ICSIM: Initial Design of
An Object-Oriented
Net Simulator

Heinz W. Schmidt*

TR-90-055
October, 1990

Abstract

ICSIM is a connectionist net simulator being developed at ICSIL It is
object-oriented to meet the requirements for flexibility and reuse of mod-
els and to allow the user to encapsulate efficient customized implementations
perhaps running on dedicated hardware. Nets are composed by combining
off-the-shelf library classes and if necessary by specializing some of their rou-
tines.

The report gives an overview of the simulator. The class structure and
some important design decisions are sketched and a number of example nets
are used to illustrate how net structure, connectivity and behavior are defined.

*ICSI, Berkeley, California; on leave from: Inst. f. Systemtechnik, GMD, Germany

- . . 'I..-I_'_'- ' . T N
to meiaoll [sidnel -MTE201
e - » - L] - |
barpai- t9ai i) gk
S 35 NI, &
e lnime jald
vk W yoad
Wi &
Ingn Al s
[N Lastolonret ahjiall wpp dl owi2 a5l Inlg A 5 o el
I i nr e i onfl ol 0 =oeqwE o s =0 01 B et - Gellden
¢ aetw o Wml 9rioioNs o die slo o ' § o e o T gl
atlabneiitd =)8 L e | A ; ify= I L B Ty F !
= AT (aka . % U == L n‘q:t:fic- 'H-T
LI
3 4y el [l E“h."g;_.[Tic- i 2o
l = w I' - :j
44 =

1 Introduction

In a highly exploratory field of research like that of artificial neural nets, simula-
tion seems to be the only prototyping technique combining sufficient flexibility and
acceptable cost.

Flexibility is an essential, due to the different mathematical models underlying
neural nets, the different network architectures and applications and also due to
the experimental character of most research projects (cf. e.g. [10, 13, 7, 1, 14]).
Different simulators serve different purposes ranging from modeling bio-chemical
processes in the human brain (e.g. [15]) to developing structured connectionist
models of artificial memory, recognition and reasoning processes (e.g. [6, 9, 3]).

Efficiency is equally important; the simulation of the conceptually massively par-
allel nets, for instance in real-time speech recognition, may take hours on sequential
machines.

Existing simulators like the Rochester simulator [6] or Genesis [15] lack the abil-
ity to deal with nets in a modular fashion supporting the partial reuse of existing
prototype nets. Moreover they often started off as simulators with a textual inter-
face and a graphic interface for visualization of net behavior and performance is
~ either missing or put on top of the textual dialogue interface. This compromises
extensibility. For instance, if new types of nets are added, the command language
and the related modules may also need to be extended.

Some form of interactive, incremental prototyping is necessary that allows the
user to change the representation and/or structure of nets during a simulation.
This is particularly important in case of long simulation runs. Otherwise, in a non-
incremental environment, these long runs tend to repeat — in a different branch of
computer science — the problems of the batch-oriented software development style
of the early seventies with their long turn-around time in a slow ’edit-compile-run-
debug’ cycle. For instance, in the development of the Genesis simulator this need
was specifically addressed by an intermediate shell language interpreter [16] and in
the Rochester simulator a special linker/loader was developed to support a kind of
dynamic binding of binary code for the same reason.

We believe that most of the above requirements related to extensibility, reuse
and incrementality can be met by an object-oriented design of the simulator. In the
decentralized view of objects, functionality is organized along the dimension of data
types. The uniformity of the ‘message passing metaphor’ is independent of whether
messages are implemented by procedure calls or real message passing in the sense of
communications between processes. Message passing lends itself not only to support
command-language-like interfaces in an incremental prototyping environment but
also to integrate separate tools driving the simulator in a less incremental fashion as
a back-end via procedure call interfaces. Finally the abstract data type paradigm
embodied in object-oriented languages provides acceptable high-level mechanisms
that have advantages over special purpose languages for declaring net topology and
interconnections (e.g. [8, 3]).

In the short range future, we expect network sizes in the range of some hun-

f)

dred thousands of units. Although larger nets are conceivable theoretically and, as
nature suggests, realistic, the technology to deal with heterogeneous nets of such
size does not yet exist. For nets of some hundred thousands units, efficiency must
be addressed by parallel hardware combined with a dedicated selection of data rep-
resentations to reduce storage requirements and the resulting paging and garbage
collection overhead. Data structure selection and hiding of the chosen data repre-
sentation is also naturally addressed by the abstract data type approach inherent in
object-oriented languages. Parallelism of heterogeneous collections of objects comes
naturally in object-oriented terms and while the hope is that an object-oriented
approach to parallel simulation will lend itself to the development of massively par-
allel applications, this is the topic of ongoing research in the field of concurrent
object-oriented languages.

Summarizing, the design of the ICSIM simulator tries to achieve the following
goals:

1. Support some novel artificial neural network concepts, especially: modular
architectures, shared structures (e.g. shared weights), and learning.

2. Provide simple means to extend and/or add types of neural networks and types
of units. '

3. Permit incremental (during simulation) and non-incremental construction of
networks, size change and restructuring of networks.

As a means to achieve these goals we have chosen to

1. shift the conceptual focus from units to nets, and from global and sequential
execution to local and asynchronous execution;

2. combine flexibility of object-oriented design with efficiency by virtualization of
structures (e.g. virtual connections), parallel execution, dedicated processing,
e.g. downloading nets to dedicated hardware!.

The current focus of design is on the structure of the class libraries and to some
extent the separation and interaction between the simulator proper and the user
interface objects. The implementation is written in Eiffel and a toy simulator is
written in Common Lisp enabling us to experiment with new ideas in an interpre-
tative environment.

The design tries to assist the specialist scientific community in teaching and
research in artificial neural networks. We envisage three types of ‘interfaces’ to
ICSIM that require increasing programming skills:

1. A graphic point-and-click interface is to allow the ICSIM beginner and maybe
the non-programmer expert to get acquainted with the available objects, tools
and their functionality. This interface is fairly limited. It supports only a fixed
set of objects and some standard ways of combining them.

Isuch as the Ring Array Processor (RAP) being developed at ICSI

(2]

2. A simple Library of standard classes with a meaningful set of independent
classes and a coherent default functionality allows combination of off-the-shelf -
classes and simple specializations in terms ‘single-point’ redefinition. If this is
done well, most users should be able to do their simulations at this level.

3. An advanced library with a set of dedicated classes is to support the skilled
object-oriented programmer and/or experienced ICSIM user to build new pro-
totypes including new ways of visual presentation.

Due to the importance of extensibility and reuse and the limitation of ’point-
and-click’ interfaces, our initial design focuses on the users in the second and third
class.

2 Overview

Two worlds can be distinguished in ICSIM: models and views. Models are the
primary object of interest in a simulation. Different kinds of networks, neuron
models and special approximation and learning methods fall in this category. Views
are the first-level objects that a user sees and manipulates to deal with models:
textual and graphical presentations, operations on them that change the state of
models, their behavior or their presentation.

Views have the character of objects to the extent that they are the medium
through which models are seen. At the same time they have the character of tools
to the extent that models can be manipulated through them.

In ICSIM we have chosen to separate models and views down to the level of
instances for three reasons:

1. Massively parallel objects justify a many-to-many relation between models and
views. In order to reduce complexity, many views may filter different aspects
of a single chosen model.

2. The amount of presentation related (graphical) information must be reduced to
a minimum in the presence of many thousands of instances; and presentation
information and techniques deserve an encapsulation of their own to keep
orthogonal issues separate in the design;

3. We expect parallel execution of models in which processors have local memory
to hold model instances combined with a user interface running on a worksta-
tion that holds view instances.

