover interactive proofs of [13, Ben-Or Goldwasser
Kilian Wigderson].

Batch Result Checking Though many programmers are willing to spend some time overhead
in order to verify that their programs give correct answers, for some applications, where efficiency is
crucial, even a constant multiplicative time overhead makes result checking undesirable. In Chapter
8, we define a variant model of result checking, called batch result checking: Often greater efficiency
can be achieved if the user does not need to know immediately whether the program gives the
correct result. In this case, the result checker can wait until the program has been called on several
inputs and check that the program is correct on all of the inputs at once. Batch result checking can
allow greater efficiency, and we give examples of functions for which batch result checking allows
one to reduce the overhead of the result checking process to the point where it is arbitrarily small.

12

Chapter 2

Program Result Checking

In this chapter, we describe the program result checking model proposed in [15, Blum]. We discuss
several aspects of the model, and then we give examples of program result checkers.

2.1 The Model

DEFINITION 2.1.1 (probabilistic oracle program and running time) A probabilistic program M is
an oracle program if it makes calls to another program that is specified at run time. We let M4
denote M making calls to program A. The incremental time of M4 is the mazimum over all inputs
z of length n of the running time of MA(z), not counting the time for calls to A. The total time
of M4 is the mazimum over all inputs z of length n of the running time of MA(z), counting the
time for calls to A.

DEFINITION 2.1.2 (probabilistic program result checker) A probabilistic program result

checker for f is a probabilistic oracle program R; which is used to verify, for any program P that
supposedly evaluates f, that P outputs the correct answer on a given input in the following sense.
On a given inpul z and confidence parameier a, Rf has the following properties:

1. If P(z) # f(z) then R% outputs “FAIL” (with probability > 1 — a).

2. If P is a correct program for every input then RY outpuls “PASS” (with probability > 1 — a).
Some remarks about the model are in order:

o R}’ is written specifically for the function f.

o The probabilities are with respect to a source of truly random independent bits available to
the result checker, and not with respect to any assumptions about the input distribution.
Thus, if P(z) # f(z), the result checker catches that P is not correct with probability at
least 1 — o for any z.

e Ry is only allowed to access P as a black-box oracle. Therefore, this model by nature forces
the checker to do something inherently different than program verification.

13

o If P(z) = f(z) but P is faulty on other inputs then Ry is allowed to output either “FAIL”
or “PASS”, because the stronger requirement, that Ry always outputs “PASS” when P(z) =
f(z), is too strong in general. This is because these properties are supposed to hold for any
program P that supposedly evaluates f. Consider the case when the range of f is {0,1},
i.e. fis a decision function, and P is the trivial program that outputs 1 for all inputs. To
satisfy the stronger requirement in this case would require Ry to be a correct program for f
when making no calls to P, because P provides no information about f. Thus it would be
impossible for R; to be simpler than any correct program to evaluate f.

o Most result checkers satisfy a stronger condition than that in 1: If P has no bugs, then the
result checker will always output “PASS”. However, there are at least two known examples
of result checkers where the weaker condition is needed. These are the matrix rank checker
in [17, Blum Kannan),[39, Kannan], and the quadratic residuocity checker in [45, Kompellal.

e We do not assume that the programs being checked are deterministic, we only require that
their specifications require them to always be correct, i.e. often a probabilistic program may
err with small probability and still be a correct program. See [39, Kannan] for a discussion
of checking probabilistic programs.

e The model of computation typically used in this work will be a RAM bit cost model of
computation as defined in [3, Aho Hopcroft Ullman).

A very important idea is to allow the result checker to call the program on other inputs while
checking it on a given input. A priori, it would seem that the additional power to call the pro-
gram does not help much, but due to recent advances in complexity theory and new notions of
a mathematical proof ([15, Babai],[37, Goldwasser Micali Rackoff], [13, Ben-Or Goldwasser Kilian
Wigderson), this often simplifies the checking process, and in some cases (for example the perma-
nent problem) it is the only way that we know how to do polynomial time checking at all. Two
reasons why allowing the result checker to call the program reduces the complexity of (sequential)
checking are: Many decision problems are self-reducible, and a correct program can aid in solving
the search problem, giving a proof of correctness. Secondly, it is noted in [15, Blum] [17, Blum
Kannan), that the result checker can be thought of as a restricted version of an interactive proof
as defined in [37, Goldwasser Micali Rackoff]. Intuitively, the program is proving to the user that
the program has computed the result correctly.

2.1.1 Correctness of Result Checker

The problem remains of determining the correctness of the result checker. One of the primary
reasons that the theory of checking was introduced is to make it possible to gain evidence that
a program correctly computes a function f on given instances without trying to prove that the
program correctly computes f on all inputs. However, the following question remains: “How do
we know that a result checker for f is correct?” Blum does not propose to use program verification
in the classical sense to prove that result checker is correct (although this may be possible for very
simple result checkers, and of course for all the result checkers we develop we do give a proof of
correctness that is supposed to convince the reader).

One possibility is to ask that the result checker be simpler than any correct program for com-
puting f. This approach is attractive because intuitively if the result checker is simpler than any
program for f it is also more likely to be correct, both in its specification, compilation into soft-
ware, and in its hardware implementation. Moreover, since the same result checker can be used

14

with respect to any program for f, it makes sense to spend a lot of energy writing a correct result
checker, which can still be used even if a new (possibly faster) version of the program is imple-
mented. This approach is similar to what is done when designing an operating system, where a
tremendous amount of effort is spent building a simple and correct kernel.

The generally accepted notion of simplicity is the aesthetic simplicity of the result checker
versus that of the fastest correct program. This notion of simplicity is often easily discernible by
people but unfortunately is fairly unquantifiable. Although this is not quantifiable, intuitively the
result checkers developed in this and other papers are much simpler in terms of the program code
than the corresponding fastest program for the problem. For example, the integer multiplication
checker presented here seems much simpler than multiplication programs based on Fast Fourier
transforms, and the matrix multiplication checker seems much simpler than matrix multiplication
programs based on the methods in [63, Strassen], [26, Coppersmith Winograd].

Blum suggests that we force the checker to be quantifiably different than any program for f.
Then instead of relying on the correctness of the checker, we can rely on the hope that bugs in the
checker are “independent” from bugs in the program and are unlikely to interact in such a way that
bugs in the program will not be caught. We consider two quantifiable notions of programs begin
different. These notions are based on limiting some resource of the result checker to enforce it to
do something quantifiably different than the program. Thus far, most of the result checkers found
which satisfy these quantifiable notions seem to be simpler than any program for the function as
well. [15, Blum] introduces a notion of quantifiably different based on the running time requirements
of the result checker versus that of the fastest correct program for f.

DEFINITION 2.1.3 (different) We say that the result checker Ry is quantifiably different if, for all
programs P, the incremental time of RIP is smaller than the running time of the fastest knouwn

program for computing f directly. !

In the definition of different, we ignore the running time dependence on the confidence parameter
B, which is typically a multiplicative factor of O(In(1/)).2

Another quantifiable notion of difference that we consider is with respect to the algebraic model
of computation (this notion is also considered in [66, Yao]). (Similar definitions can be made with
respect to other structured models of computation.) Consider the problem of integer multiplication.
Natural primitives to consider in writing a program for this this task are addition, the shift oper-
ation and comparisons. Intuitively, these primitives are simpler and easier to implement reliably
individually than integer multiplication. Suppose we design a result checker for integer multiplica-
tion which only uses these primitives (and random bits), and makes calls to the purported program
for integer multiplication. Of course, an integer multiplication program can also be designed using
these same primitives. The incremental operation count of Ry on input 2 is the maximum over all P
(including correct and faulty P) of the number of primitive operations used by Ry plus the number
of calls to P. Ry is quantifiably different in the algebraic sense if the incremental operation count
of Ry is asymptotically smaller than the smallest known number of primitive operations needed
to implement integer multiplication. (We could also measure the algebraic complexity of Ry more
carefully, keeping a count of each type of primitive operation instead of a lump sum.)

'Ideally, we would like the stronger requirement that the incremental time of Ry is asymptotically smaller than
the running time of any correct program for f. However, for many interesting problems there is no known non-trivial
lower bound on the running time of a correct program. Thus, as in [15, Blum], we adopt this more pragmatic
definition of quantifiably different.

?In this paper, In o denote the natural log of @. In some cases, In & is to be thought of as an integer, in which
case it is the least integer greater than or equal to Ina.

15

2.1.2 Efficiency

In the most straightforward applications of checking, whenever the program is executed the result
checker is also executed. Thus, it is critical that the overhead cost of running the result checker
doesn’t neutralize the benefit from knowing that the output is correct (or the knowledge that the
program is faulty).

DEFINITION 2.1.4 (efficient) We say that result checker R is efficient if, for all programs P, the
total time of R‘f is linear in the running time of P and the input size.

DEFINITION 2.1.5 (a(n)-efficient) We say that result checker R is a(n)-efficient if, for all programs
P, the total time of Rf is at most a(n) times the running time of P and the input size.

In the definition of efficient, we ignore the running time dependence on the confidence parameter
B. We ask that the result checker be efficient, but failing that, we would like the result checker to
be as efficient as possible.

2.2 Examples

Many result checkers have been found for various types of problems such as graph isomorphism,
matrix rank, quadratic residuocity, linear programming, maximum matching, greatest common
divisor, permanent and even PSPACE-complete problems [15, Blum], [23, Blum Raghavan], [17,
Blum Kannan], [18, Blum Kannan Rubinfeld], [2, Adleman Huang Kompella] [50, Fortnow Karloff
Lund Nisan] [62, Shamir]. We give two examples of result checkers: we show a result checker for
integer sorting, and the result checker for matrix multiplication from [34, Freivalds].

2.2.1 Sorting

Consider the problem of sorting integers with the following specifications:
Input: A set of integers X = {21, 22, ...,2,} (not necessarily distinct).

Oulput: The elements of X in sorted order: i.e. a list y1 < y2 < ... < y, such that ¥ = {y1,...,yn}
is equal to X.

The best known algorithms for sorting require O(nlogn) time. The result checker must verify
that the output is in sorted order, and that the set of elements in the input list is the same as the
set of elements in the output list. The first task is quite easy, but the second task is nontrivial,
and on the algebraic decision tree model, is as difficult a task as sorting. In [15, Blum], [17, Blum
Kannan] there are randomized algorithms for verifying that X = Y which use hashing and run in
O(n) time. We present a deterministic algorithm which checks sorting in O(n) time.

Checker Algorithm: (For simplicity, assume that n is a power of 2.)

Y « P(X)
Dofor1<i<n
append log n bits to the binary representation of the i** input
indicating its location in the input list, i.e. 2} « (z;) x n + 1.
(Note that this does not affect the ordering of the elements.)

16

Let X' = {#},<.c 2l).

Y’ « P(X")

Let j be the last log n bits of g/, i.e. 7 — g/ mod n.

Verify that z} = yl.

Verify that z; has not been checked off yet and check off 5.
Let Y" = {yidivn,...,y.divn}.

Verify that Y is in sorted order, |[Y| = n and that Y =Y.
If any verification fails, output “FAIL”, else output “PASS”.

2.2.2 Matrix Multiplication

Input: Integer n; n X » matrices 4, B; 8
Qutput: C = A-B

The result checker presented here is due to Freivalds [34, Freivalds].

Specifications: On input A, B,C, 3,if C # A- B then output “FAIL” with probability at least 1— 3.
If ¢ = A- B then output “PASS”. The running time is O(n?[log(1/8)]).

Checker Algorithm:

Forj=1,..., [log(1/8)] do

r « random (n x 1) 0/1 vector

HC-r# A-(B-r) then output “FAIL” and RETURN
Output “PASS”

HC:-R#A-(B-R) then output “FAIL” and RETURN

Proof: [of correctness] If A-B = C, the result checker always outputs “PASS”. Suppose A-B # C.
Let R be the set of (n x 1) 0/1 vectors. Let 7,j be such that (4 - B);; # Cy;. Let G = {r|r €
R,A-B-r# C-r}and G = R—G. We show a 1 —1 mapping from G to G, showing that |G| > |G|,
and thus Pr.[A-B.r# C-7] > 1/2. Forr = riry...7, € G, T& (X; aisbit)re = Yx cirri and
25 @ijbit # Yok cik. Then for ¥ = ryry...7_1Fimi41...7 € G. The mapping from r to 7is 1 — 1.
After [log(1/4)] iterations, the result checker outputs “FAIL” with probability at least 1 — 5. M

LE

Chapter 3

Self-Testing /Correcting Programs

In this chapter we introduce the notion of self-testing/correcting, which is an extension of the
theory of program checkers. The work in this chapter was done in collaboration with Mike Luby
and Manuel Blum [20, Blum Luby Rubinfeld 2], [21, Blum Luby Rubinfeld 3], with the exception
of the results in Section 3.5 which was done in collaboration with Madhu Sudan [56, Rubinfeld
Sudan)].

Consider any program P whose task is to evaluate a function f. A self-tester for f is a program
that estimates the fraction of z for which P(z) # f(z). We say that P is a “good heuristic” for
f if this fraction is sufficiently large (a constant suffices for most purposes). For any input z, A
self-correcting algorithm for f is a (probabilistic) algorithm that computes f correctly on every
input (with high probability) when given access to any good heuristic for f. Thus, a self-corrector
can be used to compute f(z) correctly making calls to P, even in the case when P(z) # f(z), as
long as P is verified to be correct for most inputs using the self-tester.

In slightly more detail, a probabilistic program Ty is a self-tester for f if, for any program P
that supposedly computes f, Ty can make calls to P to estimate the probability that P(z) # f(z)
for a random input z. We call this probability the error probability of P. As with result checkers,
we insist that Ty be different than any correct program for computing f. This ensures that T}
must be doing something quantifiably different than computing f directly, because there is not
enough time for this. A self-testing program is in this sense an “independent” verification step for
a program P supposedly computing f. In addition, although it is hard to quantify, the self-testers
we develop also have the property that the resulting code is aesthetically simple. We would like T
to be efficient, in the sense that the running time of T, counting the time for calls to P, is within
a constant multiplicative factor of the running time of P. This ensures that the advantages we gain
by using T to self-test P are not overwhelmed by an inordinate running time slowdown.

A probabilistic program Cjy is a self-corrector for f if, for any program P such that the error
probability of P is sufficiently low, for any input z; C; can make calls to P to compute f(z)
correctly. As for self-testing programs and for the same reasons, we want Cy to be both different
and efficient.

A self-testing/correcting pair (T, Cj) for a function f is a powerful tool. A user can take any
program P that purportedly computes f and self-test it with Ty. If P passes the self-test then,
on any input , the user can call Cy, which in turn makes calls to P, to correctly compute f(z).
Even a program P that computes f incorrectly for a small but significant fraction of the inputs
can be used with confidence to correctly compute f(z) for any input z. In addition, if in the future

18

somebody designs a faster program P’ for computing f then the same pair (T, Cy) can be used to
self-test/correct P’ without any further modifications. Thus, it makes sense to spend a reasonable
amount of time designing self-testing/correcting pairs for functions commonly used in practice and
for which a lot of effort is spent writing super-fast programs. For example, integer multiplication
and matrix multiplication are commonly used functions for which fast but complicated programs
have been written and implemented ([26, Coppersmith Winograd], [63, Strassen], [60, Schonhage]).
Thus, the self-testing/correcting pairs we develop for integer and matrix multiplication may be
useful in practice.

We develop general techniques for constructing simple to program seli-testing/correcting pairs
for a variety of numerical functions. We show how our techniques apply to integer multiplication,
the mod function, modular multiplication, integer division, polynomial multiplication, modular
exponentiation, matrix multiplication and the evaluation of any fixed polynomial. Recently, [25,
Cleve Luby] have shown how to apply these techniques to get self-testing/correcting pairs for the
sine and cosine functions. It is not known how to solve any of these problems in linear time.
The following table summarizes the running time behavior of our self-testing/correcting pairs as
a function of the input size n. The second column is the incremental running time and the third
column is the total running time, where M(n) is the running time of P on inputs of size n. These
times exclude a constant multiplicative factor and they also exclude the running time dependence
on the confidence parameter 8, which is typically O(In(1/3)).!

Problem Incremental | Total
Integer Mult. n M(n)
Mod n M(n)
Mod Mult. n M(n)
Integer Div. n M(n)
Poly. Mult. n M(n)
Mod Exp., ¢ n M(n)
Mod Exp.,no ¢ | nlnn M(n)lndn
Matrix Mult. n M(n)
Deg. d Poly. nd® M(n)d®

Say that f is close to g if f(z) = g(z) for most inputs. The theory of self-testing leads to
interesting mathematical questions about properties that characterize functions which are close to
a particular function. Suppose property @ characterizes the function f. We show that there is
a property @’ which characterizes any function g which is close to f. For example, suppose f is
a function that maps a group G to a group H. We say that f is linear if, for all z and y in G,
f(z+cy) = f(z)+# f(y) (where +¢ and +y are the group operations over G and H, respectively).
The results in Section 3.4 show that if, for a large fraction of z,y, f(z +¢ y) = f(z) +x f(y), then
there is a linear function g such that f(z) is equal to g(z) for most z. Thus f is still essentially
a linear function. Section 3.5 shows similar results for functions which are close to functions that
compute polynomials. Since it is computationally much easier to determine whether a property is
satisfied most of the time than it is to determine whether it is always satisfied, this relaxation is
important for self-testing.

In this thesis, In o denotes the natural log of a. In some cases, Ina is to be thought of as an integer, in which
case it is the least integer greater than or equal to In c.

19

3.1 Related Work

[22, Blum Micali] construct a pseudo-random generator, where a crucial ingredient of the construc-
tion can be thought of as a self-correcting program for the discrete log function. [57, Rubinfeld]
introduces checking for parallel programs, and uses self-testing to design a constant depth circuit
to check the majority function (see section 6.3.1). We will see that a self-testing/correcting pair
for a function f implies a program result checker for f. We will also see that a program result
checker for f implies a self-tester for f, but it is not known whether a program result checker also
implies a self-corrector. Previous to our work, [38, Kaminski] gives program result checkers for
integer and polynomial multiplication. Independently of our work, [2, Adleman Huang Kompella]
give program result checkers for integer multiplication and modular exponentiation. Both of these
papers use very different techniques than ours. Previous to our work, [34, Freivalds] introduces a
program result checker for matrix multiplication over a finite field.

(48, Lipton], independently of our work, discusses the concept of self-correcting programs and
gives self-correctors for several functions. To highlight the importance of being able to self-test,
consider the mod function. To self-correct on input z and modulus R, the assumption in [48,
Lipton] and here is that the program is correct for most inputs z with respect to the particular
modulus R. This requires a different assumption for each distinct modulus R. Our self-testing
algorithm for the mod function on input R can be used to efficiently either validate or refute this
assumption.

The techniques in this chapter have been applied to the theory of interactive proofs (see [37,
Goldwasser Micali Rackoff], [15, Babai] and [13, Ben-Or Goldwasser Kilian Wigderson] for the dis-
cussion of interactive proofs). [53, Nisan] noted that the self-testing/correcting technique based on
bootstrapping discussed in Section 3.6 can be combined with the observation about the permanent
problem in [48, Lipton] (based on [9, Beaver Feigenbaum]) to construct a two-prover interactive
proof system for the permanent problem. This led to the eventual discovery that IP = PSPACE
([50, Fortnow Karloff Lund Nisan], [62, Shamir], [7, Babai]).

The results in this chapter are related to those in [8, Babai Fortnow Lund]. In order to show
that the multi-prover version of IP is equal to NEXPTIME, they give a test for verifying that a
given program P, which depends on n input variables, computes a function which is usually equal
to some multi-linear function f of the n variables. The incremental running time of their test, not
counting the time for calls to P, runs in time polynomial in n and is independent of the number
of terms in f. Combining the ideas in [8, Babai Fortnow Lund] with those in this chapter yields a
self-tester for this same task which is much simpler, using only additions, comparisons and calls to
P. A simple self-test is not a major issue with respect to the result in [8, Babai Fortnow Lund],
where polynomial time is the major issue, but it is an important issue with respect to designing
efficient self-testing/correcting pairs.

3.2 The Basics

For expository purposes, we restrict ourselves to the case when f is a function of one input from some
universe Z. Let 7;,7;,... be a sequence of subsets of T such that T = U,enxZ,. The subscript
n indicates the “size” of the input to the function. Let D = {D,|n € N} be an ensemble of
probability distributions such that D, is a distribution on Z,;. Let P be a program that supposedly
computes f. Let error(f, P,D,) be the probability that P(z) # f(z) when z is randomly chosen

20

in Z,, according to D,. Let # > 0 be a confidence parameter.

DEerINITION 3.2.1 (probabilistic oracle program) A probabilistic program M is an oracle program
if it makes calls to another program that is specified at run time. We let MA denote M making
calls to program A.

DEFINITION 3.2.2 (self-testing program) Let 0 < ¢; < €3 < 1. An (e, €2)-self-testing program for
J with respect to D is a probabilistic oracle program Ty that has the following properties for any
program P on input n and 8.

1. Iferror(f, P,D,) < € then Tf oulputs “PASS” with probability at least 1 — S.

2. Iferror(f, P,D,) > €, then Tf outputs “FAIL” with probability at least 1 — (3.

€1 = 0 is sufficient for assuring that either f will be computed correctly, or a fault in P will be
detected. However, the value of ¢; should be as close as possible to ¢; to allow as faulty as possible
heuristics P to pass test T}o and still have the self-corrector C}? work correctly.

DEFINITION 3.2.3 (self-correcting program) Let 0 < € < 1. An e-self-correcting program for f with
respect to D is a probabilistic oracle program C; that has the following property on input n, = € I,
and . If error(f, P,Dy) < € then C}’(z) = f(z) with probability at least 1 — f.

As with result checkers, we would like Ty and Cy to be both different and efficient, although
sometimes we are forced to relax the efficiency requirement somewhat. In the definitions of different
and efficient, we ignore the running time dependence on the confidence parameter §, which is
typically a multiplicative factor of O(ln(1/3)).

DEFINITION 3.2.4 (self-testing/correcting pair) A self-testing/correcting pair for f is a pair of prob-
abilistic programs (Ty,Cy) such that there are constants 0 < €; < €3 < € < 1 and an ensemble of
distributions D such that T is an (€, €;)-self-testing program for f with respect to D and Cy is an
e-self-correcting program for f with respect to D.

Because self-testers must be different, the algorithm used by Tf cannot be the naive technique
of choosing z € Z,, according to D, and seeing if P(z) = f(z), because the value of f(z) is not
independently available, and P may be of no use in helping to compute it. Similarly, C}’ cannot
simply call P on input z and hope that P(z) = f(z), because P is allowed to be faulty on a fraction
of the inputs, and in particular it might be faulty on input z.

One can generate random instances of f according to D, and use the program result checker
to verify that P is correct on those instances. Thus a program result checker for f also gives a
self-tester for f. On the other hand, if one has a self-testing correcting pair for f, one can create
a result checker for f on input z in the following manner: First use the self-tester to test P, If P
fails, output “FAULTY”. Otherwise, use the self-corrector to correctly compute f(z) and compare
the result with P(z). If they agree, output “PASS”, otherwise output “FAULTY”.

In many of the self-testers and self-correctors we design, we exploit the ability to compute f(z)
indirectly by computing f on random inputs. This property is explained in the following definition.

o1

DEFINITION 3.2.5 (random self-reducibility property) Letz € Z,. Letc > 1 be an integer. We say
that f is c—random self-reducible if f(z) can be expressed as an easily computable function Frandom
of z, a1y...,ac and f(a1),- .., f(ac), where ay,...,a. are easily computable given z and each a; is
randomly distributed in T, according to D,.2 Informally, by easily, we mean that the worst case
computation time of the random self-reduction (excluding the time for computing flay),..., f(a;))
is smaller than that of computing f on inputs from I,,.

One of the strengths of this property is that it can be used to transform a program that is
correct on a large enough fraction of the inputs into a program that computes f(z) correctly with
high probability for any input z.

Many of the functions we consider are on the integers or on initial intervals of the integers. We
often use the following notation.

DEFINITION 3.2.6 (arithmetic notation) For any positive integer R, let Zr denote the set of integers
{0,...,R—1}, let +g denote integer addition mod R and let -p denote integer multiplication mod

R. Let 25, = {z € Zp : ged(z, R) = 1}.

For simplicity, in the description of all of our self-correcting/testing programs we omit the
following simple but crucial piece of the code.

DEFINITION 3.2.7 (range-check code) Whenever the self-corrector or self-tester makes a call to P,
it verifies that the answer returned by P is in the proper range, e.g. for f(z,R) = z mod R the
proper range is Zg. If the answer is not in the proper range, then the program resets the answer
to a default value in the range, e.g. for f(z,R) = z mod R, the default value could be 0.

