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ABSTRACT

The classical theory of computation and complexity presupposes all underlying spaces
are countable and hence ipso facto cannot handle arbitrary sets of real or complex numbers.
Thus e.g., Penrose (1990) acknowledges the difficulty of formulating classically his question
“Is the Mandelbrot set recursive?” On the other hand, this as well as a number of other
inherent questions of decidability and computability over the reals or complex number can be
naturally posed and settled within the framework presented in this paper.
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1 Introduction

Classically, the theories of computation and computational complexity deal with discrete
problems, for example over the integers, about graphs, etc.. On the other hand, most computational
problems that arise in numerical analysis and scientific computation, in optimization theory and
more recently in robotics and computational geometry, have as natural domains the reals R, or
complex numbers C. A variety of ad hoc methods and models have been employed to analyze
complexity issues in this realm, but unlike the classical case, a natural and invariant theory has
not yet emerged. One would like to develop theoretical foundations for a theory of computational
complexity for numerical analysis and scientific computation that might embody some of the
naturalness and strengths of the classical theory.

Toward this goal, we have been developing a new theory of computation and complexity
which attempts to integrate key ideas from the classical theory in a setting more amenable
to problems defined over continuous domains. The approach taken here is both algebraic and
concrete; the underlying space is an arbitrary commutative ring (or field) and the basic operations
are polynomial (or rational) maps and tests. Thus, a real number is viewed as an entity in its own
right, not as a decimal approximation, and the assumption made is that we can add and multiply
(and divide) real numbers. By maintaining fundamental mathematical operations as primary, rather
than reducing all computations to bit operations, the algebraic and dynamic structure of algorithms
become apparent. For example in this model, as in practice, Newton's method for finding zero’s
of a polynomial f is performed on an arbitrary real number, not just a computable real, and the
fundamental component of the algorithm is the rational operation Ny(z) = z — (_f(z)/f'(z)),
not bit operations.

The classical theory of computation and complexity presupposes all underlying spaces are
countable and hence ipso facto cannot handle arbitrary sets of real or complex numbers. Thus
e.g., Penrose (1990) acknowledges the difficulty of formulating classically his question "Is the
Mandelbrot set recursive?" On the other hand, this as well as a number of other inherent questions
of decidability and computability over the reals or complex numbers can be naturally posed and
settled within the new framework,

Qur approach yields results in the continuous setting analogous to the pivotal classical results
of undecidability and NP-completeness over the integers, yet reflecting the special mathematical
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character of the underlying space. For example, over the reals we have that (1) the Mandelbrot
set as well as most Julia sets are undecidable? and (2) the problem of deciding if an algebraic
variety has a real point is NP-complete. While there are many subtle differences between the new
and classical results, the ability to employ mathematical tools of more mainstream mathematics
(such as from algebra, analysis, geometry and topology) in the domain of the reals may suggest
new approaches for tackling the classical, as well as new, "P=NP?" questions.

The material covered here is based in large part on (Blum, Shub and Smale 1989) denoted
in this paper by BSS, (Blum and Smale 1990) and (Blum 1990). Discussions of related work are
contained in those papers. See also (Shub 1990a, 1990b) and (Smale 1990). Additional relevant
literature is listed in the References.

2 Computable Functions and Decidable Sets

The classical theory of computation had its origins in work of logicians -of Gidel (1931),
Turing (1937), Church (1936), Kleene (1936), Post (1936)- in the 1930's. Of course there were
no computers at the time; this work, in particular Turing’s, clearly anticipated the development
of the modern digital computer. But even more, a primary motivation for the logicians was to
formulate and understand the concept of decidability, or of a decidable set, thus o0 make sense
of such questions: “Is the set of theorems of arithmetic decidable?” or “Is the set of polynomials
with integer coefficients and integer solutions decidable?™?

Intuitively, a set S C U is decidable if there is an “effective procedure” that given any element
u of U (some natural universe) will decide in a finite number of steps whether or not u is in S,
i.e. if the characteristic function of § (with respect to U) is "effectively computable.” The models
of computation designed by these logicians were intended to capture the essence of this concept
of effective procedure/computation. The idea was to design formal “machines™ with operations,
and finitely described rules for proceeding step by step from one operation to the next, so simple
and constructive that it would be self-evident that the resulting computations were effective.

In each formalism (e.g. Turing’s), a function f from the natural numbers N to N is defined to
be computable if it is the input-output function of some such machine (e.g. a Turing machine). It
is quite remarkable that even though the formalisms were often markedly different, in each case,
the resulting class of computable functions (and hence decidable sets) was exactly the same. Thus,
the class of computable functions appears to be a natural class, independent of any specific model
of computation.* This gives one a great deal of confidence in the theoretical foundations of the
theory of computation. Indeed, what is known as Church's thesis is an assertion of belief that the
classical formalisms completely capture our intuitive notion of computable function. Compelling
motivation clearly would be required to justify yet a new paradigm.