2.1 Excursion: Eiffel Classes

The examples we present in the course of the following sections are written in Eiffel.
We shortly sketch the constructs we use in this text.

Eiffel is a statically typed language. In Eiffel every data type is a class. Besides
introducing a type for typing variables and arguments or results of operations, a
class supplies

1.

dynamic instantiation; it is a template for instantiating a compound data
object with a number of attributes — or instance variables; create is a distin-
guished procedure that instantiates an object and initializes it; usually class
bodies contain a create procedure describing the user-defined initialization.

an encapsulated implementation of an abstract data type. The abstraction or
interface of this encapsulation is given by naming a set of ezported operations;
instances are protected in that calls from different instances must go through
these exports; the operations of the class are called features in Eiffel; they
include attributes and routines which are either functions or procedures.

multiple inheritance; classes can be combined to form new classes; exported
and private features are inherited; this is one of the central concepts of object-
oriented programming; Eiffel programmers speak of descendents and ancestors
of classes in this context.

subtypes; in the type system, inheritance gives rise to subtyping; for instance
if class BP_LAYER inherits from class NET, it is also a subtype of Ner. If x
has type BP_LAYER, then x can be passed as argument or assigned to variable
that accepts a NET; loosely speaking we can consider a subtype a subset; this
means the set of all conceivable NET objects consists of all NET instances but
also of the instances of the subclasses of class NET. In other words the variable
x can has a static type, here NET and its value at runtime has a dynamic type,
here BP_LAYER that is a subtype of the static type.

. overloading and dynamic binding: when forming new classes with inheritance,

usually a few features are redefined to achieve a slightly modified behavior,
or they are renamed to adapt the terminology to the purpose of the newly
formed type or to make an inherited feature available beside the new one. A
redefinition of a an inherited feature makes the name overloaded. For one
class of object it has a different meaning and implementation than for another
one. Dynamically, i.e. is at runtime this is achieved by late binding: the class
specific code is dispatched to according to the dynamic type of the object
receiving the call. Given a feature call x.f(a,b), only at runtime is the proper
feature (code) bound to the name f by looking up this dynamic type.

. incremental compilation; a class is a module; the compiler keeps track of

changes and runs only the necessary passes on a subset of classes refered to
from the class being compiled.

Here is a typical class header:

class BP_LAYER [U — Br_unit]
export repeat NET
inherit NET [U] redefine step, create_unit, self_adapt;

feature

end

The first declares the class Bp_LAYER (short for: backpropagation layer). This
class is parameterized, the formal parameter, listed between square brackets, is U.
The arrow notation indicates that an actual parameter substituted for U must be a
descendent of class BP_uNIT.

The class name is followed by the export list. Here the keyword repeat just states
that this class exports whatever the class NET exports.

The next line lists the ancestors, i.e. the superclasses, in this case a single class
NET with actual parameter U suggesting that a BP_LAYER composed of units of type
U is a NET composed of units of type U. Subsequently the names of features are
listed that are going to be redefined in the class body.

The keyword feature is the beginning of the class body and is followed by attribute
and routine definition.

The dots in line 5 do not belong to the Eiffel syntax. We will sometimes use
ellipsis to skip over irrelevant details.

The feature definitions in the class bodies are more or less self-explaining, maybe
except for:

1. dot notation is used to distinguish the argument whose dynamic type deter-
mines the feature that implements the call. Multiply dotted expressions are
allowed, i.e. if the last feature called is a function that returns an object we
can apply another feature to it and so on. For instance in x.b.step(5), we as-
sume that the value of some variable x is an object that supports a feature
b. b must return another object which supports a feature step that takes one
argument.

2. in some examples we use the Eiffel ‘inspect’ construct, which is a case state-
ment allowing a conditional branch according to either character or integer
values.

3. in another example we use so-called ‘once’-functions. Effectively, such a func-
tion is a shared variable. It is only executed with the first call, later calls ‘read’
the result of the first call.

2.2 A s.imple example: Computing the XOR of two ran-
dom inputs

Fig. 1 shows a small net of four units computing the XOR of two random inputs.

The hidden unit in the center of the net is a boolean threshold of 2 and the
output (top) a boolean threshold (of 0.5 by default). The example demonstrates
connection functionality on the lowest level (wiring units one by one) and the choice
of a specific computation mode.

Figure 1: Xor net

This model is implemented by two small classes representing the net (XorNET)
and a view of the net (Xor._sim).

Upon creation the interactive text view class creates, initializes and then runs the
interactive view by calling the superclass initialization routine. This routine in turn
calls back create_net redefined in the class body to return a net of the proper type.
All the simulator behavior, i.e. command prompting and interpretation, net access
and so forth are inherited from the superclass TEXT_VIEW_INET and its ancestors.
The main purpose of the class Xor_siM is to select the proper type of view and to
specialize the type of net to be simulated.

class XOR_SIM inherit TEXT_vIEW_INET [XORNET| redefine create_net
feature

create is do text_view_lnet_init end ;
create_net: XorNET is do Result.create end ;

end

An (XorNET) is a NET composed of units (cf. below). ANY_UNIT is the most
general unit class. This means, in the context of this class, we can call only the
most general subset of operations on units but we are free to create arbitrary units
as components of the XorR_NET — descendents of ANY_UNIT.

As part of the creation, this class builds the corresponding units by means of an
inherited initialization routines and then wires them. For simplicity of the example
we use integers here to ‘name’ the units. Unit 0 and 1 represent the input units, unit
2 the hidden and unit 3 the output unit. The initialization routine calls back the
routine create_unit redefined to ‘declare’ the proper type of units. Instances of class
BOOL_RND_UNIT are created as input units; a boolean unit with a variable threshold
of type VAR_BOOL_UNIT is chosen as hidden unit and the threshold is defined as
2.0; and finally a boolean unit with constant default threshold of 0.5 is made the
output unit. conl and con2 are connection specification objects? further detailing
the properties of the interconnection structure. In this example they are constant
connections (ConsT_coN) selecting the weights depicted in Fig. 1 (1.0 and —2.0).

class XORNET repeat export NET
inherit NET [ANY_UNIT] redefine step, create_unit

feature

create is
do
net_init (4); — - create 4 units and then connect them one by one
unit(2).connect (unit(0),conl);

unit(2).connect (unit(1),conl);

unit(3).connect (unit(0),conl);

unit(3).connect (unit(1),conl);

unit(3).connect (unit(2),con2);
end ;

create_unit (i: INTEGER): ANY_UNIT is

local in: BOOL_RND_UNIT; h: VAR_BOOL_UNIT; 0: BOOL.UNIT;

do
inspect i
when 0..1 then in.create ; Result:=in;
when 2 then h.create (2,2.0); Result:=h; — — 2 inputs, threshold=2.0
when 3 then o.create (3); Result:=o;
end ;

end ;

2These are explained in more detail in a subsequent section.

step is do serial_step end ;

conl: cONsT_CON is once Result.create (1.0,sys.always) end ; - - weight 1
con2: CONST_CON is once Result.create (-2.0,sys.always) end ; — - weight -2
end

This defines a running model. All the necessary functionality including means to
describe the current state of the net, to manually inspect and update single units are
inherited. The corresponding functionality is retrieved, compiled and linked when
the root class of this simulation, class Xor_siM, is compiled.

2.3 Models

Neural models are built from units and nets. We speak of units rather than neurons
to stress the artificial character of these objects and their difference from physiolog-
ical models of neurons.