The range-check code in effect modifies the original P into a modified P. However, the modified
P is at least as correct for computing f as the original P. For correctness, it is crucial that the
self-tester and the self-corrector both use the same default value in the range-check code. This is
because we want the self-corrector and self-tester to be calling the same P as an oracle. In most
cases, the range-check code is straightforward, and we discuss it in those cases where it is not.

We often consider uniform probability distributions on sets. Thus, we introduce the following
notation.

DEFINITION 3.2.8 (uniform probability distribution) For any set X, let Ux denote the uniform
probability distribution on X. For example, Uz,, is the uniform distribution on Zgn, whereas
Uyoy is the probability distribution such that zero has probability one. We let x €y X denote that x
is randomly and uniformly distributed in X .

3.3 Self-Correcting

In this section, we describe self-correctors for a variety of numerical functions. We start with
self-correcting because the self-correctors for our applications are much more intuitive than the

2However, no independence between these random variables is needed, e.g. given the value of a; it is not necessary
that a» be randomly distributed in I, according to Dx.

22

corresponding self-testers, and in addition the self-correctors are substantially easier to prove cor-
rect.

In the following subsections, we show the specific details of the self-correcting programs for
the mod function. We then give the generic self-correcting program that works for any random
self-reducible function, and upon which all of the other self-correcting programs are based. For
completeness, we then give the specific details of the self-correcting programs for integer multi-
plication, modular multiplication, modular exponentiation, integer division, matrix multiplication
and polynomial multiplication. We also describe the result in [48, Lipton] which uses the same
basic outline to develop a self-correcting program for any multivariate polynomial function over a

finite field.

3.3.1 The Mod Function

We consider computing an integer mod R for a positive number R. In this case, f(z, #) = z mod R.
Assume that we have a program P such that error(f, P,Uzp,n XUry) < 1/8. The following program
is a 1/8-self-correcting program for f making oracle calls to P with respect to Uzp,n X Ugry- The
input to the program is n, R, z € Zgs» and the confidence parameter 3.

Program Mod Function Self-Correct(n, R, z, 3)

N « 12In(1/B)
Doform=1,...,N
Call Random_Split(R2", z, 21, 3,¢)
answery, — P(z1,R) +r P(z2, R)
Output the most common answer in {answer, :m =1,...,N}

Function Random_Split (M, z, 21, 2, €)
Choose 21 €y Zpm
Ifz; <zthene+« Oelsee —1

zne—eM+z—2

We need the following proposition in the proof of correctness of this and many subsequent
programs.

Proposition 1 Let z1,...,2, be independent 0/1 valued random variables such that for each
i=1,...,m, Prfz; = 1] > 3/4. Then,

m
Pr Z_m; > m/Q] 5 1 g2,

=1
Proof: Use standard Chernoff bounds. H

Lemma 2 The above program is a 1/8-self-correcting program for the mod function.

23

Proof: Fori € {1,2}, z; €y Zgryn. Thus, by the properties of P, P(z;, R) # z; mod R with
probability at most 1/8, and consequently both calls to P in a single loop return the correct answer
with probability at least 3/4. Because z = z; + 29 — ¢R2™, z mod R = z; mod R 4+r z; mod R.
Thus, if both calls to P are correct, answer,, = £ mod R. The lemma follows from Proposition 1.

The mod function self-correcting program is very simple to code, the only operations used are
integer additions, comparisons and calls to the program P. This is true because in the computation
of answer, because of the implicit range-check code (see page 22), both P(z1, R) and P(z,, R) are
in Zg. Thus, to compute P(z;, R)+pgP(z3, R) consists of one integer addition, one comparison and
possibly one subtraction. Note that the self-correcting program is different, because the running
time, not counting calls to P, is linear in n, and it is also efficient, because the total running time,
counting time for calls to P, is within a constant multiplicative factor of the running time of P.

3.3.2 Generic Self-Correcting Program

Let ¢ be a positive integer and let f be any c—random self-reducible function (see page 22 for
the definition). Assume that we have a program P such that error(f, P,D,) < i. The following
program is a %-self-correcting program for f making oracle calls to P with respect to D,,. The
input to the program is n, £ € Z,, and a confidence parameter 5.

Program Generic Self-Correct(n, z,)

N —12 ln(l/ﬁ)
Daform=1,...,.N
Randomly generate ay,...,a. based on z
Fori=1,...,¢, a; «— P(aq;)
answery, — F(z,a1,...,a,01,...,0,)
Output the most common answer in {answer,, :m=1,...,N}

Lemma 3 The above program is a %-se!f-correcting program for f.

Proof: Because error(f, P, D,) < % and because, foreach k = 1,...,¢, a; is randomly distributed
in I, according to D,, all ¢ outputs of P are correct with probability at least 3/4 each time
through the loop. If all ¢ outputs of P are correct, then by the random self-reducibility property,
answery, = f(z). The lemma follows from Proposition 1. W

3.3.3 Integer Multiplication

For integer multiplication, f(z,y) = z-y. Suppose that both z and y are in the range Zsn for some
positive integer n. Assume that we have a program P such that error(f, P,Uz,, X Uz,,) < 1/16.
The following program is a 1/16-self-correcting program for f making oracle calls to P with respect
to Uz,, X Uz,,. The input to the program is n (the length of the inputs), z,y € Z;» (the numbers
to be multiplied together) and the confidence parameter S.

Program Integer Multiplication Self-Correct(n, z,y, 3)

24

N « 12In(1/B)
Doform=1,...,N

Call Random _Split(2", z, 21,29, ¢)

Call Random _Split(2", y, 1, ¥2,d)

answery, «— P(z1,11) + P(z1,12) + P(z2, 1) + P22, y2) — cy2™ — dz2" — cd2?n
Output the most common answer in {answery, :m = 1,...,N}

Lemma 4 The above program is a 1/16-self-correcting program for integer multiplication.

Proof: Fori,j € {1,2}, the pair (z;, y;) €E4 Zan X Z3n. Thus, by the properties of P, P(z;,y;) #
z; - y; with probability at most 1/16, and consequently all four calls to P in a single loop return
the correct answer with probability at least 3/4. Because z = z; + 23 — ¢2™ and y = y; + y — d2",
Toy=z1- N +z1-y2+22-y1+ T2 Yo — cy2™ — dz2" — ¢d2?". Thus, if all four calls to P are
correct, answer,, = z - y. The lemma follows from Proposition 1. W

The integer multiplication self-correcting program is very simple to code, the only operations used
are integer additions, shifts, comparisons and calls to the program P.

3.3.4 Modular Multiplication

We now consider multiplication of integers mod R for a positive number R. In this case, f(z,y, R)
= z -RY. Suppose that both z and y are in the range Zgsn for some positive integer n. Assume that
we have a program P such that error(f, P,Uzp,, XUzp,n xUry) < 1/16. The following program is
a 1/16-self-correcting program for f making oracle calls to P with respect to Uzpon XUzgyn XUgry.
The input to the program is R, z,y € Zrs« and the confidence parameter 3.

Program Modular Multiplication Self-Correct(R,z,y,3)

N « 12]n(1/ﬁ)
Doform=1,...,N

Call Random_Split(R2", z, 21, 24, ¢)

Call Random _Split(R2", y, y1, ¥2,d)

answery, «— P(z1,y1, R) +r P(22, 1, R) +r P(21, 42, R) +r P(z2,y2, R)
Output the most commeon answer in {answery, :m =1,...,N}

Lemma 5 The above program is a 1/16-self-correcting program for modular multiplication.

Proof: For 4,5 € {1,2}, the pair (z;,5;) €4 Zren X Zgon. Thus, by the properties of P,
P(z;,9;) # =i - y; with probability at most 1/16, and consequently all four calls to P in a single
loop return the correct answer with probability at least 3/4. Because z = z; + z3 — ¢R2"™ and
Yy=tn+y—dR2", z-py = (z1'rR%1)+Rr (z1'R¥2) +R (22 ‘R ¥1) +R (22 ‘R y2). Thus, if all four
calls to P are correct, answery, = z - y. The lemma follows from Proposition 1. W

3.3.5 Modular Exponentiation
We now consider exponentiation of integers mod R for a positive number R. In this case, f(a,z, R)

= a® mod R. We restrict attention to the case when ged(a, R) = 1 and when we know the factoriza-
tion of R, and thus we can easily compute ¢(R), where ¢ is Euler’s function. Suppose that z is in the

25

range Zyg)gn. Assume that wehavea program P such that error(f, P, Uy, XUZ y pyon xUry) < 1/8.
The following program is a 1/8-self-correcting program for f making oracle calls to P with respect
to U,y X Uz«mﬁn X Ugpy- The input to the program is R, a, z € Z4(r)2n and the confidence
parameter .

Program Modular Exponentiation Self-Correct (R, a,z,)

N « 12In(1/8)
Doform=1,...,N
Call Random_Split(¢(R)2", z, 21,29, ¢)
answery, «— P(a,z1,R) g P(a,z2, R))
Output the most common answer in {answery, :m =1,...,N}

Lemma 6 The above program is a 1/8-self-correcting program for modular ezponentiation.

Proof: For i € {1,2}, z; €y Z4(rjen- Thus, by the properties of P, P(a,z;, R) # a® mod R
with probability at most 1/8, and consequently both calls to P in a single loop return the correct
answer with probability at least 3/4. Because z = z; + z2 — c¢(R)2", and because ged(a, R) = 1
implies that a®® = 1 mod R, a® mod R = a®* mod R +g a¢*2 mod R. Thus, if both calls to P are
correct, answer,, = a® mod R. The lemma follows from Proposition 1. H

The modular exponentiation self-correcting program is very simple to code. The hardest op-
eration to perform is the modular multiplication P(a,z;,R) ‘g P(a,z2,R). The self-correcting
program can compute this multiplication directly, but another alternative is to use the library
approach described informally here and in more detail in Chapter 5.

Let f be the modular exponentiation function and let f’ be the modular multiplication function.
Let P be a program that supposedly computes f and let P’ be a program that supposedly computes
f'. Let S’ be the modular multiplication self-correcting program described in a previous subsection
and let 5 be the modular exponentiation self-correcting program just described. If error(f, P, Uay X
Uz myom XU(Ry) < 1/8 and if error(f', P',Ur xUr XUpy) < 1/16 then we can use §, making calls to
P and making calls to §’, which in turn makes to P’, to self-correct f. Using this approach, the only
operations computed by either S or 5’ are integer additions, comparisons and calls to the programs
P and P’. The self-correcting program is different, because the running time, not counting calls
to P or P, is linear in n, and it is also efficient, because the total running time, counting time for
calls to P and P’, is within a constant multiplicative factor of the running time of P assuming that
P’ runs at least as quickly as P. A third alternative is to use the library approach described above,
but to use P to compute f’ as follows: P'(a,b,R) = (P(a+ b,2,R) — P(a,2, R) - P(b,2, R))/2.

3.3.6 Integer Division

We now consider division of integers by R for a positive number R. In this case, f(z,R) =
(z div R,z mod R). Suppose that z is in the range Zpon. Assume that we have a program P such
that error(f, P,Uzp,. x Uiry) £ 1/8. The following program is a 1/8-self-correcting program for f
making oracle calls to P with respect to Uz,,, X Uir). The input to the program is R, z € Zgon
and the confidence parameter g.

We refer to the output of P as P(z, R) = (Puin(2, R), Prod(z, R))-

Program Integer Division Self-Correct(R, z, 3)

26

N « 121n(1/5)

Doform=1,...,N
Call Random _Split(R2", z, 21,23, ¢)
Divans,, — (Pgiy(z1, R) + Paiv(z2, R)) + (Proa(z1, R) + Prod(z2, R)) div R —¢- 27
Modans,, — Pps4(z1, R) +R Pmod(z3, R)

Output the most common answer in {(Divansm, Modansy,):m=1,...,N}

Lemma T The above program is a 1/8-self-correcting program for integer division.

Proof: Follows the outline of the proof of Lemma 3. M

As in the self-corrector for the mod function, both the mod and div computed by the self-
corrector are easy to code. This is true because in the computation of Meodans,,, the range-
check code (see page 22) ensures that both P.4(z1,R) and Pp.4(z2, R) are in Zg. Thus, to
compute Proq(21, R) +r Pmod(%2, R) consists of one integer addition, one comparison and possibly
one subtraction. In the computation of Divans,,, computing (Ppei(z1, R) + Prod(zz2, R)) div R
consists of one integer addition and one comparison.

3.3.7 Matrix Multiplication

We consider multiplication of matrices over a finite field. Let M, x,[F] be the set of n X n matrices
over the finite field F. Then, for all A, B € M,xn[F], f(A,B) = A- B. Assume that we have a
program P such that error(f, P,Uns, 1)) < 1/16. The following program is a 1/16-self-correcting
program for f making calls to oracle P with respect to Uy, [p] The input to the program is
A, B € Mpxn[F)] and the confidence parameter 3.

Program Matrix Multiplication Self-Correct(4, B,)

N — 12In(1/)
Doform=1,...,.N
Choose A1, By €y M, x,[F]

Ay — A- A

By, — B- By

AnsSWery, «— P(A],Bl)+P(A2,Bl)+P(A1,Bz) (Az,Bg)
Output the most common answer in {answerp, :m =1,...,N}

Lemma 8 The above program is a 1/16-self-correcting program for matriz multiplication.

Proof: Follows the outline of the proof of Lemma 3. W

3.3.8 Polynomial Multiplication

We consider multiplication of polynomials over a ring. Let Pyp denote the set of polynomials
of degree d with coefficients from some ring R, and let Up qrXxPqr e the uniform distribution
on Pyp) X Pyir)- In this case, f(p(z),q(z)) = p(z) - g(z), where p,q € Pyg). Assume that we
have a program P such that error(f, P, Up ymxPar) < 1/16. The following program is a 1/16-self-
correcting program for f making oracle calls to P with respect to Up 4z xPyr+ The input to the
program is p, g E Par) and the confidence parameter f.

27

Program Polynomial Multiplication Self-Correct(p, g, 5)

N «— 12In(1/5)
Doform=1,..., N

Choose p; €y Pd[R]

Choose ¢1 €y Pyjr)

P2ep—Nn

2—4q¢—qQ1

answery, P(pls qi) + P(p21 ql) + P(pl’ QZ) -+ P(pﬂ': QQ)
Qutput the most common answer in {answery, : m = 1,. ., N}

Lemma 9 The above program is a 1/16-self-correcting program for polynomial multiplication.

Proof: Follows the outline of the proof of Lemma 3. W

3.3.9 Multivariate Polynomial Function

We consider the problem of computing any multivariate polynomial function over a finite field.
In [48, Lipton], Lipton has shown a self-corrector for this problem based on the techniques of
[9, Beaver Feigenbaum] which uses scalar multiplications and some preprocessing. We describe
a similar self-corrector suggested by Mike Luby and Steven Omohundro that uses only additions
and no preprocessing, and works for fields of prime cardinality. In this case, f(z1,...,%Zm,p) =
¢(z1,...,%m) mod p, for a prime p, multivariate polynomial ¢ of degree d, and zi,...,Zm in Z,.

In [48, Lipton], it is shown that in any finite field of size p, there are weights a1, ..., @441, such
that for any polynomial ¢(X) of degree d < p, and any z,% in the field,

d+1

Za, flz4+i-1)=0.

Lipton shows how to compute the a;’s by solving a system of linear equations. Since the a;’s are
the same for every polynomial of degree d, this is something that can be done once in preprocessing.
The self-corrector will need to perform multiplications by these ;’s. However, if p is prime, then
using the method of differences described in [64, Van Der Waerden] (pg. 89), Yi_j e - f(z +i-1)
can be computed using only O((I — k)?) additions at runtime. In this case, the o;’s turn out to be

a; = (-1) (d-:-l

Assume that we have a program P such that error(P, f,Uz,,.™ X Uypy) < rTeEsy) +1) The following

program is a m-self~correcting program for f making oracle calls to P with respect to Uz,,.™
X Ugpy- The input to the program is n, p, T1,...,Zm € Zpzn and the confidence parameter 3.

Program Multivariate Polynomial Function Self-Correct (n,p,z1,...,%m,)

Do for j = 1,...,121n(1/B)
Randomly choose t1,...,tx independently according to Uz,,,
answer; «— E‘_I — ;- P(z1 +pan i+ t1y.s T +pon t-ty) mod p
_Qutput the most common answer in {answer;:j =1,...,12In(1/8)}

28

Lemma 10 The above program is a -self-correcling program for any polynomial function of

1
1d+1)
degree d.

Proof: Follows the outline of the proof of Lemma 3. For i € {1,...,d+ 1}, z; +pon i+ 1; is
distributed according to Uz, . [|

The incremental time is O(d?(n+p)) and the total time is O(d?*(n+p)+ dT'(n,p)) where T(n, p)
is the running time of the program.

3.4 Linearity and Self-Testing

To highlight the importance of being able to self-test efficiently at runtime, consider the mod
function. To self-correct on input z and modulus R, the assumption in [48, Lipton] and here is that
the program is correct for most inputs z with respect to the particular modulus R. This requires a
different assumption for each distinct modulus R. Our self-testing algorithm for the mod function
on input R can be used to efficiently either validate or refute this assumption.

Although the most interesting of our self-testing methods leads to self-testers that are almost as
simple to code as the self-correctors described above, the proofs that they meet their specifications
are more difficult, interesting and involve some probability theory on groups that may have other
applications. This method applies to integer multiplication, the mod function, modular multiplica-
tion, modular exponentiation when the ¢ function of the modulus is known, and integer division.
The resulting self-testers are simple to code, and are both different and efficient.

To give some idea of how the method works, we concentrate on the mod function. We then define
the linearity property, and give a generic tester that works for any function with this property. We
then show the specific testers that result from applying this generic tester to integer multiplication,
modular multiplication, modular exponentiation and integer division.

3.4.1 Mod Function

For positive integers ¢ and R, let f(z,R) = z mod R. Because the self-correcting program for
the mod function relies on a program that is correct for most inputs with respect to a particular
modulos R, the self-testing program for the mod function is designed to self-test with respect to a
fixed modulus R. This is an important motivation for constructing efficient self-testing programs,
because the self-testing program is executed each time a new modulus is used. Similar remarks
hold for modular multiplication and modular exponentiation.

For fixed R, we view f as a function of one input z. There are two critical tests performed by
the self-tester. Let 21 €y ZRron and 2 €y Zgon be independently chosen, and set 2 « z; +gan z3.
Note that f(z,R) = f(z1,R) +r f(22,R), i.e. fis a (modular) linear function of its first input.
The linear consistency test is

“Does P(z,R) = P(z1,R) +r P(z2,R)?",
and the linear consistency error is the probability that the answer to the linear consistency test is
“no”. Let z €y Zgen, and set 2’ — z +pon 1. Note that f(z/,R) = f(z,R)+r 1,i.e. in addition to

being linear in its first input, f also has (modular) slope one as a function of its first input. The
neighbor consistency test is

29

“Does P(z',R) = P(z,R) +r 177,

and the neighbor consistency error is the probability that the answer to the neighbor consistency
test is “no”.

Our main theorem with respect to the self-tester for f is that there are constants 0 < ¢ < 1 and
' > 1 such that error(f, P,Uzp,n XUsry) is at least 3 times the minimum of the linear consistency
error and the neighbor consistency error, and that error(f, P,Uzp,,» X Uyry) is at most 3’ times the
maximum of the linear consistency error and the neighbor consistency error. Thus, we can indirectly
approximate error(f, P,Uz,n X Ugry) by instead estimating the linear and neighbor consistency
errors.

The proof of the theorem shows that any function which satisfies the linearity property for most
random tests is essentially a linear function, in the sense that there is some linear function which
is equal to the original function on most of the domain.

Program Mod Function Self-Test(z, R, 3)

N = 8641n(4/B)

t—10

Doform=1,...,N
Call Mod_Linear.Test (n, R, answer)
t «— i+ answer

If t/N > 1/72 then output “FAIL”

N'=32In(4/8)
20
Doform=1,...,N’
Call Mod _Neighbor_Test (n, R, answer)
t' — t' + answer
If t//N’ > 1/4 then output “FAIL” else output “PASS”

Mod_Linear_Test (n, R, answer)

Choose z1 €y ZRan

Choose z9 €y Zgon

T — 1 tRon T2

If P(z1,R)+Rr P(z2,R) = P(z, R) then answer « 0 else answer « 1

Mod_Neighbor_Test (n, R, answer):
Choose z €y Zpon
z' — z+4pan 1
If P(2,R) +r 1= P(Z,R) then answer « 0 else answer « 1

Theorem 1 The above program is an (1/432,1/8)-self-testing program for the mod function with
any modulus R. :

30

Proof: This is a corollary of Theorem 5 from the next subsection. W

The only non-trivial lines of code in the self-testing program are generation of random numbers,
calls to the program P, integer additions and integer comparisons.

3.4.2 Generic Linear Self-Testing

In this section, we describe a generalization of the mod function self-tester to functions f mapping
a group G into another group G'. In addition to the mod function, we will show how to apply this
generic self-tester to integer multiplication, modular multiplication and modular exponentiation.
In all cases, the resulting self-testing program is extremely simple to code, different and efficient.

For simplicity, we assume that all groups are abelian; these results can be generalized to non-
abelian groups as well [12, Ben-Or Coppersmith Luby Rubinfeld], but our applications are to
abelian groups. Let G be a finite group with group operation o and with ¢ generators gy,...,9.
and identity element 0. For y € G, let 3! denote the inverse of y. Let G’ be a (finite or countable)
group with group operation o’ and identity element 0’. For @ € G’, let a~! denote the inverse of
a. Let f: G — G’ be a function. Intuitively, f is hard to compute compared to either o or o’.

We say that f has the linearily property if:

(1) Tt is easy to choose z €y G.

(2) Hipear is an easily computable function with the property that, for any pair z;,z; € G,
Finear(?1,22) € G' and furthermore f(z; 0 z3) = f(z1) o' f(22) o' Flinear(Z1,22). We call
this property linear consistency. In all of our applications except for integer multiplication,
Finear(z1,z2) = 0’ for all inputs z;,z4, in which case f is a group homomorphism.

(8) For each generator g; € G, Ft';eighbor is an easily computable function with the property that,
for any z € G, P:eighbor(z) € G' and furthermore f(z o g;) = f(z) o Frt;eighbor(z)' We call this
property neighbor conststency. This property is not needed for integer multiplication. For all
of the other applications, both G and G’ are generated by a single element denoted 1 and 1/,
respectively, (i.e. they are both cyclic groups), and for all z € G, f(z01) = f(2) o' 1'.

The linearity property is a special case of 2-random self-reducibility. This can be seen as follows:
Given z, choose z; €y G and let 73 — zozT!. Then, f(z) = Frandom(Z, Z1, 22, f(21), f(z2)), where
Frandom(Z, 21,22, f(21), f(22)) is defined to be f(z1) o' f(22) o' Finear(21, 2)-

Let P be a program that supposedly computes f such that, for all y € G, P(y) € G'. Generic
Self-Test 1 is an (€/54, ¢)-self-tester for f with respect to Ug when G’ is an infinite group that
has no finite subgroups except {0'}. The self-tester for integer multiplication is based on Generic
Self-Test 1, where G = Zyn with 49n as the group operation, and G’ = Z with + as the group
operation. The integer division self-tester is also based on Generic Self-Test 1. Generic Self-
Test 2 is an (¢/54, €)-self-testing program for f with respect to Ug for all other G’. The self-tester
for the mod function described in Subsection 3.4.1, for modular multiplication and for modular
exponentiation are all based on Generic Self-Test 2.

Program Generic Self-Test 1(¢, 3)

N« Z1n(2/B)
i—0

31

Doform=1,...,N
Call Generic_Linear_Test(answer)
t «— t+ answer
If t/N > ¢/9 then output “FAIL” else output “PASS”

Program Generic Self-Test 2(¢, 3)

N « Z21n(4/8)
t«0
Doform=1,...,N
Call Generic_Linear_Test(answer)
t — 1+ answer
If t/N > ¢/9 then output “FAIL”
N’ « 32In(4¢/pB)
0
Doform=1,...,N'
answer «— 0
Fori = 1,...,c, call Generic_Neighbor_Test(i,answer)

' — t' + answer
If /N’ > 1/4 then output “FAIL” else output “PASS”

Generic_Linear_Test (answer)

Choose 21 €y G.
Choose z3 €y G.
If P(z; 023) = P(21) o' P(22) 0 Flinear(%1, z,) then answer — 0 else answer « 1

Generic_Neighbor_Test (i, answer)

Choose z €y G.
If P(zo0g;)# P(2)0 Iieighbor(z) then answer « 1

Before giving proofs, we first introduce some notation and provide motivation for why the self-
testers work. For each y € G, define the discrepancy of y to be

disc(y) = f(y) o' P(y)™".