In ICSIM, units and nets are characterized by their structure and their behavior.
The structural aspects include composition, interconnection and state. Behavior
is subdivided into computation and learning. Together these aspects make up the
functionality of the respective objects.

2.3.1 Structure

Nets are either composed of units or, recursively, of other nets. Informally units can
be thought of as atomic nets. The common functionality of nets and units is captured

Figure 2: Comp-object: Common functionality of nets and units

in the class CoMp_oBIECT, short for computation object, depicted in Fig. 2. This
class defines the protocol for interconnecting and triggering the computation steps

of nets and units. As shown in the figure, Comp_oBIECT inherits from ANY_OBIECT
and UNIT_ROUT. ANY_OBJECT is the most general of all the simulator related classes.
It encapsulates various general routines, like access to some global information,
printing routines, persistency and debugging. Class UNiT_ROUT packages various
unit functions like sigmoids and thresholds so that they are available in the context
of all unit and net classes.

Typically the state and behavior of a net is understood as the combined dis-
tributed state and behavior of its component subnets or units. In this sense, a net
is ultimately defined in terms of its lowest-level units and most of the functionality
of units carries over to nets in a natural way. For instance we may say that a net
performs one computation step when all of its units performs a single computation
step. Most of the ICSIM classes are compositional in this sense. The hierarchical
structure of nets plus the interconnection structure between its components uniquely
extends the low-level unit behavior to the high-level net behavior.

The complete story is more complex, however, when we introduce intermediate
levels of subnets and consider asynchronous computation modes. For instance, the
implementation of a net’s behavior is not independent of the data representation
of its state. A specific choice of a compact data representation on the subnet level
will typically require a specific way to implement the computation of the net. Also
modeling a specific computation mode of a net may require departure from a pure
compositional semantics. For instance, structured connectionist nets.[5, 12, 9], that
model semantic networks, will usually require special computation modes to im-
plement mechanisms like variable-binding, token passing or inference steps. Our
hierarchy of net classes is designed to allow the user to form subclasses in such a
situation. There are a number of intermediate classes in the hierarchy whose pur-
pose is the definition of a corresponding abstract data type only and which do not
yet freeze a specific data representation for their subclasses. The most general such
net class is ANY_NET (cf. Fig. 2). It defines the minimal protocol that all nets must
observe.

2.3.2 State of computation

The activity of units is represented by their activation levels. Units have an internal
activation level which we call potential and an externally visible activation level called
output (visible to other units). The potential is usually some real-valued function
of the net input from other units. For instance, for many of our instantiable library
units the potential is the weighted sum of inputs. Different types of units may have
different additional attributes to model more complex states and state transitions.
In some models [4, 12], a unit has a mode represented by a value in a small range of
integers that represent different phases of computation. We subsume all the related
accessor functionality of classes under the general term state.

The output of a unit is some function of its potential such as the result of some
squashing or threshold function, cf. Fig. 3.

For the class ANy_unIT, this value is computed but not stored. In other classes

“Accumulated_ Potential
input

- Unit_fn unit_fn library

Output

N
7

Site library

O\

Figure 3: Unit synthesis

(PHASE2_UNIT and its descendents), output is a stored attribute separate from poten-
tial. This separation is used in a sequential simulation of simultaneous steps. Units
can compute their potential without affecting the ‘simultaneous’ computations in
other units which ‘see’ the unchanged output of the previous state. Only when all
units in the simultaneous step have computed their potential, all of them will change
their output (cf. Section 2.3.4 below).

2.3.3 Interconnection

Units receive input signals from other units via directed connections. These connec-
tions may carry weights representing the connection strength. The interconnection
functionality of units includes primitives to connect them and to initialize weights.
For training, specific unit classes embody learning rules which define how weights are
changed during the computation cycles of a net in response to signals from a net’s
environment. The interconnection of a net thus represents the knowledge or state
of training of the net. Because the weights of a connection directly influence the
activation of its target unit only, one can view the weights of the input connections
of a unit as part of the overall unit function.

Nets can be interconnected in many different ways. A single net can exhibit many
different interconnection structures. Therefore different connection procedures are,
in general, supported by the same type of net. In contrast to this, units, viewed as
atomic nets, have a single connect procedure.

There are different ways to distinguish different interconnection structures. In
the most general case, the internal interconnection structure of a net, once it is built,

11

is a spaghetti bowl of indistinguishable connections.

One simple means of imposing structure on interconnection is partitioning the
net on the instance level. A specific component of a net may be connected only to
some other specific component, this ‘knowledge’ about interconnection is built into
the connection routines and selection routines of the net.

Another, structural mechanism is a type-specific partitioning of the net. In such a
partitioning only certain types of components are connected with each other. In this
case the respective types can encapsulate the knowledge about their interconnection.
The net connection and selection routines can use a uniform protocol for inquiring
components about their connections.

Finally, sites can be used for partitioning the connection structure. Sites cor-
respond to different types of connections. Semantically, they may be viewed as a
partitioning of the net adjacency matrix. In the distributed representation that we
have chosen for many of the simulator classes, units hold a corresponding vector of
the connection matrix. A site then groups the corresponding part of such a vector.

In ICSIM sites also encapsulate the representation of weights. Moreover, different
sites may have distinct functions for contributing to the computation of a unit. Sites
thus lead to a structural and functional decomposition of units. However, in ICSIM,
they do not involve a temporal decomposition. This means, unit steps are the atomic
steps in our discrete simulation.

Units and sites have a single output while the output of nets is that of perhaps
many units. Units and sites therefore obey a common information transmission
protocol captured by the class QuTpuT.oBIECT 4. Based on this protocol it is
possible to compose sites and units in a uniform way to form a site tree where
the output of one site is fed into another site and so on until the whole input is
integrated and worked out by the receiving unit. The lower part of Fig. 3 alludes
to this possibility.

The resulting structure is loosely analogous to dendritic trees. The output of a
single unit can also be fed into such a site tree many times via multiple connections3.
Although semantically more complex, from the viewpoint of modeling power and
also of implementation, this scheme has advantages. It is more powerful than simple
unidirectional connections between pairs of units because it allows one to express
complex non-linear dependencies by means of simple standard site and unit functions
in terms of structural arrangements.

In the simplest case, however, a unit has a single site and the library includes
site classes which enforce simple connections between units.

The interconnection structure of a net is an important aspect of the way it
computes and generalizes its trained behavior. There are so many variants of in-
terconnection types and structures that they deserve a high-level means to describe
them. In order to connect nets in a flexible and abstract way, ICSIM includes ob-

3Physiologically, many neurons have multiple connections with adjacent neurons and the acti-
vation of these synaptic connections depends on learning such that there is the possibility of many
different non-linear interactions between the same two neurons(2].

-~

Figure 4: Output_object: Common functionality of units and sites

jects encapsulating connection specifications that parametrize the various connection
procedures. For instance x_connect (short for ‘cross connection’) connects two nets
by connecting all units of the first to all of the second net (cf. also Fig. 11). A
connection specification can ‘tell’ x_connect to skip certain connections, to connect
with some probability only and so on. It also ‘knows’ the initial weight to use and
for multi-site units it knows which site to connect to.

In this way users can customize interconnection structure on a high level — a more
convenient way than programming in terms of the internal connection primitives of
the different net classes.

To interpret a connection request at the various levels in the hierarchy, the most
general connection specification, called ANY.coN, supports the routines (Fig. 5)
connectp, which_site and weight.