Note that P computes f correctly for all inputs if and only if the discrepancy function defines a
homomorphism from G into {0}.

Because of the linearity property, part (2), and because the self-testing program computes
Fiinear(21,%2) correctly on its own, P(z;022) = P(z1) o' P(23) 0 Flinear(21,22) if and only if

disc(z; o z2) = disc(z;) o’ disc(z2).

If this equality holds for all z;,z5 € G then the discrepancy function defines a homomorphism h
from G into G'. Intuitively, Generic_Linear_Test verifies that the discrepancy function is “close”

32

to some homomorphism h. If G’ is infinite with no non-trivial finite subgroups then, because G is
finite, h is the trivial mapping from G to {0'}.

Now suppose G’ has a finite subgroup not equal to {0'}. Because of the linearity property, part
(3), and because the self-testing program computes Fx';eighbor(z) correctly on its own, P(z o0 g;) =
P(2) o' Figanbor(2) if and only if

disc(z o g;) = disc(z)-

If, for all z € G and for all i = 1,...,¢, disc(z o g;) = disc(2) then h is the trivial mapping from G
to {0'}, and Generic_Neighbor_Test is used to verify this.

The following notation is used throughout the rest of this section.

Notation:

e 6 = Pr[disc(z; o z9) # disc(z;) o’ disc(z,)] when 2, €y G and z3 €y G are independently
chosen.

e Foralli=1,...,¢, § = Pr[disc(z) # disc(z 0 g;)] when z €y G.
o 1 = Pr[disc(y) # 0') when y €4 G.

Theorems 2 and 3 are the heart of the proof that programs Generic Self-Test 1 and Generic
Self-Test 2 meet their specifications, respectively.

Theorem 2 Let G’ be an infinite countable group with no finite subgroups ezcept for the trivial
subgroup {0'}. Then, § > 2¢/9.

Theorem 3 Let G' be any (finite or countable) group. If, for all i = 1,---,¢, §; < 1/2, then
§ > 21/9.

The specific proofs we give of Theorems 2 and 3, due largely to Don Coppersmith, are simpler
than our original proofs. A full exposition of some related general probability results will appear
in [12, Ben-Or Coppersmith Luby Rubinfeld]. We now introduce some more notation and prove
some intermediate lemmas that are used in the proofs of Theorems 2 and 3.

Uncapitalized letters from the end of the alphabet denote elements chosen randomly from G
according to Ug, e.g. =, y and z, whereas uncapitalized letters from the beginning of the alphabet
denote fixed elements of G, e.g. @, b, c. For Lemmas 11, 12, 13 and 14, we assume that § < 2/9.
Let &' be defined as the smaller solution to the equality §’(1 — §’) = 8. Because 6 < 2/9, § < 1/3.

Lemma 11 Ve € G, 3a’ € G’ such that Pr[disc(z 0 a) = disc(z) o’ a’] > 1 - ¢

Proof: By the definition of é and because z o a is distributed in G according to g and a0y is
distributed in G according to Ug,

Pr[disc(z 0 a) o' disc(y) = disc(z 0 a0 y)

= disc(z) o' disc(a o y)] > 1 — 26.

33

So
Prldisc(z 0 a) o’ disc(z)! = disc(y 0 a) o’ disc(y) "]

>1-26.
This is the sum, over all a’ € G’, of the square of the probability
Pr[disc(z o a) o disc(z)™! = a].
Since § < 2/9, this sum exceeds 5/9 and thus there must be one value a’ with
Pr[disc(z 0 a) o' disc(z) ' =a'] > 1§

where (1 — §')2+ 62 =1 —26 and &' < 1/2. This leads to §(1—¢')=46. W

Lemma 11 leads to the definition of the function h from G to G’ defined as follows: For all
a € G, let h(a) = a’, where &' is the element of G’ described in Lemma 11.

Lemma 12 The function k is a group homomorphism from G to G', i.e. for alla,b € G, h(aob) =
h(a) o h(b).

Proof: Using Lemma 11 three times, for all a,b € G,
Pr[disc(z) o' h(a) o’ k() = disc(z 0 a) o’ h(b) =

disc(z 0 a 0 b) = disc(z) o’ h(a 0 b)] > 1 - 34"
This probability is strictly greater than zero because §' < 1/3, and thus h(aob) = h(a) o' h(b). M

Lemma 13

(1) IfG’ is an infinite countable group with no finite subgroups ezcept for the irivial subgroup {0'}
then for all a € G, h(a) = 0.

(2) If G’ is any (finite or countable) group and, for all i =1,---,¢, §; < 1/2, then for all a € G,
h(a) =0

Proof: By Lemma 12, h is a group homomorphism and thus the image of & is a finite subgroup
of G'. In case (1), the only finite subgroup of G’ is {0’}. In case (2), consider a fixed i € {1,...,¢c}.
Because 1 — §; > 1/2 and using Lemma 11 and the fact that 1 — ¢’ > 2/3,

Pr[disc(z) = disc(z o0 g;) = disc(z) o' h(g;)] > 1/6,

and thus there is some z € G such that disc(z) = disc(z) o’ h(g;) which implies that h(g;) = 0'.
Thus, for all i = 1,...,¢, h(g;) = 0. Because gy, ..., g. are generators for G it follows that for all
a€G,h(a)=0. N

Lemma 14 Under the same conditions as (1) and (2) in Lemma 13, Pr[disc(z) = disc(z 0 y)] 2
1-4".

34

Proof: By Lemma 13, h(a) = 0 for all @ € G. On the other hand, Lemma 11 says that
Pr[disc(z o @) = disc(z) o' h(a)] > 1 - &

for every @ € G, and thus certainly this is true when a is replaced with a random y. Thus,

Pr[disc(z o y) = disc(z)] >1-46. M

Proof: [of Theorem 2] Assume first that § < 2/9. By definition of § and using Lemma 14,
Pr[disc(z) = disc(zoy) = disc(z)o’disc(y)] > 1— ¢’ -6, and thus Pr[disc(y) = 0'] > 1— 4§ —§ which
implies that ¢ < § + §’. Because §' < 1/3,1 — §' > 2/3 which implies that §’ < 36/2. This implies
that § > 2¢//5. On the other hand, if § > 2/9, then because 3 < 1 it follows that § > 2¢/9. H

Proof: [of Theorem 3] Analogous to the proof of Theorem 2. M

Theorems 2 and 3 provide the upper bounds on 1 in terms of § and éy,...,6.. We now develop
the easier to prove lower bounds on .

Lemma 15 Let G’ be any (finite or countable) group. Then, 3¢ > 6.

Proof: Because 1 — ¢ = Pr[disc(y) = 0], Pr[disc(z; o z3) = disc(z1) = disc(z2) = 0'] > 1 -39,
and consequently § = Pr[disc(z; o 22) # disc(z1) o disc(z;)] < 3. M

Lemma 16 Let G' be any (finite or countable) group. Then, for alli=1,...,¢, ¥ > 6 /2.

Proof: Foralli=1,...,¢,if disc(z 0 g;) # disc(z) then either disc(z 0 g;) # 0’ or disc(z) # 0.
Thus, ¥ > é;/2. W

The following proposition is used to quantify the number of random samples needed to guarantee
good estimates of § and 4y,...,8, with high probability. This proposition can be proved using
standard techniques from an inequality due to Bernstein cited in [55, Rényi]. For a proof of this
proposition, see for example [41, Karp Luby Madras].

Proposition 17 LetY1,Y;,... be independent identically distributed 0/1-valued random variables
with mean p. Let§ < 2. If N = i , uh'g%@ then Pr[(1 -)p <Y < (14 60)u] > 1 - B, where
Y =yL Y/N.

Corollary 18 LetY),Y;,... be independently distributed 0/1-valued random variables with means
1y 2y ... , respectively.

(1) If, foralli, p; > p and N = % -1610(2/B) then Pr[Y < p/2) < B, where ¥ = TN, Vi/N.
(Use 8§ =1/2.)

(2) If, for alli, p; < p and N = 1 - 41n(2/P) then Pr[Y > 2u] < §, where ¥ = Z[L, Yi/N. (Use
f=1.)

Theorem 4 Generic Self-Test 1 is an (e/54, €)-self-tester for any 0 < e < 1.

Proof;

35

(¢ > €) By Theorem 2, this implies that § > 2¢/9. Letting p = 2¢/9 and letting N =
161n(2/8) = 21n(2/B) and using the Corollary 18, Part (1) yields Pr[total/N < €/9] < B.
On the other hand, if total/N > ¢/9 then the output of the program is “FAIL". Thus, if
1) > ¢, the program outputs “FAIL” with probability at least 1 — f3.

i

(¢ € ¢/54) Lemma 15 implies that § < ¢/18. Letting u = €/18 and letting N = i-41n(2/ﬁ) =
Z21n(2/p) and using the Corollary 18, Part (2), yields Prltotal/N > €/9] < . On the other
hand, if total/N < €/9 then the output of the program is “PASS”. Thus, if ¢ < €/54, the
program outputs “PASS” with probability at least 1 — j.

Theorem 5 Generic Self-Test 2 is an (¢/54, €)-self-tester for any 0 < e < 1.

Proof:

(1 > €) We partition the possibilities into two subcases: (1) Forall i = 1,...,¢,6; < 1/2; (2) There
is an i = 1,...,c such that § > 1/2. Case (1) is similar to the 4 > € case of Theorem 4,
using Theorem 3 in place of Theorem 2, which yields that the program outputs “FAIL”
with probability at least 1 — 8/2. In case (2), because of the Corollary 18, Part (1), letting
g = 1/2 and letting N = 321n(4¢/f) yields Prtotal’/N' < 1/4] < -% On the other hand,
if total’/N' > 1/4 then the output of the program is “FAIL”, and thus the program outputs
“FAIL” with probability at least 1 — %. Thus, in either case, the program outputs “FAIL”
with probability at least 1 — .

(¥ < €/54) We partition the possibilities into two subcases: (1) Forall i = 1,...,c, §; < 1/8; (2)
Thereis ani = 1,...,csuch that §; > 1/8. A portion of case (1) is similar to the 3 < €/54 case
of Theorem 4, which yields Pr[total/N > ¢/9] < B/2. Also in case (1), using the Corollary 18,
Part (2), letting 2 = 1/8 and letting N = 321n(4¢/B) and, using the fact that the union of
¢ probabilities is upper bounded by their sum, yields Prftotal’/N’ > 1/4] < /2. Thus, in
case (1) the program outputs “PASS” with probability at least 1 — 8. In case (2), because
of Lemma 16, there is some ¢ such that §; > 1/8 implies that ¢ > 1/16 > ¢/54 since ¢ < 1.
Thus case (2) is impossible.

3.4.3 Integer Multiplication

For positive integers z and y, let f(z,y) = z-y. We now describe in what sense integer multiplication
has the linearity property. For any triple of integers z1, 23 and y, 1y + 22y = (21 + 2) * ¥.
Thus, for a fixed value of y, integer multiplication is a linear function. For the following discussion,
fix ¥ to an arbitrary value. In this case, f can be viewed of as a function of one input with
domain G = Z,» where o is +2n, and range G’ = Z where o' is +. For 21,23 € Zzn, let ¢ =1
if 21 + z2 > 2" and let ¢ = 0 otherwise, and let z = 2y + 23 — ¢2™ = 27 +2n 2. At the heart of
the integer multiplication self-testing program is the fact that f(z1,y) + f(z2,9) = f(z,¥) + ye2".
Note that Fipear(21,Z2) = y¢2™ is easily computable. '

36

Based on Generic Self-Test 1 with € = 1/16, the following program is an (1/864,1/16)-self-
testing program for f making oracle calls to P with respect to Uz,n X Uzyn- The input to the
program is n and the confidence parameter 3.

Program Integer Multiplication Self-Test(n,)

N = 11521n(2/8)
total — 0
Doform=1,...,N
Call Int_Mult_Linear_Consistency(n,answer)

total — total + answer
If total /N > 1/144 then output “FAIL” else output “PASS”

Int_Mult_Linear_Consistency(n, answer)

Choose y €y Z2n

Choose 21 €y Zgn

Choose 15 €1 Z9n

T Ty ton X2

¢ « (z1 + z2) div 2™

If P(z1,y) + P(z2,y) = P(z,y) + cy2" then answer « 0 else answer « 1

Theorem 6 The above program is a (1/864,1/16)-self-testing program for integer multiplication.

Proof: Similar to the proof of Theorem 4, except that for each y there is a different value for ¥(y)
and 9 is the average of ¥(y) over all y. For the first part of the proof, note that §(y) > 2¢(y)/9
for each value of y. Thus, if 3 = E[¢(y)] > € then § = E[8(y)] > 2¢/9. The rest of the proof is the
same for case 1. Similar comments hold for the second case of the proof. M

The integer multiplication self-testing program is both different and efficient. The only non-
trivial lines of code in the self-testing program are generation of random numbers, calls to the
program P, integer additions, shifts and integer comparisons.

3.4.4 Modular Multiplication

For positive integers z, y and R, let f(z,y, R) = z-ry. For fixed value for R and y, f can be thought
of as a function of z. In this case, the domain of f can be thought of as G = Zgsn where o is +R2n
and the range of f is G’ = Zg where o’ is +g. The heart of the modular multiplication self-testing
program is the fact that, for any pair 21,22 € Zpas, f(21,¥, R)+rf(22,9, R) = f(z1+R2n22), 9, R).
Thus, Finear(21,%2,%) = 0.

Based on Generic Self-Test 2 with € = 1/16, the following program is an (1/864,1/16)-self-
testing program for f with respect to Uzz,n X Uzp,n X Uiry- The input to the program is n, R and
the confidence parameter 3.

Program Modular Multiplication Self-Test(n, R, 8):

N = 11521n(4/8)

37

total < 0

Doform=1,...,N
Call Mult_Mod_Linear_Consistency(n, R,answer)
total — total + answer

If total/N > 1/144 then output “FAIL”

N'=321n(4/pB)

total' — 0

Doform=1,...,N'
Call Mult_Mod_Neighbor_Consistency(n, R, answer)
total' — total’ + answer

If total’ /N’ > 1/4 then output “FAIL” else output “PASS”

Mult_Mod_Linear_Consistency(n, R, answer)

Choose y €y ZRraon

Choose z1 €y ZRon

Choose z2 €y ZRon

T — Z1 +R2n 22

If P(z1,9, R) +r P(22,y, R) = P(z,y, R) then answer <0 else answer « 1

Mult_Mod_Neighbor_Consistency(n, R, answer):

Choose y €y Zran

Choose z €y Zpon

2/~ 2+pn 1

If P(z,y4,R) +ry = P(z',y, R) then answer « 0 else answer « 1

Theorem 7 The above program is an (1/864,1/16)-self-testing program for modular multiplication.

Proof: See the proof of Theorem 5, and combine this with some of the aspects of the proof of
Theorem 6. W

The only non-trivial lines of code in the self-testing program are generation of random numbers,
calls to the program P, integer additions and integer comparisons, except for the line “If P(z,y, R)
4+ry = P(,y,R) then ...” in the Mult_Mod N eighbor_Consistency program. The problem
is that although P(z,y, R) and P(z’,y, R) are both in Zg, y is in the much larger range Zpon and
thus y mod R cannot be calculated easily using just additions and comparisons.

This suggests using the library approach discussed in Chapter 5 to get around this problem, i.e.
use a library of functions including modular multiplication and the mod function. We have already
presented a self-testing/correcting pair (7", 5’) for the mod R function. The modular multiplication
self-testing program can then call S’ to compute y mod R. S’ computes this correctly with high
confidence using any program P’ for the mod R function that passes the test T'. Note that any
modular multiplication program has the mod R function embedded in it, when restricting the
inputs to multiplication by 1. The resulting modular multiplication self-testing program is both
different and efficient.

38

3.4.5 Modular Exponentiation

For positive integers z, a and R, let f(a,z,R) = a® mod R. Fix a and R to be positive integers,
and as before we restrict attention to a and R such that gcd(a,R) = 1 and we assume that
we know the factorization of R and thus can easily compute ¢(R). In this case, the domain of
fis G = Zypym where o is +4(g)n and the range of f is G' = Zj and o' is -g. Because
ged(a, R) = 1, a®® = 1 mod R. The heart of the modular exponentiation self-testing program
is the fact that, for any pair z1,z; € Zym)2n, f(a,21,R) r f(a,22, R) = f(a,z1 +4(R)2n z2, R).
(Thus, Flinear(thhy) = Ur')

Based on Generic Self-Test 2 with € = 1/16, the following program is an (1/864,1/16)-self-
testing program for f making oracle calls to P with respect to (s} X Uz, pypn X Uiry- The input
to the program is n, ¢, R and the confidence parameter §.

Program Modular Exponentiation Self-Test(n, a, R,)

N = 11521n(4/8)

total — 0

Do for m =1,V
Call Mod_Exp_Linear_Consistency(n, a, R, answer)
total « total + answer

If total /N > 1/144 then output “FAIL”

N'=321n(4/5)

total’ — 0

Doform=1,...,N’ _
Call Mod_Exp_Neighbor_Consistency(n, a, R, answer)
total’ « total’ + answer

If total’/{N' > 1/4 then output “FAIL” else output “PASS”

Mod_Exp_Linear_Consistency(n, a, R, answer)
Choose x1 €y z¢(g)2n
Choose z, € Z4(R)2n

T I +¢,(R)2n T
If P(a,z1, R) -r P(a,z1,R) = P(a,z, R) then answer « 0 else answer « 1

Mod_Exp_Neighbor_Consistency(n,a, R, answer):
Choose z € Zy(R)2n
2" — Z +¢(R)2n 1

If P(a,z,R)-pra= P(a,2,R) then answer « 0 else answer « 1

Theorem 8 The above program is an (1/864,1/16)-self-testing program for modular exponentia-
tion.

Proof: Analogous to the proof of Theorem 7 (page 38). W

39

The modular exponentiation self-testing program consists solely of integer additions, integer
comparisons and calls to P except in two lines of code: (1) The line “If P(a,z,, R) -g P(a,z1,R) =
P(a,z,R) ...” in the program Mod_Exp_Linear_Consistency; (2) The line “If P(a,z,R) -pa =
P(a,2’,R) ...” in the program Mod_Exp_Neighbor_Consistency. We propose computing these
two lines using the library approach. We can use the modular multiplication self-correcting program
presented above to compute (1) and (2) which uses a program P’ for computing multiplication
mod B, where we first use the modular multiplication self-testing program to verify that P’ is not
too faulty. In addition to these two lines of code, in the implicit range-check code (see page 22)
we need to verify that the answer a to a call to P is in range, i.e. in Z. This can be done by
verifying that o € Zg (this is easy) and that gcd(a, R) = 1. If R is a prime, the gcd computation
is trivial (just verify that @ # 0). If the prime factorization of R is []}_, pf' where 7 is a small
positive integer, then to verify that ged(e, R) = 1, we can use the mod function self-correcting
program to compute o mod p; for all ¢ = 1,...,v and verify that none of the answers are zero.
This requires that the mod function is not too faulty for modp; computations for all i = 1,...,7.
In Section 3.6.3, we show how to reduce this requirement to the case where the mod function
is not too faulty for mod R computations if one assumes the existence of a program for modular
inverse that is usually correct (since a=! mod R exists if and only if gcd(a, R) = 1). Also in a later
section of this chapter, we present a seli-testing/correcting pair for modular exponentiation when
the prime factorization of R and ¢(R) are not known, at the expense of some loss in efficiency.

3.4.6 Integer Division

We now consider division of integers by R for a positive number R. in this case, f(z,R) =
(z div R,z mod R). We write fy,(z,R) = z div R and f,,4(z, R) = z mod R. We have already
seen that the mod function has the linearity property. We now describe in what sense integer
division has the linearity property. For any triple of integers 24, 27 and R, z; div R+ 25 div R+
(21 mod R+ z, mod R) div R = (z; + z,) div R and z; mod R 45 z; mod R = 71 +g z5. For the
following discussion, fix R to an arbitrary positive integer. In this case, f can be viewed of as a
function of one input with domain G = Zpgn where o is +pgon. The range G’ of f is isomorphic
to Z, where o’ corresponds to +. An element of G’ is a pair of integers (a,b), where a € Z and
b € Zg. For any pair of elements (a,b),(c,d) € G, (a,b) o’ (¢,d) = (a + c+ (b+ d) div R,b+g d).
For 21,25 € Zpon, let ¢ = (21 4 22) div R2" and let = 21 + 23 — cR2"™ = 21 +Ron z9. At the
heart of the integer division self-testing program is the fact that fz,(z, R) + 2" = fs,(z1,R) +
fain(z2, R) + (fmod(xlj R) + fmod(Z2, R)) div R and that froa(2, R) = fmod(z1, R) +r fmod(932s R)

Based on Generic Self-Test 1 with € = 1/16, the following program is an (1/864,1/16)-self-
testing program for f with respect to Uzg,. X U(g). The input to the program is n, R and the
confidence parameter 3. We refer to the output of P as P(z, R) = (Pyiv(z, R), Prod(z, R)).

Program Integer Division Self-Test(n, R, §)

N = 11521n(2/8)
total — 0
Doform=1,...,N
Call Int_Div_Linear_Consistency(n, R, answer)
total « total + answer
If total /N > 1/144 then output “FAIL” else output “PASS”

40

Int_Div_Linear_Consistency(n, R, answer)

Choose z1 €y Zpan

Choose 25 €1y Zpon

T + T1 +Ran T2

¢ — (z1 + z2) div R2"

answer —

If Pdiv(zla R) + Pds'u(m‘h R) + (Pmod(wla R) -+ Pmod(zm R)) div R ?é Pdiu(-q:s R) + c2n
then answer « 1

If Prod(z1,R) +R Prod(z2, R) # Prnod(z, R) then answer « 1

Theorem 9 The above program is a (1/864,1/16)-self-testing program for integer division.

Proof: Similar to the proof of Theorem 4 (page 35). W

3.5 Self-Testing Polynomial Functions

We consider the problem of computing any polynomial function which maps to a finite field Z, for
prime p. In this case, f(z,p) = ¢(z) mod p, for a prime p, polynomial ¢ of degree d, and z in Zpon.
We have already seen ‘a self-corrector for the more general problem of computing any multivariate
polynomial function. We show a (—(3——2)-, €)-self-testing program (e < _O('H?FT)'T) for f with respect to
Uz,yn XUpy- The input to the program is n, p, a list of d+1 inputs as,. .., aa41, the corresponding
values of the function at these inputs b1,...,b441, and the confidence pa:rameter 8.

Part of the tester is a subroutine, called Degree_Test, that tests whether there is a polynomial
g of degree d such that Pryez,,.[P(z) = g(z)] 2 1 — €. Once this is verified, the other part of the
tester indirectly verifies, by making calls to P, that the polynomial g is actually equal to f, by
verifying that they are equal on at least d + 1 inputs.

Let ag, ..., 4 be as discussed in the section on self-correcting any multivariate polynomial func-
tion. Recall that ap = 1 and that Y9} o; = 0.

Program Polynomial Self-Test (n,d, p,(a1,1),--.,(@d+1,b441), 8)

B — B/(2d+2)

Call Degree_Test(n,d, p,3/2)

For k = 1,...,d + 1, call Equality_Test(n,d, p, (ax, bx), ')
Output “PASS”

Degree_Test (n,d, p, 8)

total «— 0
~ 1 1n(2/8)
Doforj=1,...,N
Randomly choose z,t € Uz,,n
If ;- P(z +pon it) mod p # 0 then total — total + 1
If total/N > €2/2 then output “FAIL” and halt.

41

Equality_Test (n,d, p,(a,b),)

total + 0
N « 121n(1/p)
Doforj=1,...,N
Randomly choose t € Uz ,.
If b # 244! — a; - P(a 4,2~ it) mod p

then total «— total +1
If total/N > 1/4 then output “FAIL” and halt.

Theorem 10 The above program is a (ﬁf_zrﬁ,e)-seff-tesﬁng program for the polynomial function
for e < E(dl?)?'

Prxezpzn [P("B) # f(x)]'

In order to prove Theorem 10, we first prove the following:

Let § = Prysez,n [Ef"‘la;P(m +p2n it) mod p # 0]. Let & be the solution to 0% = 6. Let ¢ =

Theorem 11 I[f§ < W(;TF then there is some polynomial g of degree d such that Pr[P(z) =
g(z)] 2 1-4¢.

Proof: [of Theorem 11] Define the set of good values as : G = {z| Pr[S2) i P(z+p2nit) mod p =
0] >1-46}.

The following lemma is proved by a simple counting argument:
Lemma 19 |G| > 1-§".

Lemma 20 Let 6" « 4(d + 1)&'. Then for all £ € Zpon there exists an z' € Z, such that
Pricz (2’ = Y —; P(z 4490 it) mod p] > 1 — §".