At the net level the boolean function connectp will be called to determine whether
two objects are to be connected. The result may depend on a probabilistic variable
to allow for a randomly dense interconnection structure or it may depend on the
type of subnets and units to be connected. Then, at the unit level, the site — if any
— will be determined and finally, at the site level, the initial weight — if any. In this
way a connection specification describes which connections to ‘wire’, to which sites
to connect and what initial weights to choose.

Different connection specifications have different regimes to choose sites and ini-
tial weights. For class MurTiSITE, for instance, we assume that a net sequentially
builds its different types of connection structure site by site. A connection specifica-
tion used in this process can be updated by the net (set_current_site) whenever one

- Y

which_site

7
connectp

Figure 5: Connection specifications customize interconnection structure

type of connection (site) is built and will, subsequently, choose the next site for all

units.
The following example shows hierarchical nets and the use of different connection
primitives. Our problem consists of coloring the map shown in Fig. 6, such that

Figure 6: Region map and neighbor graph

neighboring regions do not receive the same colors (white, green, red and blue). We
have chosen the four color problem as a ‘typical’ local constraint problem.

More formally, we wish to find a total function color from regions to colors with
the property that for two regions z and y in the neighbor relation color(x) differs

from color(y).
Our coding in terms of interconnection structure is obvious when we consider the

following reformulated specification: We wish to find a binary relation color between
regions and colors, that is total, unique and satisfies the neighbor constraint above.

Region # j

|

Region#i —————— Neighbor

Figure 7: Interconnection structure

We now represent each region by four units, one for each color. If a unit’s ac-
tivation level is high, the corresponding pair (region,color) is considered to be a
member of the color relation. The constraints are represented by inhibitory connec-
tions, shown in Fig. 7, as follows: The colors of one region are mutually exclusive
(complete_connect) and the same colors of neighboring regions mutually exclude each
other (bus_connect).

Choosing different inhibition strengths for the two types of exclusions and a
particular nondeterministic unit function we let the net randomly walk through its
combinatorial state space. The net has many fixpoints, each representing a solution.

We choose a weak inhibition between the same colors of neighboring regions
(here —1) and a strong inhibition among the colors of the same region, at least n
times the weak inhibition, were n is the maximal number of direct neighbors in the
net. Here we choose —5.

The four-color net (CoL4NET) is hierarchically built from regions (CorL4rEG). A
COL4NET creates its regions as subnets and ‘declares’ the neighbor relations (part
of the create routine) which are ‘compiled’ into the corresponding interconnection
structure (bus_connect).

Each region is a net composed of CorL4uniTs. It creates its four color units as
part of its own creation and interconnects them internally.

15

class COL4NET inherit Hierarc_NET [CoL4RrEG] redefine create_subnet
feature

neighbor (i,j: INTEGER) is
- — connect two regions as neighbors
do
subnet(i).bus_connect (subnet(j),weak_inhibit);
subnet(j).bus_connect (subnet(i),weak_inhibit);

end ;
create is
do
hierarc_net_init (10); - — create 10 regions
neighbor (0,1); neighbor (0,5); - - declare neighbor relation

neighbor (1,2); neighbor (1,6); neighbor (1,5);
end ;
create_subnet (i: INTEGER): COL4REG is
- — called as part of the hierarc_net creation protocol.

do Result.create (i) end ;

end

class COL4REG inherit NET [CoL4uniT] redefine create_unit
feature

country: INTEGER; — — remember name for user interface

create (c: INTEGER) is

do
country:=c;
net_init (4); — — create and initialize four color units
complete_connect (strong_inhibit); - - strong mutual exclusion
end ; 4

create_unit (i: INTEGER): COL4UNIT is
- — called back by net creation; ignore the unit name i
do Result.create end ;

end

The connections specifications weak_inhibit and strong_inhibit are constant con-
nection specifications like in the previous (Xor) example. Together with other con-
stants, they are defined in a small class CoL40B8J from which all the above inherit.

strong_inhibition: REAL is -5.0;
strong_inhibit: consT_con is
once Result.create (strong_inhibition,sys.always) end ;

weak_inhibition: rEAL is -1.0;
weak_inhibit: consT_con is
once Result.create (weak_inhibition,sys.always) end ;

2.3.4 Behavior

The computation of a net consists of many update steps of its units. A single unit
step has two phases, internally. The first phase computes the input received by the
unit. This input determines the internal potential. The second phase internally posts
the potential so that it becomes visible as the unit output to connected units.

We refer to this combination of compute and post as a discrete unit step. Most
often compute and post will be deterministic functions, often monotonic and usually
differentiable. Sometimes it is useful to consider non-deterministic unit functions, i.e.
units whose outputs depend on some random choice or models a specific probability
distribution, i.e. a stochastic function. For instance, the compute procedure of
random units sets the potential to some random value. Accordingly we call a unit
deterministic if its function is deterministic and otherwise nondeterministic..

We distinguish serial and parallel computation.

Serial computation can be deterministic or random.

In deterministic serial computation the structure of a net defines a ‘natural’
order in which components step. For instance, a serial computation of a net may
consists of a series of steps of its unit in the order in which they are structurally
arranged in the net. Similarly, in this computation mode, in the step of a layered
net, one subnet completes its step before the next one starts its step.

In the random serial computation, we randomly choose the component that is
to step next. The different components are assumed to have a uniformly equal
chance to precede any other component. The law of large numbers suggests that
with increasing number of steps each component eventually gets a chance to step.
This computation model assumes that the steps of two different components can
always be temporally separated, i.e. temporal measurements can be arbitrarily fine
and interferences of two components in between successive measurements can be
neglected. These simplifying assumptions are often adequate.

For some models, tight temporal relations are essential, including real-time de-
pendencies with bounded delays. There are three types of parallel computation

modes: synchronous, fair asynchronous and unconstrained asynchronous. All par-
allel computation modes involve simulation of real parallelism. This means, units
may update simultaneously without interfering spontaneously (limited signal speed).
Intuitively, this means that the output of some unit cannot affect that of a simulta-
neously updating one.

The synchronous parallel computation mode represents the tightest form of tem-
poral coupling among the parallel modes: all units step simultaneously in parallel.
This means all units compute their potential and then all units post some function
of the potential to their output. Thus the output of a given unit’s step can only
affect the computations of other units in a subsequent step.

In the asynchronous computation modes some units may ‘step ahead’ of other
units. This is similar to serial random computation. However, an arbitrary number
of units updates simultaneously. Consider two units u and v where v receives some
input from u. If v and v update simultaneously, v is not directly influenced by u’s
step. However, if u happens to step ahead of v, v will ’see’ the current output of w.
If u steps ahead multiple times before v updates, intermediate outputs of u may be
lost. In the fair asynchronous mode, no unit can step ahead of any other unit more
than a fixed number % of steps. Every unit has a fair chance to update eventually.
In fact, its update step can be predicted in a fixed temporal interval determined by
k.

All of these parallel modes are represented by special cases of what we call
bounded asynchronous computation. We associate a synchronization bound k with
a net, defining the maximal number of times a single unit can step ahead of other
units. A synchronization distance 0 obviously corresponds to the synchronous mode.
A positive integer value k guarantees fairness, i.e. each unit will eventually step but
up to k — 1 signals may be lost between two connected units. And the value oo
corresponds to the unconstrained asynchronous model.

Many connectionist models rely on convergence of the net, i.e. the net function
(defined in terms of its units’ functions) is supposed to reach a fixpoint in which
the output x = f(x), where f is the net function composed of the unit functions f;
and x is the net state composed of the unit state z;. If f is the single-step function,
i.e. determines the next state f(x), and the above equation holds in a given state
X, the net output has settled (is therefore statically stable). For recurrent nets
it may be useful to consider f in the above equation as the function defined by
a finite sequence of net steps. Even if the single-step function does not have a
fixpoint, a multi-step function f may have a fixpoint. In this case the net oscillates
(and is therefore dynamically stable). Net and unit classes have the specializable
predicates deterministicp and fixpointp to help the simulator search and determine
such fixpoint state. For a unit the predicate fixpointp represents the local fixpoint
condition z; = f;(x).

Specializations of all this standard functionality are possible and available. For
instance the most general class of units, ANY_UNIT, does not distinguish between
the two phases of a step while PuAsE2_UNIT does. The user may design subclasses
of ANY_UNIT instead of subclasses of PHASE2_UNIT for instance when it is clear that

EEal

a simulation of 'real’ parallelism is not important but an arbitrary serialization will
do. Also when it is clear that the subclasses will always be executed on physically
parallel processors there is no difference between these two classes.

For learning, units can be clamped, receive error signals, accumulate them and
self_adapt their connection weights to accommodate for the error values accumulated
so far. As part of this adaptation, they feedback error signals to their own inputs.
In this way errors are recursively fed back towards the input units. Currently the
back-propagation rule is the only learning rule implemented, cf. the corresponding
routines of the class BP_unIT.

The corresponding basic procedures of units are again driven by the net; the
driving routine of the net is also called self.adapt. For instance in a layered back-
propagation net, the corresponding net receives some error signals at the output
layer (teach_output) and then self.adapts by letting the units adapt to the error
signals according to the back-propagation algorithm starting from the output layer
and working back to the input layer successively.

We conclude this section by completing the four-color example.

The output of a color unit (CorL4uniT) is non-deterministic. When it receives
weak inhibition only, a unit can still be activated with a certain probability. This
is expressed in the feature compute. unifrnd is a random number generator that
returns a uniform random number between 0 and 1.

class COL4UNIT
inherit UNIT redefine fixpointp, compute; ...

feature

compute 1s
do potential:=unifrnd - accumulated_input/strong_inhibition + 0.5 end ;

fixpointp: BOOLEAN is
local in: REAL;
do
in:=accumulated.input;
Result:=(in <= strong-inhibition and output < 0.3) or
(in = 0.0 and output > 0.7)
end ;

create is do unit_init (4) end ;
end

The non-deterministic character is also expressed by redefining the predicate
fixpointp that helps the system determine whether or not the net has converged.

E 4T

Here fixpointp expresses the non-deterministic range of the unit function modulo
some tolerance because of the slow convergence of the sigmoid function close to 0
and 1.

0,1

1(x) = 1.07(1.0+exp(=t(x=.5)))

0,0 1,0

Figure 8: A temperature dependent sigmoidal unit functions

From the superclass UNIT, this class inherits a sigmoidal squashing function
with a fixed steepness (t=10, cf. Fig. 8).

A UNIT is a PHASE2_UNIT, it can be used with all modes of stepping. The
stepping mode for the COLANET is random serial. This net would also converge to
a solution in synchronous parallel mode due to the random potential that is taken
by compute above.

2.4 Views

From the user’s perspective, views are the first-level objects for presenting models
and interact with them. Views have a passive character to the extent that they are
the medium through which models are seen. At the same time they have the active
character of an instrument to the extent that they allow the user to manipulate
models.

Each view encapsulates a specific technique of presentation and to this end a
moderate amount of knowledge about the object being presented. Since views are
the only medium to ‘see’ and ‘manipulate’ models, it is natural in an object-oriented
setting to associate view-related functionality with the model objects themselves
and to localize the information and logic needed for the purpose of presentation and
interaction. On the other hand, in the presence of many parallel objects, we do not
want to duplicate the storage needed for the presentation and interaction logic and
do not want to distribute this logic more than necessary to the objects executing
in paralle]l. Hence there is a tradeoff between object-specific functionality local
to the objects and central functionality for managing presentations. This tradeoff

an

is particularly evident when parallel simulations are considered in which models
execute on parallel processors while the user monitors the simulation at the local
workstation.

Our compromise in ICSIM is to have different kinds of views that fall in different
ranges between these two extremes. So far we distinguish five kinds of views. The
most general ones, not restricted to our application, are the tezrt interaction view
and tour view. These views maintain the ‘what-you-see-is-the-object’ metaphor, and
are indeed associated to the objects themselves.

The text interaction view, or tezt view gives a textual presentation of the current
state of the simulation (cf. below) and lets the user enter in a textual dialog. It is
based on various describe routines and allows interaction with a single top-level net
in terms of textual menus. The menus offer the main simulation functions of the
corresponding net class. By inheritance, all user-defined objects will ‘know’ how to
describe themselves. This eases rapid prototyping of models. In time, the user will
typically redefine parts of this functlona,hty to adopt net descriptions to the specific
problem at hand.

‘The following is an extract of the dialog that results from the four-color classes
we have described above.

Text View (choose command):
: New
: Reset
: Sync Bound
: Micro Step
: Step
: Step size
: Solve (Care!)
: Fixpoint?
¢ Describe
10 View

: QUIT
Choose (Default: New): step si
=> Step size
Typein number of steps (Default: 1): 10
Choose (Default: Step size): ste
=> Step
Region=0 G : P=-87.4225,0=0;P=-102.844,0=0;P=30.6219,0=1;P=-20.6846,0=0
Region=1 B : P=41.5084,0=1;P=-112.997,0=0;P=-117.051,0=0;P=-21,3759,0=0
Region=2 G : P=-113.033,0=0;P=-29.1242,0=0;P=40.4869,0=1;P=~107.736,0=0
Region=3 R : P=-80.5654,0=0;P=95.0193,0=1;P=-112.285,0=0;P=~55.5378,0=0
Region=4 W: P=-42,0739,0=0;P=-22,7232,0=0;P=-44,9267,0=0;P=15.5342,0=1
Region=6 R : P=-82,594,0=0;P=57.0895,0=1;P=-114.38,0=0;P=-92.1095,0=0
Region=6 W: P=-28.485,0=0;P=-62.5832,0=0;P=-156.564,0=0;P=63.5484,0=1
Region=7 G : P=-69.826,0=0;P=-123.127,0=0;P=22.5425,0=1;P=-40.0455,0=0
Region=8 G : P=-95.7435,0=0;P=-49.759,0=0;P=43.1937,0=1;P=-102.074,0=0
Region=9 B : P=33.9479,0=1;P=-86,9696,0=0;P=-110.278,0=0;P=-93.9951,0=0

toooqmm.hmMH

Choose (Default: Step): solve

=> Solve (Care!)

Fixpoint reached...