Proof: [of Lemma 20] We note that for all z € Zpgna:

d+1 d+1 d+1
Pr [z a;P(z +p2n i) mod p = o; Z —a; P(z +p2n 1ty 4pon jta) mod p (1)
t1t2€2p2n i =1 =1
d41 d+1
= Z a; Z —=0; P(z +p2n 1ty +pon jtz) mod p (2)
=1 i=1
d+1
= D @;P(z +pn jtz) mod p] > 1 - 4(d +1)8" (3)
j=1

Using the definitions of G and Lemma 19, equation (1) holds with probability > 1 — 2(d + 1)¢'
since for any i € [1,...,d + 1], Pryez,,n [(z +p2n it1) € G and P(z 420 ihy) = Zf-'_i_'} —a; P((z +p2n
it1) +pan jt2) mod p] > 1 — 26'. Similarly, equation (3) holds with probability > 1 — 2(d + 1)¢'.

42

Since the probability that the same object is drawn twice in two independent trials lower bounds
the probability of drawing the most likely object, the lemma follows. W

Lemma 19 leads to the definition of the function g from Z,on to Z, defined as follows: For all
z € Zyn, let g(z) « 2, where 2’ is the element of Z, described in Lemma 20.

Comment: Note that for all z € G, 2’ = P(z) and s0 Pryez,,.[P(z) = g(z)] 2 1 - &,
Lemma 21 Forall z € Zy3n, Priez,,n [344! a;g(z +p2n it) mod p = 0] 2 1 — 6" — (d + 1)4".

Proof: [of Lemma 21] By Lemma 20, Pricz ,.[9(z) = Y _0; P(z 4420) mod p] > 1 - §".
By the comment following Lemma 20, Priez ;0 [z +p2n jt € G] > 1 - #', and thus Priez,,.[V] =
1,...,d+ 1,P(.’E +p2n jt) = g(x +pon jt)] >1—-(d+ 1)5". |

Lemma 22 g is a polynomial of degree < d.

Proof: [of Lemma 22] It is sufficient to show that Vz,t Y93 a;g(z +p2nit) mod p = 0 [64, Van Der
Waerden) p.89. We first upper bound for each i = 0,...,d + 1 the quantity Pryez,,n [g(z +penit) =
Zf-:} —;g(& +pan it +p2n 1j1') mod p]. For i = 0, this occurs with probability 1. For i # 0, ij1’ is
random, and thus by Lemma 21, this probability is at least 1 — §” — (d + 1)&'. Thus

d+1 d+1 d1
t,efér [Z a;g(z +pmit) mod p = Z o; Z —0;9(% +pan it +pan ijt') mod p
P2 =0 =0 j=1
d+1 d+1
= 3 <a E @;g(z +pan i(2 4p2n jt')) mod p)

> 1-(d+ 10" +(d+1)8) >0 (1)

Finally, using Lemma 21 again, and the fact that jt' is random for j # 0,forall j = 1,...,d+1,
Pryez,,n[s 0ig(z+p2ni(t+panjt')) mod p = 0] > 1-6"~(d+1)é'. Thus, summing over all j and
combining this with (1), Pryez ,n[4+l ig(z 4pon it) mod p= 0] > 1—2(d + 1)(6" + (d + 1)§") >
0. Since the probability is positive and ¢’ does not appear in the expression,):f:g a;g(z +p2n

it)modp=0. W
(end of proof of Theorem 11) M
Proof: [of Theorem 10]

(1 > €) (should output “FAIL”) Let g be defined as the degree d polynomials for which the quantity
Pr.[P(z) # g(z)] is minimized. Let ¢' = Pr;[P(z) # g(z)].

(' > €) By the assumption and Theorem 11, § > €2. Then letting g = € and N =
%111(4 /), and using the Corollary 18, Part (1) we see that in the degree test, Prftotal /N <
€2/2) < B/2. On the other hand, if total/N > €2/2 then the output of the degree test
is “FAIL”. Thus, if ¥ > € and ¢’ > epsilon, the degree test outputs “FAIL” with
probability at least 1 — 3/2.

43

(' <€) Since ¥ # ¢/, g # f. Then there is an i € [L.d + 1) such that f(a;) # g(a:).
From the proof of Theorem 11 we see that if a polynomial g of degree d such that
Pr,[P(z) = g(z)] > 1 — ¢ exists, we can compute g(z) by choosing a random t € Zpon
and computing g(z) as 5! —a; P(2 +p2n it) mod p with probability of error at most.

(d+ 1)8' < 1/4 in each pass. Thus the equality test will fail with probability > 1 — .

(4 < €2/4(d + 2)) Using a proof similar to the second part of Theorem 4 (p. 35), one can show
that if Pro[P(z) = g(z)] > 1— ZG‘%)-, then the degree test passes with probability > 1 - 3/2,
and each equality test passes with probability > 1 — #'.

The total error probability of the degree test and all of the equality tests is < B/2+(d+1)8" = B.
|

3.6 Bootstrap Self-Testing

In this section we introduce another method of designing self-testers. It is easier to prove that this
method of self-testing meets its specifications than it is for self-testing based on linearity. This
method works for all the functions that the linear self-testing works for, as well as for polynomial
multiplication, matrix multiplication, modular exponentiation when the ¢ function of the modulus
is not known, and integer division. The drawback is that this method is often less efficient and that
the code is slightly more complicated.

The two requirements for this method to work are random self-reducibility and:

DEFINITION 3.6.1 (smaller self-reducibility) We say that f is c—self-reducible to smaller inputs if
for all z € T, f(z) can be ezpressed as an easily computable function Fymaler of z, ay,...,0; and
f(a1),.-.., f(a.), where ay,...,a. are each in I,_y. Furthermore, for all z € T, f(z) is easy to
compute directly.

For example, for integer multiplication, where f(z1,22) = 1 - 22, this condition is fulfilled as
follows: Let = = (z1,23), where 21,2 € Z» and where n is a power of two. Let z{ be the most
significant half of the bits of z; and let =1 be the least significant half of the bits of z;. Define
2L and z§ analogously with respect to z. Let ay = (2f,2f), ap = (zF,zR), a5 = (=}, 2%) and
a4 = (I%a 5%)° Then, f(x) = Fymaller{Z, 01, -+ -5 Gc; f(al)a iy f(ac)) = fla)+ (f(aQ) + f(a3))2n/2 +
f(l'.'h;)2"’.

The overall idea behind this method is that once smaller size inputs have been self-tested, larger
inputs can be self-tested by choosing a random input z, decomposing z into smaller inputs, seli-
correcting the smaller inputs using random self-reducibility (which works because smaller inputs
have been self-tested), and then comparing the answer against the answer the program gives on
input z. This method of bootstrapping can be continued until the desired input size is reached.
We now give more specific details.

We say that z € T, is bad if P(z) # f(z), and otherwise z is good. Generic Self-Correct is
the program described on page 24. Program Rec_Self-Test, described below, verifies that most of
the inputs in Z,, are good given that, recursively, most of the inputs in Z,,_; are good.

Specifications of Rec_Self-Test(n, §):

44

(1) If at least a fraction of T;'IE of the inputs in Z,, are bad and at most a fraction of J- of the inputs
in Z,_; are bad then Rec_Self-Test outputs “FAIL” with probability at least 1 — §.

(2) If at most a fraction of 11 of the inputs in Z,, are bad and at most a fraction of - of the
inputs in Z,_; are bad then Rec_Self-Test outputs “PASS” with probability at least 1 — .

Program Rec_Self-Test(n,)

N « O(cIn(1/8))
Doform=1,...,N
ANSWETy, — 0
Choose 2 €y T,
If n =1 then:
Compute f(z) directly
If f(z)# P(z) then answery, « 1
Else n > 1 then:
Randomly generate ay,...,a, from z
Fork=1,...,c, yx — Generic Self-Correct(n — 1, ak,-1617)
If Fsma]ler(xrala- vy 8oy Y1y .- -ayc) ?é P(i‘:) then answery, « 1
If Eﬂlansmerk/}\f > % then “FAIL” else “PASS”

Lemma 23 Rec_Self-Test meets the specification.
Proof:

(1) Because of the specifications for Generic Self-Correct and because it is called with confidence
parameter —, the probability that there is an incorrect g for k = 1,...,c is at most

16c2* 16c*
: . : _ 1 1 15
Therefore, in each iteration Prlanswer, = 1] > E(l — i@l 2 e %.
(2) In each iteration Prlanswern = 1] < &= + 16 = 15 < 1o
Thus, the average of answery, over O(cIn(1/3)) iterations is at least ;> with probability at least

1 — G in case 1 and at most % with probability at least 1 — 3 in case 2. W

Finally, we describe the main program Generic Bootstrap Self-Test. We make the conven-
tion that if any call to one of the subroutines returns “FAIL” then final output is “FAIL” and
otherwise the output is “PASS”.

Specifications of Generic Bootstrap Self-Test(l,z,):

(1) If there is an 4, 1 < i < I, such that the fraction of of bad inputs in Z; is at least 4, then
output “FAIL” with probability at least 1 — 3.

(2) If for all 4, 1 < i <1, the fraction of bad inputs in Z; is at most 3 then output “PASS” with
probability at least 1 — .

Program Generic Bootstrap Self-Test(l, z, §)

45

For i = 1,...,1l, call Rec_Self-Test(i, 8/1).
Theorem 12 Generic Bootstrap Self-Test meets the specifications.
Proof:

(1) If there is an ¢, 1 < ¢ <1 such that for all 1 < j <4 -1, the fraction of bad inputs in Z; is at
most - and the fraction of bad inputs in Z; is at least X 1 then Rec_ Self Test(i, /1) outputs
“FAIL” with probability at least 1 — 8/1 > 1 - 8.

(2) If, for all 4, 1 < § < I, the fraction of bad inputs in Z; is at most '1'16'2 then Rec_Self-Test(:, 3/1)
outputs “FAIL” with probability at most 3/I. Thus, over the ! calls, the probability that all
answers are “PASS” is at least 1 — §3.

3.6.1 Matrix Multiplication

We showed in Subsection 2.2.2 how to get a self-tester for matrix multiplication. To illustrate the
method, we show in this subsection how to get another self-tester based on bootstrapping.

Let Mnxn[F] be the set of n X n matrices with entries from a field F, and let U, «.[F] e the
uniform distribution on M, x,[F].

random self-reducibility: Let A, B € M, x,[F]. Independently choose A; €y M,.xx[F], By €y
Myuxn|F] and let Ay « A— Ay, By — B — By. Then (Ay, By), (A2, B1), (A1, By), (A2, By) are each
distributed according to Upy, () X Uty and f(A, B) = f(A1,B1) + f(42, B1) + f(41,B2) +
f(A2’B2)'

smaller self-reducibility: Let A, B € My,x2,[F] where
A= An A _ [Bu B
An Ay)’ Ba1 By,
and Aj1, A1z, Ag1, A2z, Bi1, Bi2y B21, B2z € Myxa[F). Then

f(A,B) = f(A11, Bu) + f(A12,B21) f(Au1, Bi2) + f(A12, Bya)
) f(Aa21, Bu1) + f(A22,B21) f(Aa1, Bi2) + f(Ag2, Bas) |-

Since matrix multiplication is randomly self-reducible and self-reducible to smaller inputs, the
method of bootstrapping can be used to self-test the matrix multiplication function. The self-tester
makes O(log(n)) calls to the program. However, the self-tester makes only a constant number of
the calls to the program on n X n matrices, only a constant number of the calls to the program are
on n/2 X n/2 matrices, etc. Thus, the incremental time of the seli-tester is linear in the size of the
input, and the total time is linear in the running time of the program.

46

3.6.2 Polynomial Multiplication

We consider multiplication of polynomials over finite fields: in this case f(p,q) = p-q where p, ¢
are two degree n polynomials with coefficients from finite field F. Using Kaminski’s polynomial
multiplication result checker, one can get a self-tester for polynomial multiplication. We show how
to get a self-tester based on the method of bootstrapping.

Let P,[F] be the set of degree n polynomials where each coefficient is an element of the finite
field F. Let U, be the distribution on pairs of degree n polynomials where each coefficient is chosen
independently and uniformly from the finite field F.

random self-reducibility: Let p,q € P,[F]. Independently choose p; €4 Pu[F], ¢1 €u Py[F],
and let p; < p - p1, g2 — ¢ — q1. Then (p1,1),(p2, ¢1),(p1,2), (P2, ¢2) are distributed according
to Uy and f(p,q) = f(p1,01) + f(p2, @) + f(p1,02) + f(2, 02)-

smaller self-reducibility: Let p,q € Py,[F] where p = p1z™+ps, ¢ = 12" +q2, and p1, p2, q1,¢2 €
Pu[F). Then f(p,q) = f(p1,q1)2* + (f(p1,02) + f(p2, @1))z"™ + f(p2, @2)-

Since polynomial multiplication is randomly self-reducible and self-reducible to smaller inputs,
the method of bootstrapping can be used to self-test the polynomial multiplication function. The
self-tester makes O(logn) calls to the program, and has incremental time linear in the size of the
input, and the total time is linear in the running time of the program.

3.6.3 Modular Inverse

In this subsection, we develop some programs that are used in the modular exponentiation self-
tester developed in the next subsection. For simplicity, we assume that we are using a correct
program for modular multiplication in the code; all of the code can be modified to use the li-
brary approach described in Chapter 5, where all modular multiplications are computed by a
self-correcting program that makes calls to a program for modular multiplication that has been
self-tested. A modular multiplication can also be easily computed using a program that cor-
rectly computes modular exponentiation (and in particular is able to square) using the fact that
z-ymod R = ((z+y)? — 22— y?)/2 mod R. Thus, the ideas of the library approach can be applied
to this problem, without assuming the existence of any programs for other problems.

Let R be a positive integer of length n. For z € 2}, let f(z, R) be the mod R inverse of z, i.e.
f(z,R)-pz = 1. Let P be a program that supposedly computes f. We assume that P satisfies
the following condition: When z €y Zg, P(z,R)-g = = 1 with probability at least ﬁ} for some
constant ¢ > 0. We can easily estimate this probability by randomly choosing several independent
z €y Zpr and computing the fraction of these z that satisfy P(¢,R)-pz = 1. For all R > 3,
O(R) = |25 > ﬁ,—ﬂ- [56, Rosser, Schoenfeld], and thus if P is correct for a constant fraction 6 of
the z € Zj then the above condition is true with ¢ = 6/8.

We now describe a random generator Gen_Inv_Mod(R) which makes calls to P to generate
T €y Zp.

Function Gen_Inv_Mod(R)

Repeat forever
Choose z €y Zg

47

Choose y €y ZRr

Z+—ZT-RY

2 — P(z,R)

If 2 -g z=1 then return z and EXIT

Lemma 24 If Gen_Inv_Mod(R) returns z, then z €y Z§. Furthermore, if P(w,R) -pw = 1
with probability at least 'Eh%{r{j when w €y Zg, then the expected number of ezecutions of the repeat

loop before Gen_Inv.Mod(R) halts is O(c?In%(n)).

Proof: P(z,R):rz =1 can be true only if 2 € £5, which in turn can only be true if both
z € 25 and y € 2§. The conditional probability of choosing z such that z € Z} is uniform.
Furthermore, the conditional probability of choosing y such that y € Z} is uniform given z. Since
the distribution defined by z - w, where z is fixed in Z§ and w €y 2}, is the uniform distribution
Uzps the conditional probability of choosing z such that z € Z}, is uniform given z € Z%. Thus,
the probability that P(z, R)-pz = 1is independent of z as long as z € Z§. This implies that each
z € 2} is equally likely to be the output of Gen_Inv_Mod(R).

The running time analysis is straightforward, noting that z € Z% with probability at least
c—h}m-, and independently y € Z% with probability at least ET:&?:")' [|

The incremental time of Gen_Inv.Mod(R), not counting the time for calls to the modular
multiplication program, is O(c?nln?(n)). The total time is O(c?In?(n)T(n)), where T(n) is the
running time of the modular multiplication program.

We next develop a function that on input # € Z; and R outputs the mod R inverse of z. This

function makes calls to both P and Gen_Inv.Mod. As before, we assume that P satisfies the
condition described above.

Function Mod_Inv Self-Correct(z, R)

Repeat O(cln(n)) times
w « Gen_Inv_Mod(R)
Yy—ZI-pw
y' — P(y,R)
z—y RY
If z=1 then EXIT repeat loop
If z # 1 then return z’ = 1 else return 2’ = w-py'

Mod_Inv Self-Correct (hereafter abbreviated Mod_InvSC) has the property that if z € 2%
then with very high probability the output z’ satisfies 2’ :p ¢ = 1. For simplicity, hereafter we
assume that if z € Z} then the 2’ -gpz = 1 always.

The expected incremental time of Mod_InvSe(z, R) is O(c®nIn®(n)) and the total time is
O(c*In*(n)T'(n)), where T'(n) is the running time of the modular multiplication program plus the
running time of the modular inverse program.

3.6.4 Modular Exponentiation

Let R be a positive integer of length m and let @ € Z5. Let n be a positive integer that is a
power of 2 and let £ € Z2». Let f(a,z, R) = a” mod R. In previous sections we developed a self-
testing/correcting pair for f when the factorization of R is known. In this subsection, we develop

48

a self-testingfcorrecting pair for f without this assumption, but with the assumption that we have
access to P', a program for modular inverse, where P/(w, R) -p w = 1 with probability at least
ﬁﬂ when w €y Zr. Let P be a program that supposedly computes f. We make the convention
that if the second argument in a call to P is 0 (i.e. the exponent is 0) then the call to P is not
actually made and the answer is automatically set to 1.

Specifications of Mod_Expon Self-Correct(n,a,z, R, 3):
If error(f, PUzs X Uz,n X ZA’{R}) < 1/32 then the output is ¢* mod R with probability at least
1-4.

Program Mod_Expon Self-Correct(n,a,z, R, 3)

N <~ 12In(1/8)
Fori=1,...,N do

Choose 1 €y Z9n

Ifz;<zthend—0else§ —1

Tg — z— 11+ 627

Choose z3 €1y Z3n

Iy — 2" —-1-— I3

b — GenInv_Mod(R)

a1 «— P(a-gb,z1, R)

ay «— P(a-pb,z2,R)

a3 «— P(b,éz3, R)

ag + P(b,éz4,R)

a5 «— Mod InvSC(P(b,z1, R), R)

ag — Mod_InvSC(P(b,z,, R), R)

az7 +— Mod_InvSC(P(a-r b, 6z3, R), R)

ag — Mod InvSC(P(a-gr b, éz4, R), R)

answer; < @1 ‘R @2 "R @3 'R @4 "R Q5 'R @6 "R @7 ‘R @8 "R (6a)
Output the most common answer among {answery, :m=1,...,N}

Lemma 25 Mod_Expon Self-Correct meets the specifications.

Proof: It can be verified that z; €y Z3n, 29 €y Zan, 3 € Z9n and z4 €y Z9n. Furthermore,
b €y 2, and from this and because @ € Z§, a-pb €y Z5. Thus, in all eight calls to P the input
distribution is Uzs X Uz, X Uiry (except in the case when é = 0, in which case four of the calls
to P are not actually made and the answer is automatically 1). Thus, with probability at least
3/4, all eight calls to P return the correct answer. It is not hard to verify that if all eight calls to
P return the correct answer, then by the properties of Mod_InvSC, answer; = a* mod R. The
lemma follows from Proposition 1. N

Hereafter, we refer to Mod_Expon Self-Correct as Mod_ExpSC. The incremental time of
Mod_ExpSC, not counting time for calls to the programs for modular multiplication and modular
inverse, is O(n + ¢*mIn3(m)). The total time of Mod_ExpSC is O(c®*In3(m)T(m) + T'(n, m)),
where T(m) is the running time of the program for modular multiplication plus the running time
of the program for computing modular inverse and T'(n, m) is the running time of the program for
computing modular exponentiation.

‘We now describe the recursive self-tester for modular exponentiation.

49

Specifications of Rec_Mod_Expon Self-Test(n, R, 8):

1) If error(f, P, Hz- xuz . XUiry) £ 1/32 and error(f, P,Uzs X Uz,, X Uiry) < 1/128 then
{R} R 2 {R}
the output is “PASS” mth probability at least 1 — 3.

(2) error(f, P,Uzs x Uz . X Ugpy) < 1/32 and error(f, P,Uzs X Uz,n X Ury) > 1/32 then the
output is «FAIL? wzt?h probability at least 1 — 3.

Program Rec_Mod_Expon Self-Test(n, R, 3)

answer « (
N 0(1n(1/8))
Dofori=1,...,N
b — Gen_Inv_Mod(R)
Choose y €y Zqn
Let y = 122 4 y,, where y1,52 € Zons2
a1 — Mod_ExpSC(n/2,b,y;,1/512)
a; — Mod_ExpSC(n/2,a;,2"% - 1,1/512)-p oy
az — Mod_ExpSC(n/2,b,y,,1/512)
If P(b,y, R) # a3 -r a3 then answer +— answer + 1
If answer > N /64 then output “FAIL” then output “PASS”

Lemma 26 Rec_Mod_Expon Self-Test meeis the specifications.

Proof: By design, b €y Uz, and y €y Uz,,. Because b € Zj and by the properties of
Mod_ExpSC, a; # b¥ mod R with probability at most 1/512 independent of b and 3;. If a; =

b¥ mod R, then a; € 2. In this case, a; # alnﬂ“ ‘RO = »12** mod R with probability at
most 1/512. Similarly, as # b¥2 mod R with probability at most 1/512. Thus, the probability that
oy ‘R a3 # bY mod R is at most 3/512. From this and Proposition 1 it can be verified that the
lemma follows. W

The incremental and total time of Rec_.Mod_Expon Self-Test are linear in the incremental
and total time of Mod_ExpSC(n, R, 3), respectively.

We finally describe the self-tester for modular exponentiation, which is based on Generic
Boostrap Self-Test. We make the convention that if any call to one of the subroutines returns
“FAIL” then final output is “FAIL” and otherwise the output is “PASS”.

Specifications of Mod_Expon Bootstrap Self-Test(n, R, §):

(1) If, for all i = 1,...,log(n), error(f, P,Uzy XUz, X Ugry) < 1/128 then output “PASS” with
probability at least 1 — 3.

(2) If, for some i = 1,...,log(n), error(f, P,Uzs x Uz, X Uipy) > 1/32 then output “FAIL” with
probability at least 1 — (.

Program Mod_Expon Bootstrap Self-Test(n, R, 3)

Fori=1,...,log(n), call Rec_.Mod_Expon Self-Test(2", R, 3/ log(n))

50

Lemma 27 Mod_Expon Bootstrap Self-Test meets the specifications.

Proof: Similar to the proof of Theorem 12 (page 46). M

The incremental and total time of Mod_Expon Bootstrap Self-Test are linear in the incre-
mental and total time of Mod_ExpSC(n, R, 8/ log(n)), respectively.

[2, Adleman Huang Kompella] have independently discovered a method of result checking the
exponentiation function without the restriction that @ and R be relatively prime. Their method
uses similar ideas of testing by bootstrapping. The incremental time of their result checkeris O((n+
m)log(n)), not counting calls to the modular multiplication program or the modular exponentiation
program. The total time of their result checker is O((T'(n,m) + T"(n,m))log(n)), where T(n,m)
is the running time of the modular multiplication program for multiplying two n bit numbers mod
a number of length m, and T"(n,m) is the running time of the modular exponentiation program
where both the base and modulus are of length m and the exponent is of length n.

51

Chapter 4

Approximate Result Checking and
Self-Testing /Correcting

In the notions of a result checker and self-testing/correcting pair considered so far, a result of a
program is considered incorrect if it is not ezactly equal to the function value. Some programs
are designed only to correctly approzimate the value of a function. In this chapter we introduce
approximate result checkers and approximate self-testers/correctors. An approximate result checker
checks that the program correctly approximates the function on a particular input. Similarly, an
approximate self-tester checks that the program correctly approximates the function on most inputs,
and an approximate self-corrector takes a program that approximates the function on most inputs,
and turns it into a program that approximates the function on all inputs. All of the functions
discussed in this chapter map the domain into Z or Z, for some positive integer q. The notions
can be naturally extended for functions whose ranges are metric spaces.

These results also apply to functions which are approximations of other functions, e.g. the
quotient function f’(z, R) = z div R can be thought of as an approximation of the integer division
function f(z,R) = (z div R,z mod R). We have already seen how to apply self-testing/correcting
to integer division, but we do not know how to devise a self-testing/correcting program for the
quotient function. On the other hand, in this and other applications, instead of the exact answer,
a reasonably good approximation of the exact answer is all that is required. This function is
important because it is a system function that is often used.

We present a generic technique for designing approximate self-correctors for all of the func-
tions with the random self-reducibility property, as well as the quotient function. We present
a generic technique for designing approximate result checkers/self-testers for all of the functions
with the linearity property which map to Z, as well as the quotient function. We know that
a self-testing/correcting pair can be easily made into a result checker, and similarly an approxi-
mate self-testing/correcting pair can be easily made into an approximate result-checker. Thus we
concentrate on the approximate self-testing/correcting pairs.

We assume that there is a well-defined metric space as the range of f in the following definitions.

DEFINITION 4.0.2 We use a ~¢ b to denote that |a — b] < (. Then a ~¢, b ~¢, ¢ implies that

a4 €

DEFINITION 4.0.3 We say that ¢ is A — good if P(z) ~a f(z), otherwise, we say that z is A — bad.

52

DEFINITION 4.0.4 (approximate result checker) Let 0 < Ay < A;. A (A, Az)-approximate result
checker for f is a probabilistic oracle program Ry that has the following properties for any program
P on input z and 3.

1. If £ is Ay — bad then Ry outputs “FAULTY” with probability > 1 — .
2. If P s Ay — good on all inputs, then Ry outputs “OK” with probability > 1 — .

DEFINITION 4.0.5 (approximate error) Let the A-approximate error of g and f with respect io D
be defined as apperr(f,g,D,A) = Pryeplz is A — bad).

DEFINITION 4.0.6 (approximates) If apperr(f,g,D,A) < € then we say that g (¢, A)-approximates
(£, D).

DEFINITION 4.0.7 (approximate self-testing) Let 0 < € < e < 1. Let 0 < A; £ Ay. An
(€1, €2, A1, Az)-approximate self-testing program for f with respect to D is a probabilistic oracle
program T that has the following properties for any program P on input n and 3.

1. If P (e1,4)-approzimates (f, D) then T}’ outputs “PASS” with probability at least 1 — .

2. If P does not (€3, A;)-approzimate (f,D) then Tf outputs “FAIL” with probability at least
1-8.

The value of ¢; should be as close as possible to €; and the value of A; should be as close
as possible to A; to allow as faulty as possible programs P to pass test T}p and still have the

approximate self-corrector C‘}D work correctly.

DEFINITION 4.0.8 (approximate self-correcting) Let0 < e < 1, Ay < Ay. An (e, Ay, Ay)-approximate
self-correcting program for f with respect to D is a probabilistic oracle program Cy that has the
following property on input n, z € I, and §. If P (e, A1)-approzimates (f,D) then for all z,
CF(z) =a, f(z) with probability at least 1 - .

We would like Ty and Cj to be both different and efficient as discussed previously.

DEFINITION 4.0.9 (approximate self-testing/correcting pair) Let A3 < A; < Az. A

(A1, A, Az)-approximate self-testing/correcting pair for f is a pair of probabilistic programs (T, Cy)
such that there are constants 0 < €1 < €2 < 1 and an ensemble of distributions D such that Ty is an
(€1, €2, A1, Az)-approzimate self-testing program for f with respect to D and C; is an (€3, A3, Asz)-
approzimate self-correcting program for f with respect to D.

It is easy to see that a (A1, Ag, As)-approzimate self-testing/correcting pair for f can be turned
into a (Ay,2A3)-approzimate result checker

We often use the following corollary to Proposition 1 (page 23) in the proofs of the lemmas in
this section.

53

Corollary 28 Let a and b be real numbers such that a < b. Let y1,...,yn be independent real-
valued random variables such that for eachi=1,...,m, Prla < y; < b] > 3/4. Let median be the
indez of the median value of y1,...,Ym. Then

Pr [a S Ymedian S b] 2 1- e‘m/u_

Proof: Foreachi=1,...,m,define z; = 1if a < y; < b and z; = 0 otherwise. Suppose ymedian
is not between a and b; without loss of generality suppose the ymedian < @. Then for at least m /2
of the 4, y; < a and consequently for at least m/2 of the ¢, z; = 0. But by Proposition 1, this
happens with probability at most e=™/12, MW

4.1 Approximate Self-Correcting

In a previous chapter, the property of random self-reducibility was used in designing self-testers/-
correctors. By knowing the value of the function on random inputs, this property allows one to
easily compute the function on a particular input. Consider the situation in which the approximate
value of the function is known on random inputs. Then, can the function be approximated on a
particular input? If this is true, we say that the function is approzimately random self-reducible.
We formalize the definition of approximate random self-reducibility.

DEFINITION 4.1.1 (approximate random self-reducibility) Let z € I,. Let ¢ > 1 be an integer.
We say that f is (A1, A;)-approzimate c—random self-reducibility if there is an easily computable
function Fyppran 0f 2, @1, ..,4; and g(a1),...,9(a.), where ay,...,a. are easily computable given
z, each a; is randomly distributed in I,, according to Dy} Fuppran has the property that if, for all
i=1,...,¢,9(a;) ®a, f(a;) then f(z) =a, Fappran(2, €1, - .., @¢, g(a1), ..., g(ac)). By easily, we
mean that the worst case computation time of the approzimate random self-reduction (ezcluding the
time for computing g on ay,...,a.) is smaller than that of computing f(z) on inputs from I,,.

The strength of this property is that it can be used to transform a program that approximates
a function on a large enough fraction of the inputs into a program that approximates f(z) with
high probability for every input z.

Integer division f(z,R) = (z div R,z mod R) was shown to be random self-reducible as fol-
lows: Given z € Zpgn, choose z; €y Zgryn and let 3 € Zpon be such that z = 21 +gon 2. Then
z mod R = z; mod R+pgz2 mod R, and z div R = z; div R+ 25 div R — ((z1 + z2) div 2"R)2" +
(1 mod R+z; mod R) div R (recall that the div by 2" R and thelast div R are easily computable).
However, the quotient function f(z,R) = z div R is not quite random self-reducible by this rela-
tionship because the quotient function does not provide z; mod R and z2 mod E. On the other
hand, we have that z div R = z; div R+ z9 div R — ((21 + #2) div 2"R)2" + (where € {0,1}.
There is no obvious way to easily compute ¢ using only the quotient function, though using this
relationship, we can still approzimate z div R as z; div R+ z2 div R — ((21 + z2) div 2" R)2™ and
know that our approximation is within 1 of the correct answer. Furthermore, if we have approxi-
mations to z; div R and z5 div R then we can use this relationship to approximate z div R. From
this it is easy to see that the quotient function is (A,2A + 1)-approximately random self-reducible.

1However, no independence between these random variables is needed, e.g. given the value of a; it is not necessary
that a; be randomly distributed in I, according to Dp.

54

Thus we have an example of a function which is not known to be random self-reducible, but is
known to be approximately random self-reducible.

In the following subsections, we show the specific details of the approximate self-correcting pro-
gram for the quotient function. We then give the generic approximate self-correcting program that
works for any approximate random self-reducible function, and upon which the all the mentioned
approximate self-correcting programs are based.

4.1.1 Quotient

We consider computing the quotient of an integer when divided by a positive number R. In this
case, f(z, R) = z div R. In a subsequent section, we give an approximate self-testing algorithm for
the quotient function. Suppose that the z € Zpsn. Assume that we have a program P such that P
(1/8, A)-approximates (f,Uzz,n X Ury)- We have seen that the quotient function is (A,2A + 1)-
approximately random self-reducible. The following program is a (1/8,A,2A + 1)-approximate
self-correcting program for f making oracle calls to P with respect to Uzg,, X Uggy. The input to
the program is n, R, £ € Zpy» and the confidence parameter 3.

Program Quotient Function Approximate Self-Correct(n, R, z,)

N « 12In(1/p)
Doform=1,...,N
Call Random Split(R2",z,z1,22,¢)
answery, — P(z1,R)+ P(z2,R) — ¢ 2"
Output median of answer;,...,answery

Lemma 28 The above program is a (1/8,A,2A + 1)-approzimate self-correcting program for the
quotient function,

Proof: Follows the outline of the proof of Lemma 30 (page 56). For i € {1,2}, z; €y Zran-
Thus, by the properties of P, z; is A-bad with probability at most 1/8, and consequently both
calls to P in a single loop return a A-good answer with probability at least 3/4. Since the quotient
function is (A,2A + 1)-approximate random self-reducible, if both z; and z; are A-good then
f(z) Xaa41 answery,. The lemma follows by a straightforward application of Corollary 28. W

The quotient function approximate self-correcting program is very simple to code, the only opera-
tions used are integer additions, comparisons and calls to the program P. Note that the approximate
self-correcting program is different, because the running time, not counting calls to P, is linear in
n, and it is also efficient, because the total running time, counting time for calls to P, is within a
constant multiplicative factor of the running time of P.

4.1.2 Generic Approximate Self-Correcting Program

Generic Self-Correct is a (X, A;,A;)-approximate self-correcting program for any (A, As)-
approximate random self-reducible function f with respect to D,. Let R be such that f maps to
Zg (if f maps to Z, we make the convention that R = c0). We assume A; < R/S8.

Program Generic Approximate Self-Correct(n, R, z, 3)

35

N < 12In(1/8)
Doform=1,...,N
Randomly generate a;,...,a. based on z
Fori=1,...,¢, o; — P(a;)
answery, — F(z,a1,...,8,,01,-..,0c)
Output Find-Modular-Median(N, answery,...,answery, R)

Function Find-Modular-Median(l, a1, a3,...,4},9)

I ¢ = oo, output median of ay,...,a; and return.
If majority of i satisfy (0 < a; < g/4 or 3¢g/4 < a; < q)
then split « q/2
else split — 0 =
Dofori=1,...,1
b; — a; 4+, split
¢ — median of by,...,b
Output ¢ —g split

Lemma 30 Generic Self-Correct is a (%,Al,Ag)-appromimate self-correcting program for f
with respect to D,,.

Proof: Because P (%,Al)-a,pproxjma.tes (f,D,), and because for each k¥ = 1,...,¢c, ax is
randomly distributed in Z, according to Dy, all ¢ of the a;’s are A;-good with probability at least
3/4 each time through the loop. If all ¢ of the a;’s are A;-good, then by the (A1, Ag)-approximate
random self-reducibility property of f with respect to D,, f(z) =a, answer,,. If R = oo, then
the median is within A, of f(z) by a straightforward application of Corollary 28. If R is finite,
since modular numbers can be thought of as lying on a circle, there is no notion of a median. The
idea is to choose a split point along the circle that is not within A, of f(z). We then treat the
points as lying on a total order, where the minimum is the first point after the split point and the
maximum is the last point before the split point. We find the median with respect to this order. By
Proposition 1 (page 23), the majority of the answers lie within A, of f(z) with probability at least
1 — . Assume the majority of the answers are within A, of f(z). If the circle is split at a point
somewhere further than A, from f(z), using reasoning similar to that in the proof of Corollary 28,
the median of the answers with respect to the order defined by the split will lie within A of f(z).
If f(z) ~a, 0 then because Ay < R/8, split — R/2 and thus the median of the answers with
respect to the order defined by the split is within Aj of f(z). Similarly, if f(z) =a, R/2, split — 0
and thus the median of the answers is within A, of f(z). If f(z) is not within A, of either 0 or
R/2, then regardless of where the split is made, the median of the answers is within Ay of f(z).
|

4.2 Approximate Linearity and Approximate Self-Testing

We saw that functions which have the linearity property can be self-tested. In this section we
show that programs which approximate any linear function which maps to the integers can be
approximate self-tested. As mentioned before in the discussion of approximate self-correcting,
there are functions such as the quotient function, where the linearity property does not hold,

56

but something very close to it does. We call such functions approzimately linear. We show that
programs which approximate a linear mapping from a given domain to the integers can be also
be approximate self-tested. This method applies to all linear functions which map to the integers
as well as the quotient function. All of the results in this section are easily stated for linear or
approximately linear functions that map to infinite cyclic groups.

To give some idea of how the method works, we concentrate on the quotient function. We
define the approximate linearity property for functions which map to the integers, and give a
generic approximate tester that works for any function with this property (and thus works for any
function with the linearity property as well).

4.2.1 Quotient Function

For positive integers z and R, let fr(z) = z div R. (As before, we are viewing this as a function
of one input z, where R is a fixed but arbitrary positive integer.) Because the approximate self-
correcting program for the quotient function relies on a program that is approximately correct for
most inputs with respect to a particular R, the approximate self-testing program for the quotient
function is designed to approximate self-test with respect to an input divisor R. This is an important
motivation for constructing efficient approximate self-testing programs, because the approximate
self-testing program is executed each time a new divisor is used.

There is one critical test performed by the approximate self-tester. Let z; and zo be randomly,
independently and uniformly chosen in Zgon, and set z +— =z +g2n 2. Note that fr(z) = fr(z1)+
fr(z2) + ¢ where ¢ € {0,1}, i.e. fgr is almost a linear function of its inputs. The A-approzimate
linear consistency test is

“Is Pp(z) =a Pr(z1) + Pr(z2)?",

and the approzimate linear consistency error is the probability that the answer to the approximate
linear consistency test is “no”.

Our main theorem with respect to the approximate self-tester for fg is that the linear consistency
error gives good bounds on apperr(fr, Pr, Uzp,n,A2): there are constants 0 < % < 1 and 9’ > 1
such that apperr(fr, Pr, Uzy,n, A1) is at least 9 times the approximate linear consistency error, and
that apperr(fr, Pr, Uzg,n,A2) is at most ¢ times the approximate linear consistency error. Thus,
we can indirectly approximate apperr(fr, Pr,Uzg,n,Az) by instead estimating the approximate
linear consistency error.

Program Quotient Function Approximate Self-Test (n, R, 3)

N = 0(In(1/8))

t—20

Doform=1,...,N
Call Quotient_Linear_Test (n, R,ans,3A; + 1)
t—1t+ans

Ift/N > 1/256 then “FAIL”

Quotient_Linear_Test (n, R, ans)

57

ans — 0

Choose z €y Zgan

Call Random _Split(R2", z, 21, Z2,¢)

If |P(z1,R) + P(z, R) — P(z,R) —c-2"| 2 3A;1 + 1 then ans < 1

Theorem 13 For A, > 18A; + 6, the above program is an (1/768,1/8, Ay, Ay)-approzimate self-
testing program for the quotient function with any R.

Proof: Corollary of Theorem 14 from the subsection on generic approximate self-testing. W

The only non-trivial lines of code in the approximate self-testing program are generation of random
numbers, calls to the program P, integer additions and integer comparisons.

4.2.2 Generic Approximately Linear Self-Testing

In this section, we describe a generalization of the quotient function approximate self-tester to
functions f mapping a group G into Z. In all cases, the resulting approximate self-testing program
is extremely simple to code, different and efficient.

Let G be a finite group with group operation +¢. For y € G, let y~! denote the inverse of y.
Let f: G — Z be a function. Intuitively, f is hard to compute compared to either +¢ or +.

Let Uz be the uniform probability distribution on G. We say that f has the A-approzimate
linearity property if:

(1) It is easy to choose random elements of G' according to Ug-

(2) Fapplin is an easily computable function with the property that, for any pair ;1,22 € G,
Fuppiin(21,22) € 2 and furthermore f(z1+g22) a f(21) + f(22) + Fapplin(21, 22)-

Note that if f(z1) ~a, g(z1) and f(z2) ~a, g(z2) then f(zi+a22) Raa4a 9(21) + g(z2) +
-Fa.pplin(-"':lsI 32)'

The approximate linearity property is a special case of approximate random self-reducibility.

Let P be a program that supposedly computes f such that, for all y € G, P(y) € 2.
Let A’ — A + 3A;, and Ay — 6A’. Then Generic Approximate Self-Testing Program is an
(€2/12,€, A1, Ay)-approximate self-testing program for f with respect to Ug. Note that the quo-
tient function is 1-approximately linear. The approximate self-tester for the quotient function is
based on Generic Approximate Self-Testing Program, where G = Zpgn with addition mod R2" as
the group operation.

Generic Approximate Self-Testing Program (¢, 3, A’)

N — B 1n(2/8)

t—0

Doform=1,...,N
Call Generic_Linear_Test (ans, A’)
t—14+ ans

If t/N > €%/4 then “FAIL” else “PASS”

58

Generic_Linear_Test (ans, A’)

randomly choose z; € G according to Ug.
randomly choose z, € G according to Ug.
If P(z14672) ®ar P(21) + P(23) + Fapplin(z1, 22) then ans « 1 else ans « 0

We introduce some notation and provide motivation for why the approximate self-testers work. For
each y € G, define the discrepancy of y to be

disc(y) = f(y) — P(y)-

Because of the approximate linearity property, part (2), and because the approximate self-testing
program computes Fyypin(Z1, 22) correctly on its own, with A’ — A43A,, we have that P(z;+gz;)
Al P(a":1) + P(32) + Fapp]jn(xlszZ) imp]jes

disc(z1+gz2) =ar disc(z1) + disc(zz).

Theorem 14 If f has the A-approzimate linearity property, then the Generic Self-Testing Program
is (€2/12,€, Ay, Ag)-approzimate self-testing for (f,Ug), for any 0 < € < 1/8 where A is arbitrary
and Aj is related to Aq via the following: A’ = A 4 3A,, and Ay = 6A.

The following notation is used throughout the rest of this section:

o ¢ = Prf|disc(z1+gz2) — disc(z;) — disc(z;)| > A’] when z; and z; are randomly and inde-
pendently chosen according to Ug. -

o 11 = Prf|disc(y)| > A;] when y is randomly chosen in G according to Ug.

e 1, = Prf|disc(y)| > Ay] when y is randomly chosen in G according to Ug.

Since A 2> Aq, 1 2 1,

Uncapitalized letters from the end of the alphabet denote elements chosen randomly from G
according to Ug, e.g. z,y, z, whereas uncapitalized letters from the beginning of the alphabet
denote fixed elements of G, e.g. a, b, c. +¢ denotes addition modulo R2".

Theorem 15 € > 2.

Before giving the proof of this theorem, we prove some intermediate lemmas. We assume that
¢’ < 1/64in Lemmas 31, 32, and 33. Let § satisfy the equality 62 = €. Because ¢ < 1/64, § < 1/8.

Lemma 31 Ve € G, 3a’ € Z such that Pryey,[disc(z+ga) =aar disc(z) +a’ + (] > 1 — 26.
Proof: [of Lemma 31] Let § = {a| Przey[disc(z+ga) mar disc(z) + disc(a)] > 1 - 6. By a simple

counting argument, |5|/|G| > 1 — 6. Forall a € §, set a’ — disc(a).

59

If a = b+gc, and b,c € §, let a’ — b’ + ¢/ (if more than one pair of elements of § sum to a, then
pick one pair arbitrarily). Then

Pr [disc(z+gbtge) =ar disc(z+gb)+ ¢’
z€ldg
mar disc(z)+ b + ¢
= disc(z) +a'] > 1 - 26.

Thus Preeyg[disc(z+ga) aoar disc(z) + /] > 1 — 26.
Let T = {a| Pryey,[disc(z+ga) ~ppr disc(z) — o’] > 1 — 26}.

Now we claim that T = G and Lemma 31 follows. To prove the claim, it is enough to show that
for a € G, there exists an a1, a; € § such that a;+gas = a. Pick a; € G uniformly at random, and
let a3 «+— a—gay. aj is then also distributed uniformly in G. Since § < 1/2, both a;,a; € § with
probability at least 1 — 26 > 0. Thus there exists some pair a1, a3 € § such that a1t+ga; =a. M

Lemma 31 leads to the definition of the function h from G to Z defined as follows: For all a € G,
let h(a) = a’, where a’ is the element of 2 described in Lemma 31.

Lemma 32 For all a,b € G, h(a+¢b) ~¢ar h(a) + h(b).

Proof: [of Lemma 32]
gzﬁ [disc(z) + h(a) + h(b) ~2a: disc(z+ga) + h(b)
z€Ug

~gar disc(z+ga+gh)

Roar disc(z) + h(a+gh)] > 1 — 66.
Thus Proeyg[disc(z) + h(a) + A(b) ~gar disc(z) + h(a+gb)] > 1 — 66. This probability is strictly
greater than zero because § < 1/6, and thus h{a+gb) ~gas h(a) + (3). M
Lemma 33 Foralla € G, |h(a)| < 6A’.

Proof: Let #; be such that h(#;) = mingegh(z) and t; be such that h(t;) = max,egh(z). Then
by Lemma 32, h(t1+at1) < 2h(t1) + 6A". If h(#;) < —6A/, the minimality of k(%) is contradicted
s0 h(t;) > —6A’. Similarly A(t;) < 6A”. N

Proof: [of Theorem 15] By the way function h was defined, the disc function (8,0)-approximates
(h,Ug). Thus by Lemma 33, P (§,6A')-approximates (f,iug). N
Theorem 16 ; > €¢'/3.
Proof: Because ¢, = Prf|disc(y)| > Ai], Pr|disc(z1+g23)|, |disc(z;)], |disc(z2)| € Aq] > (1-
311), and consequently ¢ < Pr[disc(z1+c22) ~3a,41 disc(z;) + disc(z2)] > 1-3¢; M
Proof: [of Theorem 14]

Similar to proof of Theorem 4 (p. 35). M

60

4.3 Open Question

The generic self-testing method given in this chapter works for any function with the linearity
property which maps to an infinite cyclic group, as well as the quotient function. Is there a
modification of this technique which gives a self-tester for any function with the linearity property
that maps to a finite cyclic group?

61

Chapter 5

Libraries and Linear Algebra

Often programs for related functions are grouped in packages; common examples include packages
that solve statistics problems or packages that do matrix manipulations. It is reasonable therefore to
use programs in these packages to help test and correct each other. We extend the theory proposed
in [15, Blum] to allow the use of several programs, or a library, to aid in testing and correcting.
We show that this allows one to construct self-testing/correcting pairs for functions which did not
previously have efficient self-testing or self-correcting programs, or even result checkers. Thus, the
self-testing/correcting pair is given a collection of programs, all of which are possibly faulty, and
may call any one of them in order to test or correct a particular program. Working with a library
of programs rather than with just a single program is a key idea: enormous difficulties arise in
attempts to result check a determinant or rank program in the absence of programs for matrix
multiplication and inverse.

The notion of libraries is useful for another reason as well: Consider again the problem of
designing a self-testing/correcting pair for the determinant. Many of the proposed solutions require
matrix multiplication. However, matrix multiplication and determinant are equivalent problems
with respect to asymptotic running times [3, Aho Hopcroft Ullman]. Therefore, a determinant self-
testing/correcting pair using matrix multiplication will not be quantifiably different from a program
for the determinant. On the other hand, since matrix multiplication can be self-tested/corrected,
one should not consider the complexity of the matrix multiplication routine towards the complexity
of the self-testing/correcting pair for the determinant. In other words, the complexity of the self-
testing/correcting pair should be evaluated as the complexity of the unchecked parts of the self-
testing/correcting pair. The notion of libraries gives us a clean way of evaluating the complexity
of the unchecked parts of the self-testing/correcting pair.

As an example of self-testing/correcting pairs written for a library of programs, we show how
to self-test/correct a library of possibly fallible programs for matrix multiplication, matrix inverse,
determinant and rank. A library of self-testing/correcting pairs based on similar principles can
be constructed for the following functions: integer mod, modular multiplication, modular expo-
nentiation, and multiplicative inverse mod R. With such a library, the self-testing/correcting for
all functions can be done with only a small number of additions, subtractions, comparisons and
generation of random numbers.

Previously, [39, Kannan] provides elegant program result checkers for the problems of computing
the determinant and rank of a matrix, but they are not efficient. Our self-correcting/testing pairs
for determinant and rank are efficient, but they rely heavily on allowing the pair to call a library of

62

linear algebra programs instead of restricting calls to a single program that supposedly computes
determinant or rank.

The results in this chapter were done in collaboration with Manuel Blum and Michael Luby
[20, Blum Luby Rubinfeld 2], [21, Blum Luby Rubinfeld 3].

5.1 Definitions

We give the following definitions, which generalize the previously given result checking and self-
testing/correcting definitions.

DEFINITION 5.1.1 (library) Let c be a positive integer. A library is a family of functions f1,..., f¢
with a corresponding set of input universes I1,...,7¢. A distribution set for a library is a family
Dl,..., D¢ where D' is an ensemble of distributions on inputs It to fi. An error set for a library
is a family of constants €, ..., €, where 0 < €' < 1.

DEFINITION 5.1.2 (library result checking) A result checking program for f! with respect to a li-

P

brary f1,..., f¢ with input universes I1,...,I¢ is a probabilistic program R?l »F% that on input

z € I' and makes calls to P!,..., P<, Ril““‘}x has the following properties:

1. If foralli=1,...,c and for all y € I?, fi(y) = Pi(y) then REI""‘PC outputs “PASS” with
probability at least 1 — .

2. If f1(z) # PY(z) then Rfll“"'Pc outputs “FAIL” with probability at least 1 — 3.

DEFINITION 5.1.3 (library self-testing) A self-testing program for a library f1,..., f¢ with input
set I, ...,1I¢, distribution set set D!,..., D¢, error set €l,...,€§ and error set c%, .-+, €5, where,
foreachi=1,...,c, € < €, is a probabilistic progrg:m T that has input n and § and makes calls
Pl,.. P¢
1.1

to P1,..., P¢, where P' supposedly computes fi. T has the following properties:

1. If, for all i = 1,...,¢, error(ff, P!, Di) < € then T‘Dl1 ":c outputs “PASS” with probability
I ﬂ n 1 f I’"!! J
at least 1 — 3.