Region=0 G : P=-108.461,0=0;P=-89.,0467,0=0;P=96.153,0=1;P=-36.0983,0=0
Region=1 B : P=25.4792,0=1;P=-49.5313,0=0;P=-134.411,0=0;P=-55.9796,0=0
Region=2 G : P=-47.1786,0=0;P=-65,5438,0=0;P=43.,6305,0=1;P=-79.8739,0=0
Region=3 R : P=-73.183,0=0;P=60.8683,0=1;P=-97.7836,0=0;P=-68.6225,0=0
Region=4 G : P=-34.2809,0=0;P=-50.2365,0=0;P=28.1771,0=1;P=-64.8654,0=0
Region=6 R : P=-91.8668,0=0;P=47.9891,0=1;P=-53.9801,0=0;P=-116.018,0=0
Region=6 W: P=-138.609,0=0;P=-40,5245,0=0;P=-55,539,0=0;P=94.1444,0=1
Region=7 B ¢ P=95,265,0=1;P=-137.771,0=0;P=-140.15,0=0;P=-118.357,0=0
Region=8 G : P=-104.173,0=0;P=-26.8236,0=0;P=37.5878,0=1;P=-82.4699,0=0
Ragion=9 W: P=-96.8263,0=0;P=-89.8717,0=0;P=-93.9958,0=0;P=89.2666,0=1

The tour view allows to tour and navigate through the ‘land-of-instances’. It is
useful in debugging, including high-level model debugging to understand the average
and limit cases of the model behavior that occurs during the simulation. In the tour
view, attributes can be inspected, objects can be created on the fly, and exported
routines can be executed on them. Most classes inherit general, although inefficient,
exported routines for reaching related objects directly or describing the object in the
current focus (cf. Fig. 9). The tour view is currently implemented by an interface
into the Eiffel test environment. This interface can be optionally associated to the
most general class ANY_OBJECT.

The above textual views, including the tour view, do not add attributes to in-
stances. They are only based on routines and runtime information about the classes
and the features they support. In general, however, views may require instance-
level information. In particular graphic views described below are therefore separate
from model classes in ICSIM. They are encapsulated in terms of more or less model
independent classes and support different metaphors for visualization. In our cur-
rent, still floating user interface design, we call these views block view, map view and
profile view.

The block view is loosely related to the tour view. It presents the structure
and interconnection of a net at different levels of the hierarchy in a symbolic way
by nodes and edges. This view is useful at a high level of abstraction where a
single edge between two net nodes represents a complex interconnection pattern.
Traversals on these graphs and blowing up its details is comparable to a restricted
tour through the corresponding objects. Nets can be instantiated from a palette of
existing classes and the choice of an edge corresponds to the invocation of a specific
connection routine. Due to the symbolic level it provides, the block view is a kind
of ‘point-and-click’ entry point for ICSIM beginners.

The map view maps net state(s) to a geometrical layout. For instance, the units
of a layered net can be mapped to a two-dimensional cellular plane showing the
activation in limited regions of a net through colored cells on the plane. Typically
the arrangement of cells is very regular, i.e. cells are uniformly distributed in the
two dimensions (array metaphor).

| Fomm e e + Fmmmcmcmcccnc—e—————— +|
| | Object: #12020C Class: COL4AUNIT| |A: show Attributes ||
I | Attributes: 4 Routines: 164 | |B: Back up I
I e e DL e + |C: Create object I
1(1) inputs: ARRAY_SET --> |E: Execute routine ||
1(2) weights: ARRAY_SET --> |F: Forget object Il
1(3) potential: REAL = -24.993568 |G: Goto object I
1(4) output: REAL = 0.000000 II: check Invariant ||

I IL: List objects]
I IN: Name object |l
| 1Q: Quit I
l |R: show Routines I
| |S: Set attribute I
| |W: Wash screen I
I |X: set-up eXecution ||
I

Figure 9: Tour view: based on the Eiffel test environment

Finally, the profile view presents the surface of some function of the net state or
of the product of state and time. Histograms, plots and error surfaces are examples
of this metaphor.

To simplify the application and ‘programming’ of views, views can be connected
to nets much like nets are interconnected in the model world. As a by-product of this
design, storage for view related information (attributes, instances) is dynamically
allocated only when needed. And views can then be saved to persistent storage like
nets if the user wishes to save them. Moreover many views can be ‘open’ on the
same object at any time. And the state or behavior of many objects can be viewed
with a single view. In other words, there is an N-to-M relation between models and
views,

In order to meet the requirement for encapsulation, type-specific views can in-
herit from the respective net classes. In this way, views that are meaningful only
for certain types of nets can encapsulate model specific information without having
to include presentation information in each model instance. This approach seems
to be a reasonable compromise with respect to the tradeoff between object-specific
presentations (controlled by the model object) and presentation objects that sense
and control models and, in this sense, centralize user interface functionality.

In our initial implementation of ICSIM we only implemented the text and tour
view. Some first steps have, however, been made in the direction of graphic views

using the C++ based InterViews library.

3 Class Hierarchy

The three major model-related class families are nets, units and sites with their
minimal elements ANY_NET, ANY_UNIT, and ANY.SITE, respectively. These classes
define the minimal protocol (abstract data type) that all members of the family
adhere to. They do not make any commitment with respect to the data structures
used to represent any of the classes. Some of their functionality is deferred, i.e.
unimplemented. Implemented functionality is based on representation-independent
exported routines and hence usually inefficient. Nevertheless these implementations
simplify prototyping. They provide a simple abstraction, meaningful default behav-
ior, and representation-independent access for the user interface views.

3.1 Nets

Figure 10 shows part of the inheritance graph of one-dimensional nets — components
that are accessed like array elements. Most of these classes are parameterized with
the type of the components. For instance, NET1p [C — CoMP_oBIECT|, has compo-
nents which adhere at least to the protocol of the class Comp_oBiEcT. While nets
of type NET1D can be composed of units and nets, NET instances are composed only
of units.

Figure 10: Net classes

The major routines supported by all nets are:

=1

. instantiation: create_.component;

. connection: bus_connect, x_connect, complete_connect, disconnect;

2
3. computation: step, micro_step, reset, shake, to_fixpoint;
4. learning: self_adapt;

)

. visualization: describe, view.

Objects can be dynamically created and all ‘container’-like objects such as nets
are dynamically extensible in ICSIM. The create routines of nets are typically param-
eterized with the initial size of the net. The corresponding number of components
is automatically created by calling back create.component which is usually redefined
by descendent classes. Moreover, the internal connection structure is built as part
of the creation procedure. For instance, a LAYERED_NET builds a cross-connection
structure from each layer to the subsequent layer, from input to output layer. Addi-
tional internal connection structure and the connections with the environment have
to be built by the clients of this class. Create procedures are not inherited. To allow
simple modifications of the create protocol, we have followed a programming style
in which each class has a globally non-generic initialization procedure. This proce-
dure is invoked by create and inherited by descendent classes. Thus, descendents
can compose their own creation behavior partly reusing the protocol of superclasses
without breaking into their secrets.

The connection primitives require the net from which the input is received and a
connection specification (cf. above) defining defaults and details of interconnection.
Fig. 11 depicts our interpretation of bus.connect and x_connect (left and middle).

Yy

L

1

nEn]En|Ea]@En
F ¥

Figure 11: Connection routines

The drawing on the right illustrates how bus.connect translates over the levels of
hierarchically composed nets. Implicitly the corresponding subobjects are aligned
such that pairs of component sequences can be recursively translated into sequences

of pairs (connections). complete_connect mutually interconnects the components of
a net. This is particularly used for mutual inhibitions.

The simulation of nets may depend on various variables that are part of the
simulation profile: the number of steps to take in a run; the current temperature
for nets whose computation or learning is temperature dependent and so on. The
meaning of a single step on the net level depends on the net class. In general
it involves all components, while a micro_step selects a single component. Shake
changes the state of the net by some random deviation from the current state. The
change depends on the model temperature variable. To_fixpoint makes the net run
until it converges.

Self_adapt optionally determines the error of the output side and passes on the
request to components which adapt their weights to the given error and in this course
feedback errors to their sources of inputs. The order of the component adaptation
depends on the learning rule of the class.

Describe and View support the user interface.

3.2 Units

The unit library contains a number of prefabricated components that can be syn-
thesized simply by combining them through multiple inheritance.

Fig. 3 (left top) illustrates this synthetic view in which units are made up of
three facets: state (shaded bubble, left top), function (top right) and interconnection
(bottom). Choosing a specific class from the respective libraries allows us to form
various combinations freely. A fair number of such combinations are prefabricated
to offer standard off-the-shelf unit classes (cf. Fig. 12).

Nevertheless, according to our experience, users often require specific unit func-
tions tuned to the problem at hand. A function package contains a number of basic
unit functions for this purpose. The unit functionality includes

1. creation: createsite (cf. sites below);
state: potential, output;
connection: connect, connectedp, disconnect;

computation: step, compute, post, reset, random._reset;

o W= e @

learning: self_adapt, clamp, release.clamp

6. visualization: describe, view.

Connect adds a single connection and connectedp is the corresponding predicate
determining whether a pair of units is connected.

For the purpose of simultaneous updates (synchronous and asynchronous), a
unit step is separated into the two phases of compute and post for all descendents
of PHASE2_UNIT. In a step of simultaneous updates, all included units compute and

Figure 12: Part of the unit hierarchy.

then all included units post. For an interleaving semantics of asynchronous behavior
this distinction is irrelevant since we assume that temporal measurements can be
made infinitely fine and hence steps can always be ordered.

Clamping of units, i.e. freezing its state is supported by clamp and release_clamp.
This can be used by some learning algorithms to force other units to internally
adapt to a set of training patterns in order to distribute the internal representation
of knowledge.

3.3 Sites

Sites represent the state of training which undergoes change only over a longer
period of computation depending on the learning method supported by a net. From
the structural viewpoint of composition, however, sites have a single output (inherit
from class OuTpuT_oBIECT) like units.

Site operations mainly deal with connection. The major routines have the obvi-
ous interpretation:

1. creation: create_site (some classes only)

2. connection: connect, disconnect, connectedp,

site_connect, site_disconnect, site.connectedp,
3. computation: output, ith_input;

4. training: site_adapt;

s Lo d

5. visualization: describe, view.

The routines with the prefix ‘site’ only operate locally on the site; the unprefixed
versions are interpreted as operations including the subsites in a site tree, if the
current site is the root of some site tree. For instance, disconnect(u) would disconnect
the input unit u from all terminals of a site tree, while site_disconnect(u) would erase
only those connections terminating in the current site.

Sites can be weighted and unweighted. There are classes to support sharing of
connections and/or of weights. Connection sharing is mainly a matter of compacting
and centralizing the data representation of models. In contrast to this, weight
sharing implies a different semantics of learning since multiple units interfere with
each other by adapting the same weights. Fig. 13 shows part of the inheritance graph
in the site library. The representative class SITE (right middle) supports the weighted
sum of its inputs. All sites can receive input from any OvurpuT_oBikcT. This allows

Figure 13: Part of Site Hierarchy

the user to compose complex interconnection patterns similar to dendritic trees with
varying site functions at the accumulation points (cf. Fig. 3). self.adapt and routines
of a weight (vector) object allow to modify weights.

(31}

Some classes at the leaves of the inheritance graph, like MULTI_SITE for example,
represent a specific composite site structure that is automatically built when the
object is created. MULTISITE, for instance, includes a vector of sites whose outputs
it sums up. As part of its creation protocol, a MULTI_SITE creates and initializes
a number of sites by iteratively calling back create_site which can be specialized by
descendents.

3.4 Virtualization

All of the above class families support virtualization. Virtual objects ‘simulate’ the
protocol of their class family. For instance, a virtual unit may behave like a unit
in sending and receiving signals to and from other units and it may observe the
connection protocol. But its state and inputs is not represented in the instance
proper. The virtual unit will know to find the information in some shared and
compact objects.

Similarly, some virtual sites know how to compute their sources of input rather
than storing the connections on a one-by-one basis. This is particularly efficient for
regular interconnection structures with convex regions of some other net. The de-
termination of the respective region may require a much smaller number of reference
points (units or unit indexes) than the number of units contained in it. Consider
for instance an artificial net for visual pattern recognition modeling parts of the
postretinal neural behavior. Typical sites will connect to convex, usually circular,
regions of some plane of units. If the plane is represented by a two-dimensional ma-
trix, a virtual site representing such an interconnection structure needs a reference
to this matrix, an index to the center of the region and a the radius to calculate the
input or supporting other site operations.

As part of the site protocol the routine ith_source® returns the ith unit from which
a site receives its inputs. For a virtual site, this routine creates a virtual unit on the
fly which ‘pretends’ to represent the corresponding unit.

Last but not least, virtual nets allow for sharing and overlaying of collections
of units. Rather than using arrays of subnets or units, virtual nets refer to other
nets and know how to calculate their components. Consider for instance a two-
dimensional plane of units. A virtual hierarchical net might interpret square regions
of 100-by-100 units, say, as its immediate subnets, each of which again falls into
10-by-10 subregions. Analogous to virtual sites, the net would retrieve the corre-
sponding units by index calculation.

%in support of the tour view and also for feeding back error signals in a representation indepen-
dent manner.

4 Examples
4.1 Layered Xor

The following example is a variation of the class XorR_NET presenting in a previous
section. Here we use a layered net and show how higher level structure also lead
to an abstraction with respect to interconnection. The input layer (XoraNpPUT) is
a net consisting of the bottom two units. These are created following the same
superclass-initialize-and-callback pattern that we used above. This is the only type-
specific behavior of the class. The other two layers are the units proper®.

class XOR_INPUT export repeat NET
inherit NET [BooL_rND_UNIT| redefine step, create_unit

feature
create is do net_init (2) end ;
create_unit (i: INTEGER): bool_rnd_unit is do Result.create end :
step is do serial_step end ;

end

Here the class XorRNET is modified to use the superclass LAYERED_NET which
automatically creates the interconnection from layer to layer upon creation based
on the connection specifications defined by the function layer_connect_spec. Only the
connections from input to output layer remain to be wired in this variant of the
model.

class XORNET export repeat LAYERED_NET
inherit LAYERED_NET [COMP_OBIECT]
redefine step, create_component, layer_connect_spec

feature
create is
do
netld_init (3); - — create and x_connect 3 layers
layer(0).connect_to (layer(2),conl);
end ;

5Nets or units can be layers.

s e

layer_connect_spec (i: INTEGER): ANY_CON is
do
inspect 1 — — name of connect target
when 1 then Result:=conl
when 2 then Result:=con2
end ;
end ;

end

4.2 Four colors: boolean view

This is a slight redefinition of the example developed in Section 2.3.4. Here we
use boolean units (with the default boolean threshold of 0.5) which makes the net
converge much faster. After all, according to our initial problem statement the units
represent a binary relationship that either holds or does not hold. The activity
based unit function in the previous example can be interpreted in a discrete way
by distinguishing three ranges of unit activation in terms of the weighted sum I of
inputs:

1. I £ -5, some other color of this region is selected.

2. =5 < I < 0, no other color in this region selected, but some neighbor has this
color.

3. I =0, no other color in this region selected and no competing neighbor.

We take advantage of this discrete interpretation in the redefinition of the predi-
cate deterministicp that supports the simulator’s reasoning about convergence of the
computation. '

class COL4UNIT inherit BooL_uniT redefine post, deterministicp
feature

post is
do
if unif_rnd+strong_inhibition < potential then unitflip_up
else unitflip_.down end ;
end ;

deterministicp: BOOLEAN is
do Result := (potential <= strong_inhibition or potential = 0.0) end ;

end

In this solution to the problem, we redefine the post routine. The potential is
the weighted sum of the inputs; compute is inherited from BooL_uniT. The potential
and some non-determinism is used to determine the output. Also here we redefine
deterministicp, a predicate that is called by the inherited routine fixpointp. Fixpointp
is true only if a step will not change the unit’s output and the unit is deterministic
in the current input range.