2. If, forsomei=1,...,c, error(f*, P, Di) > €, then T};l""‘}:c outputs “FAIL” with probability
n 2 Tinf 2
at least 1 — 3.

DEFINITION §.1.4 (library self-correcting) A self-correcting program for f1 with respect to a library
fly. o, f© with input set I1,...,T¢, distribution set set D!,...,D¢, and error set €!,...,¢ is a
probabilistic program C“:ll"“‘Pc that on input n, z € I} and 8 makes calls to P,..., P° to compute
C;T '""Pc(z). C;l""'Pc has the property that if, for all i = 1,...,¢, error(f*, P*, D) < € then, for
allz € I}, Cfi P (z) = fU(z) with probability at least 1 — .

DEFINITION 5.1.5 (library self-testing/correcting pair) A self-testing/correcting pair for f1 with
respect to a library f1,..., f¢ is a pair of probabilistic programs (T, C) with the following prop-

erties. Tﬁt_‘_‘_‘”}.fc is a self-testing program for the library with some input set I1,. .., T¢, distribution

63

. 1 e . .
set set D',..., D, and pair of error sets €l,...,e and €l,..., €. C; wP is a self-correcting
program for f' with respect to the library with the same input set I1,...,7¢ and distribution set
D1,...,D° and with an error set €,...,¢%, where for alli=1,...,¢c, 0< €l < €& <€ < 1.

As before, we require that both 7' and C be different than any correct program for f. To
enforce this condition, we say that T and C are different than any correct program for f1 if the
running time of T and C, not including the time for calls to the programs Pl,..., P, are smaller
than the fastest known running time of any correct program for computing f. We say that T and
C are efficient if the total running time of T and C, including the time for the calls to the program
Pl,...,P¢, are within a constant multiplicative factor of the running time of P!, assuming that
the running times of P2,..., P¢ are reasonable with respect to the running time of Pl.

A typical way to build a self-testing/correcting pair (T,C) for f! with respect to a library
f1, f? is as follows. First, build a self-testing/correcting pair (T”,C") for f2. Now consider building
the self-testing program T for f1, where program P! supposedly computes f! and P2? supposedly
computes f2. The typical situation is that T, in order to self-test P!, needs to compute f2 on
various inputs. Instead of computing f2 directly, T first uses 7" to test how well P2 computes "
If P2 passes the test then T uses the self-corrector €’ for f2, which makes calls to P2, to correctly
compute f? whenever needed. Similarly, the self-corrector C' may need to compute f2 on various
inputs, in which case it uses C’ which in turn makes calls to P2.

5.2 The Linear Algebra Library

We now show how to self-test/correct a library of possibly fallible programs for matrix multi-
plication, matrix inverse, determinant and rank. We use the following notation throughout this
section.

DEFINITION 5.2.1 (matrix notation) Let M, y,[F] be the set of n x n matrices with entries from a
field F, and let Uy, . (r) be the uniform distribution on Muxn[F]. For all A € Myy,[F], let det(A)
be the determinant of A and let rank(A) be the rank of A. For all r € {0,...,n}, let I, be the
n X n matriz where all eniries are 0 except that the first r entries along the main diagonal are 1,
and thus ID, . is the identity matriz. For all r € {0,...,n}, M1, [F] be the set of matrices in
M, [F] of rank r, and let Upngr, 17 be the uniform distribution on M7, [F). Thus, M2 . [F] is
the set of invertible matrices in M, x.[F).

5.2.1 Matrix Multiplication

The input to matrix multiplication is A, B € M,x.[F], and the output is A - B. The input to
matrix inverse is A € Muxn[F], and the output is A=1 if it exists, and “NO” otherwise. The input
to determinant is A € Maxn[F], and the output det(A). The input to rank is A € M,yn[F], and
the output is rank(A).

For the analysis of the running time, we assume that field operations can be performed in
constant time, and that an element from F can be randomly chosen uniformly in constant time.
The self-testing/correcting pairs that we present are all different and efficient.

Program Freivalds_Checker referred to below is given in Chapter 2, page 17.

64

Specifications of Matrix_Mult Self-Correct(n, A, B, §):
If error(f, P,Uns, n1F] X UbMnxa[F]) < 1/8 then the probability that the output is equal to A- B is
at least 1 — 3.

Program Matrix_Mult Self-Correct(n, A, B, 8)

Dofori=1,...,00
Choose A €y Muxn[F)
Choose By €y Mpxn[F)
Ay — A— Ay
By « B—- B
C P(AI:!BI) + P(Ah -82) + P(AZ';BI) + P(A2:B2)
If Freivalds_Checker(n, A, B,C,) =“PASS” then output C and HALT

Lemma 34 Matrix_Mult Self-Correct meets the specifications. Furthermore, the ezpecied total
time is O(T(n) + n%1n(1/B)), where T(n) is the running time of P on inputs from M,x.[F] X
Muxn[F]'

Proof: Ay €y Muxn[Fl, A2 €u Muxn[F), B1 €u MuxalF), B2 €y Muxa[F] and, although
A; may depend on Ay and B; may depend on By, A; and A, are independent of B; and B;.
Hence P(A;, B;) # A; - Bj with probability at most 1/8, and thus C = A - B with probability
at least 1/2 at each iteration. Let p be the probability that the final output of Matrix_Mult
Self-Correct is equal to A - B. With probability at least 1/2 in the first iteration C = A- B, in
which case Freivalds_Checker returns “PASS”. With probability at most 1/2 in the first iteration,
C # A- B, in which case Freivalds_Checker returns “FAIL” with probability at least 1 — 3, and
the second iteration starts. Thus p > % + %(1 — B)p. From this, it can be verified that 1 — p is at
most 3.

The expected total time of Matrix_Mult Self-Correct is at most O(T(n)+n%In(1/8)) because
the expected number of iterations until C = A - B is at most two. H

The self-testing program for matrix multiplication program is different. The following step
is executed O(In(1/3)) times to obtain a good estimate of error(f, P,Ups,n(F] X UMpyn[F])- In-
dependently choose A €y Muxn[F] and B €y M,x.[F)] and set C « P(A,B). If the output
of Freivalds_Checker(n, A, B,C,1/4) is “PASS”, then the answer is 0 from the step, and if
the output is “FAIL” then the answer is 1. It is easy to verify that if error(f, P,Up, .17 X
UptyalF]) = 1/8 then the fraction of 1 answers is at least 1/16 with probability at least 1 — 3,
and if error(f, P,Ups, . [F] X Ubyn(F]) < 1/32 then the fraction of 1 answers is at most 1/16 with
probability at least 1 — 8. This yields a (1/32,1/8)-self-tester for matrix multiplication.

5.2.2 Matrix Inversion

We next design a self-correcting program for matrix inversion. Hereafter, we call Matrix_Mult
Self-Correct (abbreviated MMSC) whenever we want to multiply matrices together. The as-
sumption is that MMSC uses a program P, has already been self-tested and “PASSED” to com-
pute matrix multiplications. To avoid cluttering the explanation with messy details, we assume
that P, “PASSED” for good reason, i.e. it has error probability at most 1/8, and thus MMSC
does self-correct.

65

We use program Gen_Inv_Matrix(n) as a subroutine in our code to choose A €y M2, [F].
Gen_Inv_Matrix(n) is due to [54, Randall], and a description of it can be found there. The
incremental time of Gen_Inv_Matrix(n) is O(n?), excluding the time for computing the one
required matrix multiplication. We assume that Gen_Inv_Matrix(n) calls MMSC in order to
compute the matrix multiplication. Thus, Gen_Inv_Matrix(n) has a small probability of error,
which we ignore for purposes of clarity. Gen_Inv_Matrix/Det(n), also due to [54, Randall], in
addition to outputting A € M7, .[F], also outputs det(A).

Specifications of Matrix_Inv Self-Correct(n, 4, §):
If error(f, P,HM:“[F}) < 1/8 and A is invertible then the output is A~! with probability at least
1 - 4. If Ais not invertible then the output is “NO” with probability at least 1 — 3.

Program Matrix_Inv Self-Correct(n, A, §)

N « 12In(1/8)
Dofor:=1,...,N
R —~Gen_Inv_Matrix(n)
R' — MMSC(n, A, R,1/32)

R" « P(R')
If R” = “NQ” then answer; — “NO”
Else

A' —« MMSC(n, R, R",1/32)
If It,,, # MMSC(n, A, A’,1/32) then answer; — “NO” else answer; « A’
Output the most common answer among {answer;:i=1,...,N}

Lemma 35 Matrix_Inv Self-Correct meets the specifications.

Proof: Suppose that A is invertible. Then, because R € uM.?xn[ﬂ’ A-Rey UM:“[FJ- If the first
call to MMSC is correct then R’ = A- R. Because the first call is correct with probability at least
31/32, the distance between the distribution on R’ and UM;'“[F] is at most 1/32. Consequently
R" = P(R') = R"-! = R-1. A-1 with probability at least 7/8 — 1/32. If R” = R~! . A~! and
the second call to MMSC is correct then A’ = A~1. If the third call to MMSC is correct then
answer; = A~1. Since these last two calls to MMSC are both correct with probability at least
15/16, answer; = A~! with probability at least 7/8 — 1/32 — 1/16 > 3/4. Now suppose that
A is not invertible. Then, for every A, I? . # A’'- A. Since the last call to MMSC is wrong
with probability at most 1/32, it follows that answer; = “NO” with probability at least 31/32.
Proposition 17 shows that 12In1/8 trials are sufficient to guarantee the result. M

As was the case for the self-testing program for matrix multiplication, the self-tester for matrix
inversion is different. Notice that inputs need only be self-tested with respect to L(M:m[}.-]. The
following step is executed O(In(1/8)) times to obtain a good estimate of error(f, P,Upn_(r))- Set
R « Gen_Inv_Matrix(n), and set R’ — P(R). If I*,,, = MMSC(R, R',1/64) then the answer
is 0 from the step, and otherwise the answer is 1. It is easy to verify that if error(f, P;UM;;M[F])
> 1/8 then the fraction of 1 answers is at least 1/16 with probability at least 1 — 8, and if
error(f, P,Upn (F]) < 1/32 then the fraction of 1 answers is at most 1/16 with probability at least

1 — B. This yields a (1/32,1/8)-self-tester for matrix inversion.

66

5.2.3 Determinant

We next design a self-correcting program for determinant. Hereafter, we call Matrix_Inv Self-
Correct (abbreviated MISC) whenever we want to find the inverse of a matrix. The assumption
is that MISC uses a program P, has already been self-tested and “PASSED” to compute matrix
inversions. To avoid cluttering the explanation with messy details, we assume that P, “PASSED”
for good reason, i.e. it has error probability at most 1/8, and thus MISC does self-correct.

Specifications of Determinant Self-Correct(n, 4, §):
If error(f, P,Upyn r]) < 1/16 then the output is det(A4) with probability at least 1 — /.

Program Determinant Self-Correct(n, A, §)

N < 0(n(1/8))
Dofori=1,...,N
If MISC(n, A,3/4) = “NO” then answer; — 0
Else
R —~Gen_Inv_Matrix(n)
R' — MMSC(n, A, R,1/16)
dr — P(R)
dr — P(R')
If dg = 0 then answer; « 0 else answer; «— dp/dp
Output the most common answer among {answer; :i=1,...,N}

One can easily prove the following lemma:
Lemma 36 Determinant Self-Correct meets the specifications.

As was the case for the self-testing program for matrix inversion, the self-tester for determinant
is different and the inputs need only be self-tested with respect to ZJM;.“[F-]. The following step is
executed O(ln(1/8)) times to obtain a good estimate of
error(f, P,HM:“[F}). Set (R,d) « Gen_Inv_Matrix/Det(n), and set &' «— P(R). If d = d’
then the answer is 0 from the step, and otherwise the answer is 1. It is easy to verify that if
error(f, P,Upn _[r)) 2 1/8 then the fraction of 1 answers is at least 1/16 with probability at least
1 - B, and if error(f, P,Upn [r)) < 1/32 then the fraction of 1 answers is at most 1/16 with
probability at least 1 — 8. This yields a (1/32,1/8)-self-tester for matrix determinant. '

5.2.4 Matrix Rank

We finally design a self-testing/correcting pair for Matrix Rank. One interesting aspect of the
matrix rank self-corrector is that to self-correct an n X n matrix we call the program on 2n X 2n
matrices,

DEFINITION 5.2.2 (distribution for matrix rank) Let D, be the distribution defined by B randomly
chosen as follows. Choose r €y {0,...,n} and then choose B €y MT,,[F].

67

Let A € Myxa[F].

Specifications of Matrix_Rank Self-Correct(n, A, 8):
If error(f, P, Dz,) < 1/16 then the output is rank(A) with probability at least 1 — 3.

Program Matrix_Rank Self-Correct(n, 4,)

N 0(1a(1/8))
Dofori=1,...,N
Choose r €4 {0,...,n}
Fo_ A I,
4 [I‘El')(n Ir‘;.)(n
R —Gen_Inv_Matrix(2n)
R’ — MISC(2n, R,1/16)
§ — MMSC(2n, A", R,1/16)
T —« MMSC(2n, R', 5,1/16)
answer; «— P(T) —r
Output the most common answer among {answer; : i = 1,.. N}

Lemma 37 Matrix_Rank Self-Correct meets the specifications.

Proof: If the call to MISC and the two calls to MMSC are correct then R’ = B-1, § = AR and
T = R™!-A’-R in which case rank(T') = rank(A4’) = rank(A)+r. Let &, be the d]StleuthIi defined
by B where B is randomly chosen as follows. Choose r €y {0, .. .,n} and B €y M;:;;?(A)[F]

Because R €y M3}y ,,[F], we claim that the distribution &£}, on T can be expressed in the form

%‘5‘21; + if‘.!ﬂs
where Fj, 1s some distribution on My, x2.[F]. The case when T is chosen a,ccordmg to &, with
probability 13 1s corresponds to the case when each call to MISC and MMSC is correct, which
happens with probability at]east 3 independent of R, and thus in addition rank(T) = rank(A) +r.
It is not hard to verify that for a.ll B € Manyan[F), E2n[{B}] < 2D;,[{B}]. From this and the
assumption that error(f, P, D,,) < {5 it follows that

! M=
8211“

Pr[P(B) # rank(B)] < %

when B is randomly chosen according to £,. From this and the fact that £ = 26am + S Fon it
follows that 15 1 5

Pr[P(T) # rank(A) + r] < T + E o

Thus, for each i, Prlanswer; = rank(A)] > 1 > 1. The lemma follows from a slight modification
of Proposition 1. M

As was the case for the self-testing program for matrix inversion, the self-tester for matrix rank
is different.

Specifications of Matrix_Rank Self-Test(n, 3):

68

(1) If error(f, P, Dy) < 1/64 then the output is “PASS” with probability at least 1 — /3.
(2) If error(f, P,D,) > 1/16 then the output is “FAIL” with probability at least 1 — 3.

Program Matrix_Rank Self-Test(n, §)

answer «
N 0(In(1/8))
Dofor:i=1,...,N
Choose r €y {0,...,n}
R —~Gen_Inv_Matrix(n)
R’ « MISC(R, 1/256)
S — MMSC(I},,., R,1/256)
T — MMSC(R, §,1/256)
r' — P(T)
If r £ 1" then answer « answer +1
If answer > N/32 then output “FAIL” then output “PASS”

Lemma 38 Matrix_Rank Self-Test meeis the specifications.

Proof: It is easy to verify that if error(f, P,D,) > 1/16 then the fraction of 1 answers is at least
1/32 with probability at least 1 — 3 and if error(f, P,D,) < 1/64 then the fraction of 1 answers is
at most 1/32 with probability at least 1— 5. MW

69

Chapter 6

Result Checkers for Parallel
Programs

Many result checkers in the sequential model of computation have been found for various types of
problems. However, a user is unlikely to be willing to use a sequential result checker to verify the
correctness of a result produced by a fast parallel algorithm. In this chapter, we extend the program
result checking framework to the setting of checking parallel programs and find general techniques
for designing such result checkers. For example, we find techniques for result checking programs
which compute certain types of functions that have the property that they can be computed be
computed “indirectly”, by calling the program on another, related input. We also present techniques
based on quickly reconstructing the computation of a simple sequential algorithm, on duality and
on constant depth reducibility among problems. We find result checkers for many basic problems
in parallel computation.

The difference in the complexity of solving a problem as compared to the complexity of result
checking a problem is often very dramatic. For example, we show that there are P-complete
problems (evaluating straight-line programs, linear programming) that have very fast (even constant
depth) parallel result checkers. Integer GCD is not known to be in RNC, yet a logarithmic depth
parallel result checker exists for it [2, Adleman Huang Kompella]. Maximum Matching is not known
to be in NC (though it is in RNC), and it has a deterministic NC result checker. Multiplication,
parity and majority all have lower bounds of Q(logn/loglogn) depth, yet all have (completely
different) constant depth result checkers.

The results in this chapter also appear in [57, Rubinfeld 1).

6.1 The Parallel Program Result Checking Model

A parallel result checker must satisfy all of the same requirements as a sequential result checker
mentioned in Chapter 2, with the following added remarks which are specific to the parallel pro-
gramming setting.

The parallel result checker is allowed to call the program as many times as desired at each
parallel step.

Both the running time of the parallel checker and the number of processors used by the parallel
checker are quantities that are of interest. The incremental time (parallel depth) of the result

70

checker includes the parallel time required by the result checker and the time to write the inputs to
and read outputs from the program, but does not include any of the running time of the program.
The incremental number of processorsincludes the number of processors used by the parallel checker
and the processors required to write the inputs to and read outputs from the program, but does
not include any of the processors used by the program.

The total running time of the result checker includes the parallel running time of the result
checker and that of the program when called as a subroutine. This is the actual time required to
perform the check. The total number of processors used by the result checker includes the number
of processors used by the result checker, and those used by the program. This is the actual number
of processors required to perform the check.

In order to enforce the result checker to be quantifiably different from any program which
computes the function, we make the following definitions: Suppose that any parallel program
running on a particular parallel model of computation (i.e. EREW PRAM, CRCW PRAM) which
compute the function f requires at least d depth. Suppose the number of processors required
when computing f in depth d is p. We say a parallel result checker is quantifiably different if it
either (1) the incremental time is o(d) or (2) the incremental time is O(d) and (simultaneously)
the incremental number of processors is o(p) on the same model of parallel computation. All of the
result checkers are quantifiably different.

For efficiency purposes we would also like to minimize the total parallel running time and total
number of processors, All of the result checkers call the program at most once on any computation
path, so the total depth is big oh of the depth of the program being checked. Many of the result
checkers have the property that the total number of processors used is big oh of the number of
processors used by the program (e.g. sorting, parity).

When describing the total running time of a result checker, we will use D(n) to refer to the
depth of the program running on an input of size n, and N(n) to refer to the number of processors
used by the program when running on an input of size n. None of the result checkers described
here ever needs to call the program more than once along any computation path.

In all of the examples, the result checker first calls the program on the input which is being
checked.

All of the examples in this chapter are written for the arbitrary and priority CRCW PRAM
models.

6.2 Simple Parallel Result Checkers

Clearly the existence of a fast sequential result checker for a problem does not imply the existence of
a fast or efficient parallel result checker because of the difficulty of parallelizing the result checker. In
fact, some of the major ideas used in checking sequential programs do not seem to be as applicable in
checking parallel programs. For example, one of the ideas proposed in [15, Blum] for the sequential
checking of decision problems is the idea of reducing a search problem to a decision problem.
This gives a simple proof of the correctness of a ‘yes’ instance. Results in [52, Mulmuley Vazirani
Vazirani] show that there are techniques for reducing a search problem to a decision problem for
weighted search problems. However results in [44, Karp Upfal Wigderson 2] about the difficulty of
reducing search to decision in NC indicate that in general this idea could be difficult to utilize in
parallel.

71

There are many problems for which the sequential result checking algorithm can be converted
to a parallel result checking algorithm in a straightforward manner. For example, the deterministic
result checker algorithm for sorting presented in Chapter 2 can be easily implemented in constant
depth with O(n) processors.

A sequential result checker for a program that finds the rank of a matrix (over a finite field)
is described in [39, Kannan]. This result checker uses the ideas of interactive proofs to check that
the program is correct by making sure that it is consistent with itself. By slightly changing it, the
sequential result checker can be parallelized to run in O(logn) depth. The sequential result checker
for Integer GCD [2, Adleman Huang Kompella] uses ideas from interactive proofs and can be made
into a parallel result checker. It runs in O(logn) depth, with n processors.

Another example of a function for which there is a simpel result checker is that of the maximal
independent set problem: simply verify that the output is an independent set, and then verify that
it is maximal. This can be done in constant time with O(n 4 m) processors where n is the number
of nodes and m is the number of edges. Furthermore, the checker is deterministic, and no other
calls to the program are made. In contrast, the best known algorithms for this problem use at least
logarithmic parallel time [36, Goldberg Spencer], [5, Alon Babai Itai], [49, Luby].

6.3 Computability by Random Inputs

In Chapter 3, [20, Blum Luby Rubinfeld 2] we show that one can design result checkers for many
functions that have the property of random self-reducibility - that the function can be computed by
computing the function on one or more “random” instances. Here we show that often the property
that a function can can be computed by computing the function on one or more “almost-random”
instances can also be utilized in designing a result checker.

We concentrate on symmetric functions - functions on n bits whose output depends only on the
numberof 1’s in the input. Thus, the value of the function can be computed indirectly by computing
the function on a “shuffle” (random permutation) of the input bits. However, the techniques in this
chapter are applicable to other functions as well. For example, using the technique in Section 6.3.2,
the running time of the sequential self-tester for the matrix rank function given in [21, Blum Luby
Rubinfeld 3] is dramatically improved in Chapter 5, page 67, [20, Blum Luby Rubinfeld 2].

The techniques in this section are based on testing the program on random inputs for which
the answer is known, and then verifying that the program’s answer on the particular input being
checked is consistent with the program’s answer on most other inputs.

6.3.1 Any Symmetric Function on n Bits

We give a result checker for any symmetric function:
Input: A list of input bits & = ay, ay, ..., an, a table of values i = o, ..., In.
Output: b= t; where i = Zj<j<na;.

The majority, exactly ¢ and parity functions are all examples of symmetric functions. As
mentioned before, [14, Beame Hastad] show that (logn/loglogn) depth is required to compute
these functions. For these and other examples, no table is needed as input because the table can
be computed in constant depth by the result checker.

72

Let P be the program that supposedly computes the symmetric function. P is checked by
partitioning the inputs of size n into n + 1 equivalence classes, where all inputs in a particular
equivalence class contain the same number of 1’s. Intuitively, the result checker verifies that P is
correct on more than 1/2 of the members of each equivalence class, and that the answer of P on
the input in question is consistent with more than 1/2 of the members within its own equivalence
class. Therefore, even if the result checker cannot determine which equivalence class the input is in,
it can verify that the answer of P on the input is correct. In the result checking algorithm, several

random permutations of the input bits are made; [4, Ajtai] gives a way of doing this in constant
depth.

Program Symmetric Function Result Check(n,a,1,b, 3)

k«logl/p
b — P(a)
In parallel, compute k random permutations 71,...,7y of {1,...,n}
Phase 1: (Consistency with our input)
In parallel, fori =1,...k
If P(m;(@)) # b then output “FAIL” and halt
Phase 2: (Testing Correctness of most inputs)
In parallel, for 7 =0,...,n
In parallel, fori =1,...,k
If P(7;(190"7)) # t; then output “FAIL” and halt.
Output “PASS”.

Proof: [of correctness of result checker| Clearly if P is correct on all inputs, the result checker will
output “PASS”. Assume that P is incorrect on input &, we show that the result checker outputs
“FAIL” with probability > 1— 3. Let j be the number of ones in & Suppose that P is correct (and
consequently differs from the output on @) on > 1/2 the inputs with j ones. Then with probability
> 1—f3, an input that is inconsistent with a is found in Phase 1. Suppose that the program errs on
> 1/2 the inputs of size n with j ones. Then with probability > 1 — 3, the j** group of processors
in Phase 2 finds that the program is buggy. Notice that by this argument the same k permutations
can be used in Phase 1, and by every group of processors in Phase 2. M

The incremental time is O(1) and incremental number of processors is O(C(n) +n?) where C(n)
is the number of processors necessary to compute a random permutation in O(1) parallel steps.
The total time is O(1 + D(n)) and the total number of processors is O(C(n) + nN(n)).