4.3 Using multiple sites

The following example solves the four color problem with multi-site units. This
variant uses two sites for the different kind of connections. The example also shows
how to combine basic building blocks for units and demonstrates the default site
connection protocol for multi-site units.

This time units inherit directly from ANvy_uNiT. In class ANY_UNIT, potential and
output are not separate attributes as in PuAsE2_uNIT; rather output is a function
of the potential. This is acceptable since in this model our computation mode of
choice is asynchronous.

The two sites are built when the unit is created,

Moreover it is noteworthy that the weak inhibition connections need to be dy-
namically extended with each new neighbor relation being ’built’ while the strong
mutual inhibition within one region can be represented by a fixed size site - there are
always four colors while there are a variable number of neighbors. In the connection
protocol this is transparent.

class COL4UNIT inherit
ANY_UNIT redefine post ...;
MuLTISITE [COL4UNIT] redefine create.site ...;
CoL40BJ;

feature

create is
do
multisite.init (2); - — create two sites right now.
reset;
end ;

oy

create_site (i INTEGER): SITE [COL4UNIT] is
local s: SiTE [CoL4UuNIT];
do s.create(4); Result:=s
end ;

end

The other routines like post are identical to the previous example and are not
shown here.

The selection of the proper site during connection building is achieved by a
redefinition of the connection specifications of the class CoL40BJ, the class from
which all classes in our example inherit. This is straightforward here since we used
different connection specifications for the different strengths in our initial example.

strong_inhibit: ConsT_coN is
once
Result.create (strong_inhibition,sys.always);
Result.select_ith_site (0);
end ;

weak_inhibit: const_con is
once
Result.create (weak_inhibition,sys.always);
Result.select_ith_site (1);
end ;

4.4 Using shared weights

In the four color example almost all weights are identical and can be shared. In the
following version of the problem we exploit weight sharing. Due to the ‘regularity’
in the structure of our solution there are only two types of connections each with a
type specific constant weight:

1. mutual inhibition of colors in the same region. The number of connections of
this type per unit is fixed. The weight represents strong inhibition;

2. mutual weak inhibition of neighboring colors. The number of connections
varies with the number of neighbors.

The example shows how sites with shared weights can be used to ‘fold’ all similar
weight vectors into a single one. In terms of the connection protocol there is no
difference between sharing and non-sharing sites. The type declaration for shared
weight variable is different of course and the routine that creates the sites needs to be

redefined to create sites of this more specific class (Suar_wEIGHTS SITE). When a site
is created, a reference to the shared weight vector is passed to create. The functions
color_inhibition and neighbor_inhibition create or get the correspondmg weight vectors
from a class variable (Eiffel once).

class SHAR_COL4UNIT inherit CorL4unIT redefine create_site
feature

createsite (i: INTEGER): SiTE [CoL4uNiT] is

local s: SHAR_WEIGHTS SITE [COL4UNIT];

do
inspect i
when 0 then s.create (color_inhibition);
when 1 then s.create (neighbor_inhibition);
end ;
Result:=s;

end ;

color.inhibition: ARRAY_SET [REAL] is once Result.create (3) end ;
neighbor_inhibition: ARRAY_SET [REAL] is once Result.create (4) end ;

end

5 Conclusion

We described the initial design of ICSIM, a simulator for connectionist nets. The
choice of an object-oriented approach to the problem is promising and seems to have
scope also in the direction of parallel simulations.

The design of ICSIM is centered around nets instead of units. The decompo-
sition of large nets into subnets allows to choose adequate data structures without
compromising the general simulation-oriented functionality. At the same time nets
allow a user to choose the granularity of distributed representation and parallelism
without the need of homogeneous (SIMD type of) representation where this would
be unnatural.

A number of concepts described and techniques chosen in the implementation are
still subject of discussion. In particular we expect a change in the chosen implemen-
tation language from Eiffel to the Eiffel related Sather language developed at ICSI.
Sather combines some selected features of Eiffel with a more efficient implementa-
tion and a less purist and restrictive approach towards object-oriented programming
than Eiffel[11]. Another important argument: Sather will most likely be in the pub-
lic domain, i.e. without severe copyright restrictions and licenses.

Q4

A cknowledgement

I am grateful to Jerry Feldman with whom I had many stimulating discussions on
the design. He also had worked out initial sketches of some classes when I came to
ICSI. Thanks to Jeff Bilmes with whom I worked on the design of the user interface
and who did some experiments with the Interviews library. I am also grateful to
Susan Weber who worked with the simulator in the last three months. Without
her, this report would not be what it is. She had many detailed ideas on how class
interfaces could be improved. Also some examples are due to her.

References

[1] Alexander, I (ed.): Neural Computing Architectures: The design of brain-like
machines. Cambridge: MIT Press, 1989

[2] Coss, R.G., and Perkel, D.H.: The function of dendritic spines: a review of
theoretical issues. Behavioural and Neural Biology, 44, pp. 151-185 (1985)

[3] D’Autrechy, C.L. et al: A general-purpose simulation environment for develping
connectionist models. Simulation 51, 1, pp. 5-19

[4] Feldman, J.A. and Ballard, D.H.: Connectionist models and their properties.
Cognitive Science, 6, pp. 205-254

[5] Feldman, J.A. et al: Computing with Structured Connectionist Networks,
CACM 31, 2, pp. 170-187, (1988) '

[6] Goddard, N.: The Rochester Connectionist Simulator: User Manual, TR, Univ.
Rochester, 1987

[7] Hecht-Nielson, R.: Neurocomputing: Picking the Human Brain. IEEE Spec-
trum, March 1988, pp. 36-41

(8] Korb, T., Zell, A.: A declarative neural network decription language. Micro-
processing and Microprogramming 27, North-Holland, pp. 181-188 (1989)

[9] Lange, T.E. et al.. DESCARTES: Development Environment for Simulating
Hybrid Connectionist Architectures. TR UCLA-AI-89-16, Los Angelos: UCLA,
1989

[10] McClelland, J. L., Rumelhart, D. E., and the PDP research group: Parallel
distributed processing: Foundations. Cambridge, MA: Bradford Books, 1986

(11] Omohundro, S.: The Sather Language. TR, Berkeley: ICSI, to appear, 1990.

(12] Shastri, L. and Ajjanagadde, V.: From associations to systematic reasoning.

TR, Philadelphia: Univ. of Pennsylvania, 1989

35

[13] Waltz, D., Feldman J.A. (eds): Connectionist models and their implications:
readings from cognitive science. Norwood, N.J.: Ablex Pub. Corp., 1988.

[14] Wassermann, P.D.: Neural Computing: Theory and Prazis. New York: Van
Nostrand Reinhold, 1989

[15] Wilson, M.A. et al.: Genesis: A system for simulating neural networks. Proc.
of ’89 NIPS conf., also TR: Pasadena: Cal. Inst. of Tech., 1989

[16] Wilson, M.A. et al.: Genesis& XODUS: General Purpose Neural Network Simu-
lation Tool. Proc. of 89 USENIX conf., also TR: Pasadena: Cal. Inst. of Tech.,
1989 '

36