6.3.2 Special Symmetric Functions

A factor of n in the number of processors can be saved when the symmetric function f is of a
special type: Let tp,...,1, be the input table for problems of size n and tj,...,t), be the input
table for problems of size 2n. We say that f is of this special type if there is an easily computable
function g(b, j) such that if ¢} = b then t;_; = g(b, 7).

Examples of such functions are parity, where g(b,j) = b ® (j mod 2), and the unary to binary
conversion function, where g(b,7) = b— j.

Program Special Symmetric Function Result Check(n,4,1,b,)
k — O(log1/p)

73

b~ P(a)
In parallel, compute k random permutations 71, ..., of {1,...,2n}
Phase 1: (Consistency with our input)
In parallel, forz = 1,...,k:
Uniformly and randomly pick j € [0,...,n]
Let s be the string ay, ..., a,, 17077
8 — mi(s)
If b # g(P(s'),7), output “FAIL” and halt.
Phase 2: (Testing Correctness of most inputs)
In parallel, fori=1,...,k:
Uniformly and randomly pick j € [0,...,2n]
Create the string s = 170271
8 — 7;(s)
If P(s') # 1, output “FAIL” and halt.
Output “PASS”.

Proof: [of correctness of result checker (sketch)] If P is correct on all inputs, then clearly the result
checker outputs “PASS”. Let | be the number of 1’s in & and suppose b = P(@) # t;. Let D be
the probability distribution defined by (j,r), where j is chosen uniformly at random in [0, ...,2n]
and r is a random string of length 2n with j 1’s. Let D’ be the probability distribution defined
by (4,7), where j is chosen uniformly at random in [0,...,n] and r is a random string of length
2n with j + 1 1’s. Let p be the probability that P(r) # #; when (j,7) is chosen according to D.
If p > 1/4, then each execution of the loop in Phase 2 outputs “FAIL” and halts with probability
at least 1/4. Thus, the output is “FAIL” with probability at least 1 — . Now consider the case
where p < 1/4. Let s’ be a string of length 2n with I+ j 1’. By the properties of g, if P(d) =1,
then g(P(s'),j) = #i. Furthermore, it can be shown that if p < 1/4 then Pr[P(s') = } w12 1/2
when (j,s’) is chosen according to D’. These two facts imply that Prg(P(s'),;) = t;] > 1/2 in
each execution of the loop in Phase 1, and thus, since b # t;, Prlg(P(s"),7) # b] > 1/2 in each
execution of the loop in Phase 1, in which case the output is “FAIL”. Thus, the output is “FAIL”
with probability at least 1 — 5. W

The incremental time is O(1) parallel steps and the incremental number of processors is O(C(n)+
n). The total time is O(1 + D(n)) and the total number of processors is O(C(n) + N(n)).

6.3.3 Randomly Self-Reducible, Linear and Smaller Self-Reducible Problems

If the program computes a function which is randomly self-reducible and either has the linearity
property or is self-reducible to smaller inputs (see definitions on pages 31,44), the general tech-
niques described in Chapter 3, [20, Blum Luby Rubinfeld 2] can be parallelized. This gives constant
depth efficient result checkers for checking numerical problems such as integer multiplication, in-
teger division, mod, modular multiplication, modular exponentiation, polynomial multiplication,
squaring and matrix multiplication. The technique can also be used to give a result checker for
parity that uses O(1) incremental time and O(n) incremental number of processors.

74

6.4 Consistency

Many problems have linear time sequential algorithms that are extremely simple and even possible
to prove correct with formal verification methods. However, it is often the case that any parallel
algorithm P for the same problem is necessarily radically different and more complex. Intuitively, a
typical parallel result checker developed in this section calls P to reconstruct the computation steps
of the extremely simple sequential algorithm, and then verifies the consistency between adjacent
steps of the computation. This can be done very quickly, and independently of the algorithm
actually used by P. This simple idea gives deterministic parallel result checkers for a surprising
number problems. Some problems have result checkers that do not even need an additional call to
P.

The prefiz sums problem takes as input alist of elements ay, ag, ..., a,, and outputs (by, bo, ..., by),
where b; = a; 0@z 0 az o ... 0 a; for an associative binary operator o. We assume that o can be
computed correctly by one processor in constant time. In order to verify that P computes the
correct result, in parallel for 1 < i < n—1, processor i checks that b;0a;47 = b;41. The incremental
time is O(1) and the incremental number of processors is n. The total depth is O(D(n)) with
O(N(n) + n) total processors. Note that the result checker makes no additional calls to P. A small
variant of this result checker works for the list ranking problem as well in the same time and with
the same number of processors.

The sum problem is similar to prefix sums, except that only b, is output, and thus it is harder
to check. The intermediate prefix answers b;,...,b,-1 can be reconstructed as follows: In parallel
for 1 £ ¢ < n, group ¢ of processors calls the program to compute b; = P(a;,a3,...,a;). Then
processor 7 verifies that b; 0 a;4; = bi+1. The incremental time is O(1) and the incremental number
of processors is O(n?). The total depth is O(1) + D(n) with O(n X N(n)) total processors.

The ideas in this result checker can be used for various problems, including parity, addition of
n numbers, and can be modified to work for straight-line programming (when the variables are each
set only once) and the expression evaluation problem. When the variables can be set more than
once, the incremental time of straight-line programming is O(logn) using sorting,.

A result checker for integer multiplication can also be constructed using this idea, where the
input is 2 n-bit numbers a,b and the output is @ x 5. The result checker algorithm is as follows:
In parallel for 1 < ¢ < n, the i*» group of n processors asks the program to multiply a by the last
i bits of b to get r;. If the i*h least significant bit of b is a 0 then the result checker verifies that
r; = r;_1, otherwise the result checker verifies that r; —r;_; = a X 2*. The incremental time is O(1),
and the incremental number of processors is n X A(n), where A(n) is the number of processors
required to do addition in constant depth. In [24, Chandra Fortune Lipton], it is shown that A(n)
is O(ng~=!(n)) for any strictly increasing primitive recursive function g. The total time is O(D(n))
with O(n X A(n) 4+ n X N(n)) total processors.

Because of the following known results, all the checkers presented in this section are quantifiably
different. The best known algorithm for prefix sums uses O(n/ log n) processors and O(log n) depth
([47, Ladner Fischer],[31, Fich]). Multiplication can be done in O(logn/loglogn) parallel depth,
with O(n®) processors (for any €). Any algorithm using only a polynomial number of processors
for prefix sums, sum, parity and integer multiplication provably requires Q(logn/loglogn) depth
([14, Beame Hastad]). Straight-line programming is P-complete.

75

6.4.1 Problems that can be solved using Dynamic Programming

Richard Karp has pointed out that the basic technique described in this section can be used to
check any problem that can be solved sequentially using dynamic programming, regardless of the
algorithm used by the program. By dynamic programming, we mean that there is some polynomial
algorithm that computes the function on the whole set of inputs by evaluating the same function
on smaller sets of inputs and somehow combining the results. This usually involves writing out the
function on smaller sets of inputs in the form of a table. The idea behind the result checker is to call
the program on each subproblem in parallel to fill in the table, and then verify that the entries of
the table are consistent with each other. In most cases, this combination of results involves finding
the minimum or maximum of a set of numbers. Since the minimum and maximum function can be
computed in constant time, the incremental time is constant.

The following is an example:

Longest Common Subsequence

Input: Two strings z = z12923...2, and ¥ = y19293-.-Yn-

Output: The length of the longest common subsequence of = and y.

Let les(l, k) denote the length of the longest common subsequence of 2241 ...z, and YkYkt1-e-Yno
Then the sequential dynamic programming algorithm used to solve the longest common subsequence
problem builds up the table as follows: if z; = y then les(l,k) = 1+ les(I+ 1,k + 1), otherwise
les(l, k) = maz{les(l, k+ 1),les(1 + 1,k)}.

The algorithm for the result checker is:

Doforall1<1<n
Doforal1<k<n
Stk — P(21...Tn; Yh---Yn)
Verify consistency:
If z; = y; verify that s = 1+ 8141,k+1
else verify that s;z = maz{s; 41,8141k}
If any of these verifications fail then output “FAIL” else output “PASS”

The incremental time is O(1) and the incremental number of processors is O(n3). The total
running time is O(1+ D(n)) with O(n® + n% x N(n)) total processors.

6.4.2 All Pairs Shortest Path

Inpui: n X n adjacency matrix A, with a nonegative weight for each edge.
Output: Matrix Dist specifying length of shortest path between every pair of nodes.
Program All Pairs Shortest Path Result Check(D, A):

Do in parallel for each entry D(u,)
(1) check that Dist(u,v) < A(u,v)
(2) check that for all w that are neighbors of v, Dist(u, w) + A(w,v) > Dist(u,v)
(3) check that 3w neigbor of v such that Dist(u,w) + A(w,v) = Dist(u,v)

If any of these checks fail then output “FAIL” else output “PASS”

76

Proof: [of correctness of result checker] It is clear that if the program is correct, the result checker
will output “PASS”. Suppose that the result checker outputs “PASS™. Let d(u, v) denote the correct
shortest distance between u and v. We want to show that for all pairs (u,v), Dist(u,v) = d(u,v).

Suppose for contradiction that there are nodes u,v such that Dist(u,v) < d(u,v). Let u,v be
nodes with Dist(u,v) < d(u,v) such that v has the smallest possible index. Then because of step
3, there must be a w such that Dist(u,w) < d(u, w) and w has smaller index that v. Therefore,
for all u,v we have that Dist(u,v) > d(u,v).

We will show by induction on the number of intermediate nodes along a shortest path between
a pair of nodes that Dist(u,v) = d(u,v).

Basis: The number of intermediate nodes visited when taking the shortest path from u to v is 0
(edge uv is the shortest path). Step 1 guarantees that Dist(u,v) < A(u,v) = d(u,v).

Induction Step: Suppose that Dist(u,v) = d(u,v) for all pairs (u,v) where there is a shortest path
from u to v that visits { intermediate nodes. Consider pair (u,v) where there is a shortest path from
u to v with i+1 intermediate nodes, and let w be the last node along this path. Then, step 2 verifies
that Dist(u,w) + A(w,v) > Dist(u,v). We know d(u,w) + A(w,v) = d(u,v). By the induction
hypothesis, since there is a shortest path between u and w of length ¢, Dist(u,w) = d(u,w). Thus
Dist(u,v) < A(w,v)+ d(u,w) = d(u,v) and so Dist(u,v) = d(u,v). B

The incremental time is O(1) and the incremental number of processors is O(n®). The total
time is D(n) + O(1) with O(n®) + N(n) total processors. Note that the result checker makes no
extra calls.

6.5 Duality

When result checking an optimization problem, it is necessary to check that the solution is as good
as is claimed, and that it is the best solution. Duality can sometimes be used to show the latter.

For example, to result check a program that does linear programming, the result checker needs
only check that the optimal solution is feasible, and to call the program again on the dual problem
(again making sure that it is feasible) to check that the solution to the original problem is the same
(and therefore optimal). If the program claims that there is no solution or that the solution is
unbounded, this can be verified symbolically using the program in [18, Blum Kannan Rubinfeld].
This problem is P-complete, so no fast parallel algorithm is known for it. However, it can be result
checked in logarithmic time with only two calls to the program.

Another example is the following:

Maximum Matching

Input: Graph G = (V, E)

Output: k = the size of a maximum matching, and the edges in a maximum matching in G

No deterministic NC algorithm is known for this problem, but it is known to be in RNC ([43,
Karp Upfal Wigderson), [52, Mulmuley Vazirani Vazirani]).

Result Checking Algorithm:(sketch)

The result checker first checks in parallel that no vertex is matched more than once and that the
maximum matching is of size k. Then the algorithm in [40, Karloff] is used to find a proof that there
is no matching of size > k. This proof will be an odd set cover of size k. Karloff’s algorithm requires

77

computing a maximal independent set. This computation can be checked using the result checker
described earlier. Karloff’s algorithm also calls a matching oracle on other problem instances. The
result checker calls the matching program on these instances, and proceeds as if all of the answers
are correct. If the output of his algorithm is an odd set cover of size # k, the result checker outputs
“FAIL”. Otherwise, the odd set cover of size k is verification that the maximum matching is of size
k, and the result checker outputs “PASS™.

The incremental time is O(¢M5(n)) parallel steps and O(pM5(n)) processors, where dM15(n) is
the parallel depth and pM75(n) is the number of processors required to find a maximal independent
set in an n node graph. The total running time is O(dM75(n)+ D(n)) with O(n® x N(n)+pM15(n))
PrOCessors.

6.6 Constant Depth Reducible Functions

We can say something about the relationship among result checking problems that are ACP equiv-
alent.

Proposition 38 Let 1,7, be two AC® equivalent computational problems. Then from any fast
program result checker Cy, for my, is is possible to construct a fast program result checker Cyr, for
ma.

Proof: Similar to Beigel’s trick described in [15, Blum]. We outline the proof for decision
problems, but the general proof is similar. The idea is to construct a program result checker for m;
by transforming it to an instance of 7; and result checking that instance. Since the oracle program
still only solves 73, in order to get an oracle for 7; on z, we use the reverse transformation on =
into an instance of 74, and call the oracle for 72 on it. Since the transformation and the reverse
transformation can be computed in ACY, the depth of the result checker for 7, will be at most
a constant times the depth of the result checker for 7;. Since m; and 7 are AC? equivalent, the
fastest parallel program for each is related by a constant factor. Therefore, if r is a fast program
result checker,sois m;. M

More recently, in [39, Kannan] Section 2.3, Beigel’s theorem was generalized to problems in the
same robust complexity classes, and used to show that if two problems are equivalent under NC
reductions, and if one has a result checker, then so does the other.

We have already shown two P-complete problems that are checkable in small depth: linear
programming and straight line programming. In [39, Kannan] it is observed that since P-complete
problems are all NC-reducible to each other, all P-complete problems are checkable in polyloga-
rithmic depth. Moreover, a problem is presented for which programs can be written that run in
small depth, but for which result checking the result is P-complete.

78

Chapter 7

Adaptive Programs and
Cryptographic Settings

In the theory of program result checking introduced in [15, Blum], P is always assumed to be a
fixed program, whose output on input z is a static function P(z). This is not always the case,
as there are programs whose behavior changes as they run, even though the functions that they
supposedly compute remain fixed. For example, hardware errors may evolve over time depending
on the previous inputs that the program has been run on, or, the software may be written such that
running the program on certain inputs may have unintended side effects on the program’s future
behavior. This could occur in a program that stores tables of previously computed information in
a permanent file to make subsequent processing more efficient.

We extend the theory to check a program P which returns a result on input z that may depend
on previous questions asked of P. We call such a program that can modify itself and its subsequent
computation an adaptive program. We call a result checker that works for such a program an

adaptive result checker. The work in this chapter was done in collaboration with Manuel Blum and
Michael Luby [19, Blum Luby Rubinfeld 1].

This model is a restriction of the model used in interactive proof systems of [37, Goldwasser
Micali Rackoff], in which the role of the verifier is played by the result checker and the role of the
prover is played by the program P. The restriction is that the verifier may only ask questions of the
form “What is the value of f(z)?”. All result checkers extract an interactive proof of correctness
from the program P. Since we do not always know how to extract such an interactive proof from
a single program P running on one machine, we allow one program that supposedly computes f
on each of k£ noninteracting machines, where k is a parameter which we would like to minimize.
This corresponds to a restriction of the multi-prover interactive proof systems model of [13, Ben
Or Goldwasser Kilian Wigderson] where k is the number of provers. We design adaptive result
checkers that work for a constant number of independent and noninteracting programs.

Because the program can change and become faulty at any time, testing is of no interest when
the program is adaptive. Self-correcting will also be impossible, because there is no notion of having
a program that has been certified to be usually correct.

We make the following definitions:

DEFINITION 7.0.1 (adaptive result checker) Program R is an adaptive result checker for f if R is
a result checker for f that also works with respect to adaptive programs that supposedly compute f.

79

DEFINITION 7.0.2 (k-adaptive result checker) Program R is a k-adaptive result checker if R is a
result checker for k adaptive programs which do not communicate among themselves.

An adaptive result checker is automatically a k-adaptive result checker, and a k-adaptive result
checker is automatically a (non-adaptive) result checker.

Many result checkers that have been found are also adaptive result checkers. For example, it
can easily be seen that the GCD checker in [2, Adleman Huang Kompella] and that all of the
result checkers given in [17, Blum Kannan] are adaptive. Other result checkers do not work for an
adaptive program. Examples of such result checkers are the ones in Chapter 3, [20, Blum Luby
Rubinfeld 2], where adaptive programs can easily fool the result checkers. At the present time we
see no way to convert such a result checker into an adaptive result checker. However, if more than
one copy of the program exists, we show that result checkers based on the methods in Chapter 3
can work for adaptive programs.

Next suppose we are in the following cryptographic situation: A user wants to evaluate function
f on input z using program P running on another machine. As in result checking, the user does
not trust the program to be correct. The additional requirement is that the user wants to let
the other machine know as little information as possible about z from the questions asked of the
program P (for example, the user may want the program to be able to learn at most the input
size). This is similar to the model introduced in [1, Abadi Feigenbaum Kilian] and later extended in
[9, Beaver Feigenbaum)] to allow using several non-communicating programs for the same function,
except that here we do not trust the program to return correct answers. In addition, we only allow
protocols which are restricted versions of [1, Abadi Feigenbaum Kilian] [9, Beaver Feigenbaum)]
where the result checker may only ask the program questions of the form “What is the value of
f(z)?". We call a program that satisfies the above constraints a private result checker, As is the
case for adaptive result checking, we consider the case where there is a program that supposedly
computes f on each of several noninteracting machines.

We introduce some notation in order to define a private result checker:

Let & be the number of programs purporting to compute f, such that none of these programs can
communicate with any other program, and let P; be the program on the i** machine for 1 < i < k.

Asin [1, Abadi Feigenbaum Kilian], we define L to be a function which we call the leak function.
Intuitively, L(z) is the amount of information leaked by the result checker to the programs on input
z. An example is L(z) = |z|, i.e. the result checker leaks the length of z to the programs, but
nothing more.

Let CONYV;[z] denote the probability distribution of the variable representing the concatenation
of the questions that C asks of P; on input z and let Proonviz)(y) denote the probability of the
string y according to the distribution.

DeriNiTION 7.0.3 ((k, L)-private) A program C is (k, L)-private if for all k-tuples of programs
(P1yey Py), for all v,w such that L(v) = L(w), for all 1 < i < k and all y, Prconvi(y) =
Proonviuw(y)-

If a result checker C is (k, L)-private where L leaks a very small amount of information about
z (e.g. the length of z), then with high probability C does not ask any of the programs P, .., P
to evaluate input z. This means that the usual way of defining a result checker to output “FAIL”
on input z if P(z) # f(z) is insufficient. We define a private result checker as follows:

80

DEerINITION 7.0.4 ((k, L)-private result checker) A program C is a (k, L)-private result checker if
C is (k, L)-private and on input = and B, outputs C(z) satisfying the following conditions: (1) if
Py, ..., Py answer correctly on all inputs, C(z) = f(z). (2) Pr[C(z) = f(z) or C(z) = “FAIL"] >
1-8.

Thus, C outputs the correct answer if all programs always compute f as they should, but on the
other hand it is unlikely that they can fool C into outputting the wrong answer (with probability
at most 3).

DEFINITION 7.0.5 ((k, L)-private/adaptive result checker) C is a (k, L)-private/adaptive result check-
er if it is a k-adaptive result checker and a (k, L)-private result checker.

We ask that the adaptive and private result checkers be different, and as efficient as possible.
A (k, L)-private result checker or a k-adaptive result checker is f(n)-efficient if the total work done
by all k programs and the result checker is f(n) multiplied by the running time of the program.

We present general techniques for constructing simple to program and efficient (k, L)-private
and 2-adaptive result checkers, and where [is a function that does not leak much about the input
(for example only the size of the input), for a variety of numerical problems. The result checkers
given in this paper are all based on the algorithms given in Chapter 3, though the proofs are
different. They apply to integer multiplication, the mod function, modular multiplication, modular
exponentiation, integer division, and polynomial and matrix multiplication over finite fields. For
all problems, the result checker algorithms are both efficient and different. Furthermore, the result
checker algorithms consists of the execution of the following basic operations at most a logarithmic
number of times in a prescribed order: (1) calls to P on random instances of the problem; (2)
additions; (3) comparisons.

7.1 Related Work

[Abadi Feigenbaum Kilian] show that there is not likely to be a (1, |#|)-private result checker for SAT
that runs in polynomial time (not including the time required by the oracle). [Beaver Feigenbaum]
describe how to compute any function privately with O(|z|) oracles that are trusted not to err,
however the oracles are not restricted to answer questions of the form “What is the value of f(z)?”.
[Beaver Feigenbaum Kilian Rogaway] later improved this result to show that it can be done with

O(|z|/log|z|) oracles.

[9, Beaver Feigenbaum] [48, Lipton] show that any function that is a polynomial of degree d
over a finite field is d-random-self-reducible. Thus, one can get a (O(d), L)-private result checker
for the function, where L is the description of the finite field, under the following conditions: (1)
the program is not adaptive and (2) the program is already known to be correct on a large fraction
of inputs in the finite field.

In [13, Ben Or Goldwasser Kilian Wigderson] [33, Fortnow Rompel Sipser], there is a general
technique for turning any result checker into a 2-adaptive result checker. This technique can actually
be used for many of the result checkers. However, it requires a quadratic blowup in the number of
calls made. Thus, if the number of calls made to the program is not constant, the extra work done
by their technique is not of the same time order. For example, we give a way of converting one of
the result checking techniques in Chapter 3, which makes O(logn) calls to the program, into an

81

adaptive result checker which is of the same efficiency as the original result checker. The techniques
of [13, Ben Or Goldwasser Kilian Wigderson] [33, Fortnow Rompel Sipser] yield an adaptive result
checker that is slower than the original result checker by a multiplicative factor of O(log n).

In [13, Ben Or Goldwasser Kilian Wigderson], there is a general technique for turning any k-
adaptive result checker into a 2-adaptive result checker. This technique requires an additional O(k)
multiplicative factor in the number of calls made.

Previous to our work, [38, Kaminski] introduced a result checker for integer and polynomial
multiplication based on computing the result of the program mod small special numbers. This
result checker trivially works for an adaptive program as well, because it makes no extra calls to
the program. Independently of our work, [2, Adleman Huang Kompella] describe a result checker
for multiplication in the same spirit but different than [38, Kaminski] which also makes no calls
to the program. Also previous to our work, [34, Freivalds] introduced a result checker for matrix
multiplication which does not call the program.

7.2 Private/Adaptive Checker

We first show how to construct a different and efficient result checker that is both adaptive and
private for any function that has the linearity property. The result checker is an adaptation of the
self-testing/correcting pair using the method based on linearity given in Chapter 3.

Theorem 17 Any function which is computable by random homomorphisms has efficient and dif-
ferent 2-adaptive and (k, L)-private/adaptive result checkers, for constant k = maz{4,c1+1}, where
L(z) = G (G is the underlying group).

Proof: [of Theorem 17 (idea)] [13, Ben-Or Goldwasser Kilian Wigderson] [33, Fortnow Rompel
Sipser] show how to transform any result checker into a 2-adaptive result checker by simply running
the original result checking protocol with the first program. If the original result checker would have
accepted, a random question asked of the first program is chosen, and is also asked of the second
program. If the second program gives the same answer as the first program, then the adaptive result
checker returns “PASS”. Otherwise, if the original result checker would have returned “FAIL”,
or if the second program answers differently than the first, the adaptive result checker returns
“FAIL”. An adaptation of the algorithm for self-testing/correcting based on linearity in Chapter 3
combined with the technique of [Fortnow Rompel Sipser] proves Theorem 2: The idea is that since
every verification made by the checker involves program calls made on inputs that are uniformly
distributed, though not independent from each other, each call can be made to a different program.
Thus, each program sees a uniformly distributed input which is independent from the input being
checked. Of these calls, one is chosen at random and asked of yet another program to verify that
the same answer is given. W ')

Some examples of programs that can be checked using this method are:

Problem #Progs. | L Without P | Total
Mod Mult. f(z,y,R)==2-ymod R 6 |z|, |y, R | n M(n)
Mod f(z,R) = z mod R 4 R n M(n)
Integer Div. f(z,R)= (z div R,z mod R) | 4 |z|, R n M(n)
Mod Exp.,¢ f(z,y,R) = z¥ mod R 5 z,|ly,R | n M(n)

82

When applied to checkers based on bootstrap self-testing, this method causes a slowdown by an
0(log n) multiplicative factor. We give the following efficient way of constructing a private-adaptive
checker from checkers that are based on bootstrap self-testing as described in Chapter 3.

Algorithm:

The algorithm is designed to run asking questions of programs Pi,..., P, running on non-
communicating machines. We describe the algorithm as if the questions are asked and immediately
answered. However, the actual order of the questions is as follows: Let Q; be the set of questions
asked of P.. The questions in (; are asked in a randomly permuted order, and then the verifications
are done once all of the answers have been given. This can be done because none of the questions
asked depend on results of previous questions.

We make the convention that if any call to one of the subroutines returns “FAIL” then the
entire result checker program outputs “FAIL” and halts immediately.

The inputs to the private-adaptive result checker are n € N, z € I,,.

Program Private-Adaptive Check(/,z,)

N « O(cln(1/3))

Doform=1,...,N
Fori=1,...,l, call Private-Adaptive_Gen_Rec_ST(i)
answer =Private-Adaptive_Gen_SC(/, 1)

Output (answer,“PASS”)

Subroutine Private-Adaptive_Gen_Rec_ST(n)

Choose z €y I,
If n =1 then:

Compute f(z) directly

If 3i,1 < i < ¢,, such that f(z) # P;(z) then output “FAIL” and halt
Else n > 1 then: '

Randomly generate a1,...,a., from z

Fork=1,...,c2

yr — Private-Adaptive_Gen_SC(n - 1, ay, E’L?—z)
If 33,1 < i < ¢, such that Fyaner(Z, 015« 1 8cys Y1s- -2 Yep) F Fi)(*)
then output “FAIL” and halt.

Subroutine Private-Adaptive_Gen_SC(n,z,)

Randomly generate ay,...,a. based on z
Fori=1,...,¢1, @; «— Pi(a,-)(**‘)

answer — Frandom(T; 81y« 18cy, 01, - -+ Cey)
QOutput answer

This result checker uses the method of self-testing based on bootstrapping described in Chapter
3, which tests the program on successively larger ranges, bootstrapping on the fact that the smaller
ranges have already been tested. Since testing has no meaning for an adaptive program, the proofs
given in Chapter 3 do not work in this setting. In fact, a naive implementation of the bootstrap

83

protocol described in Chapter 3 can be fooled by ¢; adaptive programs, because the adaptive
program can figure out where the result checker is in the computation by the questions asked of it,
and lie accordingly. The above protocol overcomes this by asking the questions on each machine
in a random order. Using the techniques of [13, Ben Or Goldwasser Kilian Wigderson], one can
simply transform the bootstrap result checker into a 2-adaptive result checker, with an additional
cost of O(logn) multiplicative overhead in the running time over the original result checker. On
the other hand, the adaptive result checker presented here is as efficient as the original bootstrap
result checker.

Theorem 18 Any function which is computable by random inputs and computable by smaller in-
puts has a different and T(z)-efficient (¢1, L)-private/adaptive result checker, where T(z) = L(z)
is the size of z.

Proof: [of Theorem 18] The intuition behind why this result checker works in the adaptive
setting is that the questions are being sent to ¢; adaptive programs in such a way that the
programs do not know whether the question was generated at random in line (*) of Private-
Adaptive_Gen_Recursive.ST or whether the question was generated at random in line (**) of
Private-Adaptive_Gen_SC. We show that this is enough to get a c;-adaptive result checker. Let m
be the total number of questions asked to program P; and let gq,...,qn be the questions asked of
P;. Each program receives a random permutation of the questions (¢1,4z,-.-,¢n). One can easily
verify that the distribution of the questions is the same for all inputs of the same size, showing that
the result checker is (¢, L)-private. One can also easily verify that qi,...,qm are independently
and uniformly distributed (but not identically distributed, there are a subset of questions that are
uniformly distributed in Z" for each r = 1,...,1.) Some of the questions are generated in Private-
Adaptive_Gen_Recursive_ST, and some of the questions are generated in Private-Adaptive_.Gen_SC
in order to verify the questions in Private-Adaptive.Gen_Recursive_ST. Notice that the questions
asked in Private-Adaptive_Gen_Recursive ST are verified by computing them from questions that
are of a smaller size. Let r be the smallest sized question on which any program errs and let
P; be a program that errs on an input of size r. Since the questions are asked in a randomly
permuted order, with probability p where 1/(c; +2) £ p £ 1/(cz + 1), the question was gener-
ated in Private-Adaptive_Gen_Recursive ST rather than Private-Adaptive.Gen.SC. This is because
Private-Adaptive_Gen_Recursive_ST only makes one call to P; on inputs of size r, whereas Private-
Adaptive.Gen_SC is called ¢, times on inputs of size r (¢; + 1 times on inputs of size /) and makes
one call to P; on an input of size r each time that it is called. The program P; cannot tell which
subroutine generated the questions of size r because they are asked in a random order. If P; errs
on a question generated by Private-Adaptive_Gen_Recursive ST, then if 7 > 1, since the question
is being verified with smaller inputs, all of which are correct (by choice of r), the mistake is caught.
Otherwise, if r = 1, the question is being verified by computation done by the result checker, and
the mistake is caught.

To decrease the probability of error to < 3, run the protocol O(log1/8) times sequentially. If
answer is always the same, output answer, otherwise output “FAIL”. H

This outline can be used to develop different and efficient adaptive and private result checker for
the following problems:

84

Problem #Progs. | L Without P | Total
Int. Mult. 4 lz|, |yl n M(n)
Poly. Mult. 4 deg(p),deg(q) | n M(n)
Mod Exp.,no ¢ | 5 |z|, |y], R nlnn M(n)ln3n
Matrix Mult. 4 n n M(n)

Using the method of [13, Ben Or Goldwasser Kilian Wigderson], one can convert all of the above
adaptive result checkers into 2-adaptive result checkers. However, the stated privacy constraints .
will no longer be satisfied.

7.3 Open Questions

By the results of [33, Fortnow Rompel Sipser], any checker can be converted into a 2-adaptive result
checker. A question that arises naturally is whether a result checker can in general be converted
into a 1-adaptive result checker, as opposed to 2-adaptive. Since there is a complete language in
EXPTIME that has a result checker [8, Babai Fortnow Lund], there is no general technique that
converts any result checker into a 1-adaptive result checker unless EXPTIME=PSPACE. To see this,
suppose there is such a general technique and consider the result checker for the complete language
in EXPTIME. Now, because we can supposedly convert this result checker into a 1-adaptive result
checker, there is an interactive proof for the language. Then by the result of [29, Feldman] the
language must be in PSPACE.

Since there is probably no general technique for converting a result checker into a 1-adaptive
result checker, it would be interesting to charactize which problems do have adaptive result checkers.

Another interesting question is under what conditions on L it is true that a (1, L)-private result
checker is always a 1-adaptive result checker?

[33, Fortnow Rompel Sipser] have shown a technique by which any result checker can be made
into a 2-adaptive result checker. Is there a more efficient technique which does the same thing?

85

Chapter 8

Batch Result Checking

Though many programmers are willing to spend some time overhead in order to verify that their
programs give correct answers, for some applications, where efficiency is crucial, even a constant
multiplicative time overhead makes result checking undesirable. In this chapter, we define a variant
model of result checking, called batch result checking: Often greater efficiency can be achieved if
the user does not need to know immediately whether the program gives the correct result. In this
case, the result checker can wait until the program has been called on several inputs and check
that the program is correct on all of the inputs at once. Batch result checking can allow greater
efficiency, and we give examples of functions for which batch result checking allows one to reduce
the overhead of the result checking process to the point where it is arbitrarily small.

A batch result checker is a result checker that checks that the program is correct on several
inputs at once, and outputs “FAIL” if the program is incorrect on any of the inputs:

DEFINITION 8.0.1 (probabilistic batch program result checker) A probabilistic batch program result
checker for f is a probabilistic oracle program Ry which is used to verify, for any program P that
supposedly evaluates f, that P outputs the correct answer on several given inpuls in the following
sense. On given inputs z1,...,z, and confidence parameter (3, R? has the following properties:

1. If 3i such that P(z;) # f(z;) then Rf} outputs “FAIL” (with probability > 1 —).

2. If P is a correct program for every input then R? outputs “PASS” (with probability > 1- ().

Often a batch result checker can be made more efficient. For example, recall that a self-
testing/correcting pair can be used to construct a result checker: use the self-tester to test the
program. If the program fails the test, output “FAIL” and halt, and if the program passes, use the
self-corrector to compute the correct result for the input being checked with high confidence, and
compare the “correct” result to the output-of the program on that input. Suppose the self-tester
requires total time T', and the self-corrector requires total time S, then the incremental time is
T+ 5. To check m inputs, rather than running the result checker m times, for a total running time
of m(T + §), the tester need only be run once, giving a total running time of T + mS. Since T
time is usually much larger than § (for example, the self-tester for the mod function makes several
hundred calls to the program while the self-corrector makes fewer than 20), this savings can be
quite significant.

86

However, the following technique can be used to reduce the multiplicative overhead to arbitrarily
close to 1 for any function with the linearity property (for definition see page 31). We present the
specific batch result checker that results from applying the technique to the mod R function. The
technique is based on the idea of Freivalds [34, Freivalds] used in the result checker for matrix
multiplication (see Section 2.2.2, page 17). Freivalds’ idea was also used in a similar setting by
[30, Fiat Naor] where many modular exponentiation computations are verified by doing very few
modular exponentiation computations.

Program Mod Function Batch_Checker(n, R,21,...,2Zm,5)

Fori=1,..,0(log(1/3)) do:
Randomly generate m-bit 0/1 vector o
sumin « 0
sumout « 0
Fori=1,..,mdo
SUMin «— Sumin +pan Q; * Z;
sumout — sumout +pg o; - P(z;)
Verify that sumout = P(sumin)
Call Mod_Result_Checker(sumin,1/4)
If verification fails or checker returns “FAIL” then
output “FAIL” and stop.
Output “PASS”.

Proof: [of correctness of batch checker] Since the mod R function is linear, f(} gon @i%;) =
Y paif(z;). Thus,if P is always correct, the checker outputs “PASS”. If there is an i € [1...m]
such that P(z;) # f(z;), then with probability at most 1/2, 3" g a; P(z;) = 3_g @; f(z;). Suppose
Y roiP(z;) # Y gpeif(z;). If the verification that sumout = P(sumin) passes (Y g a; P(z;) #
P(Y"pon @;%;)), we know that

P(Y gon @i%;) # f(CRpan @i7;). Then the call to Mod_Result_Checker passes with probability at
most 1/4. Thus the batch checker outputs “FAIL” with probability at least 1/4 after one iteration.
The proof follows from Proposition 1. W

Let T(n) be the running time of P on inputs of size . From the self-testing/correcting
pair for the mod function, a result checker for the mod function can be designed such that
Mod_Result_Checker requires at most ¢ - T(n) total time for constant ¢. The total work done
by the batch checker is (¢ + m)T(n) 4+ O(n - m). Since the program is called on all of the m z;’s
regardless of whether any result checking is done, the multiplicative running time overhead required
by batch result checking is less than 1 + ﬁﬂ;—l

87

Chapter 9

Conclusions

We have presented a framework and given several techniques for writing self-testing/correcting
programs. We have extended the result checking model to apply to several different settings,
including parallel programs and programs that are adaptive. It is now of interest to characterize
the problems that have program result checkers, self-testers and self-correctors in each of these
settings.

We stress that since a program result checker for a function can easily be converted into a self-
tester for that function, and since many types of functions have program result checkers, functions
that have self-testers do not necessarily have any special structure. However, the same cannot be
said for functions that have self-correctors: All of the known self-correctors rely on the property
of random self-reducibility. This motivates the study of which functions are random self-reducible.
The definition of random self-reducibility given in Chapter 3 differs from the standard definition
(see for example [28, Feigenbaum Kannan Nisan|) in that it requires the reduction to be faster
than any program for the original function, whereas the latter only requires that the reduction be
in polynomial time. For the purposes of this discussion, we refer to the latter notion of random
self-reducibility as polynomial time random self-reducibility. [28, Feigenbaum Kannan Nisan] have
shown that random boolean functions are not polynomial time random self-reducible, and that if
a function is polynomial time 2-random self-reducible (for definition see [28]), then the function
can be computed nonuniformly in nondeterministic polynomial time. No such results are known
for random self-reducibility, because for random self-reducibility the only requirement is that the
computation of the random self-reduction be faster than the computation of the function itself.
Thus for functions that do not have polynomial time algorithms, it is possible there might be a
random self-reduction that is faster than computing the function, but not polynomial time. The
notion of random self-reducibility is also related to private result checking because it is possible
to privately compute random self-reducible functions. On the other hand, it would be interesting
to find new classes of functions which are random self-reducible. We have seen that a large class
of functions that have the linearity property or compute polynomial functions are random self-
reducible. Is it possible to determine whether or not sorting is random self-reducible?

Some inroads have been made in the study of which functions do not have polynomial time
result checkers. Yao [66] has shown that there are functions in DSPACE(2"*") that do not have
polynomial time result checkers. Beigel and Feigenbanum [11], later improved upon this to show
that there is a function in DSPAC E(nl°¢" ") that has no polynomial time result checker and is not
polynomial time random self-reducible. They also show that if NEEEXPTIME is not a subset

88

of BPEEEX PTIME (EEEX PTIME is the union, over all polynomials p, of DTTM E(22"™)),
then there is a set in NP that has no polynomial time result checker and is not polynomial time
random self-reducible. Since there is a complete problem in EX PTTM E that has a polynomial
time checker [8, Babai Fortnow Lund), there is no correlation between the complexity of computing
a function and the complexity of result checking the function. It has not been determined whether
or not it is possible to have a polynomial time result checker for complete problems in many other
complexity classes; most notably it is not known whether there are polynomial time result checkers
for N P-complete problems. 1

Result checkers, self-testers/correctors have been written for many types of problems: numerical,
graph theoretic, algebraic. However, since this approach to program correctness is relatively new,
general techniques must be developed in order to write result checkers, self-testers/correctors for
new problems, and to improve the existing ones.

We mention some areas that deserve special attention: One new area is that of data-structure
checking as introduced in [16, Blum Evans Gemmell Kannan Naor]. They study result checkers
for database problems, and for programs that manipulate simple data structures such as stacks. A
second important area is that of problems dealing with real numbers. Because computers have finite
precision, much of the problem with such programs is to determine what their specifications should
be. This is not an issue that is addressed by program result checking, however many interesting
problems remain once the specifications have been determined. It would be interesting to see if
any of the existing techniques in Chapter 4 can be applied to such problems and if new techniques
can be developed. A third area is that of cryptographic protocols. Some initial results about result
checking/self-testing/correcting with respect to cryptographic multi-party protocols are given in
[51, Micali Rubinfeld].

1 one shows a polynomial time result checker for any N P-complete problem, a polynomial time result checker
for any other N P-complete problem can be constructed using Beigel’s theorem [15, Blum)].

89

Bibliography

[1] Abadi, M., Feigenbaum, J., Kilian, J., “On Hiding Information from an Oracle”, Journal of
Computer and System Sciences, Vol. 39, No. 1, August 1989, pp. 29-50.

[2] Adleman, L., Huang, M., Kompella, K., “Efficient Checkers for Number-Theoretic Computa-
tions”, Submitted to Information and Computation.

[3] Aho, A., Hopcroft, J., Ullman, J., The Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, Massachussetts, 1974.

4] Ajtai, M., personal communication through M. Naor.
g

(5] Alon, N., Babai, L., Itai, “A Fast and Simple Randomized Parallel Algorithm for the Maximal
Independent Set Problem”, J. Algorithms, vol. 7, 1986, pp. 567-583.

[6] Babai, L., “Trading Group Theory for Randomness”, Proc. 17th ACM Symposium on Theory
of Computing, 1985, pp. 421-429.

[7] Babai, L., “E-mail and the Power of Interaction”, Proc. 5th Structure in Complezity Theory
Conference, 1990.

[8] Babai, L., Fortnow, L., Lund, C., “Non-Deterministic Exponential Time has Two-Prover Inter-
active Protocols”, Technical Report 90-03, University of Chicago, Dept. of Computer Science.
Also to appear in Proceedings of the 81st Annual Symposium on Foundations of Computer
Science,, 1990.

[9] Beaver, D., Feigenbaum, J., “Hiding Instance in Multioracle Queries”, STACS 1990.

[10] Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P., “Cryptographic Applications of Locally
Random Reductions”, AT&T Bell Laboratories Technical Memorandum, November 1989.

[11] Beigel, R., Feigenbaum, J., “On the Complexity of Coherent Sets”, AT&T Bell Laboratories
Technical Memorandum, February 1990.

[12] Ben-Or, M., Coppersmith, D., Luby, M., Rubinfeld, R., “Convolutions on Groups”, in prepa-
ration.

[13] Ben-Or, M., Goldwasser, S., Kilian, J., and Wigderson, A., “Multi-Prover Interactive Proofs:
How to Remove Intractability”, Proc. 20th ACM Symposium on Theory of Computing, 1988,
pp. 113-131.

[14] Beame, P., Hastad, J., "Optimal Bounds for Decision Problems on the CRCW PRAM?”, Proc.
19th ACM Symposium on Theory of Computing, 1987.

90

[15] Blum, M., “Designing programs to check their work”, Submitted to CACM.

[16] Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M., “Checking the Correctness of Data
Storage and Retrieval Algorithms” (tentative title), in preparation.

[17] Blum, M., Kannan, S., “Program correctness checking ... and the design of programs that
check their work”, Proc. 21st ACM Symposium on Theory of Computing, 1989.

(18] Blum, M., Kannan, S., Rubinfeld, R., “A catalogue of checkable problems”, in preparation.

[19] Blum, M., Luby, M., Rubinfeld, R., “Program Result Checking Against Adaptive Programs
and in Cryptographic Settings”, DIMACS Workshop on Distributed Computing and Cryptog-
raphy, 1989.

[20] Blum, M., Luby, M., Rubinfeld, R., “Self-Testing/Correcting with Applications to Numerical
Problems,” ICSI Technical Report No. TR-90-041.

[21] Blum, M., Luby, M., Rubinfeld, R., “Self-Testing/Correcting with Applications to Numerical
Problems,” Proc. 22th ACM Symposium on Theory of Computing, 1990.

[22] Blum, M., and Micali, S., “How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits”, STAM J. on Computing, Vol. 13, 1984, pp. 850-864.

(23] Blum, M., and Raghavan, P., “Program Correctness: Can One Test for It?”, IBM T.J. Watson
Research Center Technical Report (1988).

[24] Chandra, A., Fortune, S., Lipton, R., “Unbounded Fan-in Circuits and Associative Functions”,
Proc. 15th ACM Symposium on Theory of Computing, 1983.

[25] Cleve, R., Luby, M.,“A Note on Self-Testing/Correcting Methods for Trigonometric Func-
tions”, International Computer Science Institute Technical Report TR-90-032, July, 1990.

[26] Coppersmith, D., Winograd, S., “Matrix Multiplication via Arithmetic Progressions”, Proc.
19th ACM Symposium on Theory of Computing, 1987.

[27] De Millo, R.A., Lipton, R.J., Perlis, A.J., “Social Processes and Proofs of Theorems and
Programs,” Communications of the ACM, May 1979, Vol. 22, No. 5, pp. 271-280.

(28] Feigenbaum, J., Kannan, S., Nisan, N., “Lower Bounds on Random Self-Reducibility”, Proc.
5th Structure in Complezity Theory Conference, 1990.

[29] Feldman, P., “The Optimum Prover Lies in PSPACE”, manuscript, 1986.
[30] Fiat, A., Naor, M., Personal communication through Moni Naor.

[31] Fich, F., “New bounds for parallel prefix circuits”, Proc. 15th ACM Symposium on Theory of
Computing, 1983, pp.27-36.

[32] Fortnow, L., “Complexity-Theoretic Aspects of Interactive Proof Systems”, Tech Report
MIT/LCS/TR-447, May 1989.

[33] Fortnow, L., Rompel, J., Sipser, M., “On the Power of Multi-Prover Interactive Protocols”,
Proc. 37 Structure in Complexity Theory Conference, 1988, pp. 156-161.

91

[34] Freivalds, R., “Fast Probabilistic Algorithms”, Springer Verlag Lecture Notes in CS No. 74,
Mathematical Foundations of CS, 57-69 (1979).

[35] Furst, M., Saxe, J., Sipser, M., “Parity, Circuits and the Polynomial Time Hierarchy”, Math.
Systems Theory, vol. 17, 1984, pp.13-28.

[36] Goldberg, M., Spencer, T., “A New Parallel Algorithm for the Maximal Independent Set
Problem,” Proceedings of the 28th Annual Symposium on Foundations of Computer Science,
1987.

[37] Goldwasser, S., Micali, S., Rackoff, C., The Knowledge Complemty of Interactive Proof Sys-
tems”, STAM J. Comput., 18(1),1989, pp. 186-208.

[38] Kaminski, Michael, “A note on probabilistically verifying integer and polynomial products,”
JACM, Vol. 36, No. 1, January 1989, pp.142-149. .

[39] Kannan, S., “Progra.fn Result Checking with Applications”, Ph.D. thesis, U.C. Berkeley, 1990.

[40] Karloff, H., “A Las Vegas RNC Algorithm for Maximum Matching,” Combinatorica, vol. 6,
1986, pp.387-392.

[41] Karp, R., Luby, M., Madras, N., “Monte-Carlo Approximation Algorithms for Enumeration
Problems,” J. of Algorithms, Vol. 10, No. 3, Sept. 1989, pp. 429-448.

[42] Karp, R., Ramachandran, V., “A Survey of Parallel Algorithms for Shared-Memory Machines”,
UC Berkeley Technical Report No. UCB/CSD 88/408.

[43] Karp, R., Upfal, E., Wigderson, A.,“Constructing a perfect matching is in random NC”,
Combinatorica, vol. 6, 1986, pp.35-48.

[44] Karp, R., Upfal, E., Wigderson, A.,“The Complexity of Parallel Search”, J. Comp. Syst. Sci.,
1988.

[45] Kompella, K., “Efficient Checkers for Cryptography”, manuscript.

[46] Kompella, K., Adleman, L.,“Checkers for RSA”, manuscript.

[47] Ladner, R., Fischer, M.,“Parallel Prefix Computation”, JACM, vol. 27, 1980, pp.831-838.
[48] Lipton, R., “New directions in testing”, manuscript.

[49] Luby, M., “A Simple Parallel Algorithm for the Maximal Independent Set Problem”, SIAM J.
Comput., vol. 15, 1986, pp. 1036-1053.

[50] Lund, C., Fortnow, L., Karloff, H., Nisan, N., “Algebraic Methods for Interactive Proof Sys-
tems”, to appear in Proceedings of the 31st Annual Symposium on Foundations of Computer
Science,, 1990.

[61] Micali, S., Rubinfeld, R., “Privacy Implies Correctness”, manuscript.

[62] Mulmuley, K., Vazirani, U., Vazirani, V., “Matching is as Easy as Matrix Inversion”, Proc.
19th ACM Symposium on Theory of Computing, 1987.

[63] Nisan, N., “Co-SAT Has Multi-Prover Interactive Proofs”, e-mail announcement, November
1989.

92

[54] Randall, D., “Efficient Random Generation of Invertible Matrices”, manuscript.
[55] Renyi, A., (1970), Probability Theory, North-Holland, Amsterdam.

[56] Rosser, J.B., Schoenfeld, L., "Approximate formulas for some functions of prime numbers”,
Illinois J. Math, 6, 1962, pp.64-94.

[57] Rubinfeld, R., “Designing Checkers for Programs that Run in Parallel”, ICSI Technical Report
No. TR-90-040.

(58] Rubinfeld, R. “Batch Checking for the Mod Function”, manuscript, 1990.

[59] Rubinfeld, R., Sudan, M., “Self-Testing Polynomial Functions and Approximate Functions”,
in preparation.

[60] Schonhage, A., personal communication through Michael Fischer.
[61] Schonhage, A., Strassen, V., “Schnelle Multiplikation grosser Zahlen,” Computing 7, 281-292.

[62] Shamir, Adi, “IP=PSPACE”, to appear in Proceedings of the 31st Annual Symposium on
Foundations of Computer Science, 1990.

[63] Strassen, V., “Gaussian Elimination is not Optimal”®, Numerische Mathematik, 13, 1969, pp.
354-356.

[64] Van Der Waerden, B.L., Algebra, Vol. 1, Frederick Ungar Publishing Co., Inc., pp. 86-91, 1970.
[65] Wilkes, M., Memoirs of a Computer Pioneer, The MIT Press, Cambridge, Mass., p. 145, 1985.

[66] Yao, A., “Coherent Functions and Program Checking”, Proc. 22th ACM Symposium on Theory
of Computing, 1990.

93