2 Indeed, the complements of these sets provide examples of semi-decidable sets that are undecidable
over the reals.

?  Itwas originally taken for granted (by mathematicians in general, and Hilbert (1901-1902) in particular)
that the answers lo these questions were both affirmative. The queries were actually posed as tasks: “Produce
decision procedures for the given sets.” The incompleteness/undecidabilty results of Godel (1931) in the first
place, and of Matijasevich (1971) on the unsolvabilty of Hilbert's Tenth Problem in the second, show such
tasks cannot be carried out in full generality.

4 These functions are often called the (partial) recursive functions.



3 Examples

In order to motivate our theory, we briefly discuss three examples, one from complex analytic
dynamics, one from numerical analysis and one from classical complexity theory.

1 Is the Mandelbrot Set Decidable? %

FIGURE 1 The Mandelbrot set.

This question was asked by Penrose (1989) in his book The Emperor’s New Mind. Recall
the Mandelbrot set M can be defined:

M ={c€ C|p(0) = o},
where p.(z) = 22 4 c and pl is the nth iterate of p..

It is well known (se e.g. (Branner 1989)and (Douady and Hubbard 1984, 1985)) that the boundary
of M has a rich and extraordinarily complex structure. Hence, the reasonableness of Penrose’s
query.

In a trivial sense the answer to the question is “yes” since classically, decidable sets, being
subsets of N or some structure that can be “effectively coded” in N, must be countable, However,
one might wish for a more satisfactory way to deal with such questions about subsets of R® (for
M, we are viewing C as R3). One way might be to consider the rational or algebraic skeletons
of the sets in question. Problems quickly arise with this approach (e.g. consider the rational
skeleton of the points on the curve z3 + 3 = 1 in the positive orthant). Another way might be
to take a recursive analysis approach. For example, we might imagine a Turing machine being
input a real number bit by bit by oracle. Using its internal instructions, the machine operates on
what it sees, possibly every so often outputing a bit. The resulting sequence, if any, would be
considered in the limit the (binary expansion of the) real output. Problems arise here when one
wants o decide if two numbers are equal.

Penrose speculates on various such approaches and concludes (p.129) “ One is left with the
strong feeling that the correct viewpoint has not yet been arrived at.” ’

% This illustration is from (Penrose 1989) and is reproduced with permission by the publisher.



2 The Newton Machine

Newton’s method is perhaps the “algorithm” sine qua non of numerical analysis and scientific
computation. Here we briefly recall Newton's method for finding zeros of polynomials in one
variable.

Given a polynomial f(z) over the complex numbers C, define the Newton map N; : S — S
of the Riemann sphere S = C U {0} into itself by

Ny (2) = 2= (£(2)/ f'(2))-
Now for Newton’s method: Pick an initial point 2o € C and generate the orbit
29,21 = Ny(20),22 = Ny(21), -+, 241 = Nyp(a) = Ny H (), ...

Some stopping rule such as “stop if | f(z;) |< € and output z; (else pick a new initial point if
k is too large)” is implied.$
We can represent Newton’s method schematically as in Figure 2,

INPUT Z l

COMPUTE [ 2zt

FIGURE 2 The Newton machine for f.

A Turing machine for implementing Newton's method, by reducing all operations to bit
operations, would wipe out its basic underlying structure. We would like to have a model of
computation in which Newton could be represented as naturally as in the Newton machine, and
in which its salient features would be as apparent.

3 Does P=NP?

If a problem has a solution that can be easily verified, can such a solution be found quickly?
This question is formalized by means of the fundamental open problem of classical (discrete)
complexity theory, namely does P=NP? We would like to pose this question within a more general
setting, thus perhaps increasing the mathematical tools and perspectives available to tackle it.

¢ Simple calculations show that the zeros of f are the fixed points of Ny (e. f(z) =0 if and only if
Ny(z) = 2), and the fixed points of N, are attracting (ie. | Ny(z) [< 1). This implies there are local
neighborhoods about the zeros of f that contract under (iterates of) Ny, Thus any point z € S that, under
the action of Ny, eventally enters one of these contracting neighborhoods will eventually approach a zero
of f. This is the basis for Newton's methed. It is well known, however, that Newton's method is not
generally convergent. The main obstruction to general convergence is the existence of attracting periodic
points of period at least 2. (See (Smale 1985) and (Friedman 1989) for estimates on measures for the basin
of attraction of the Newton map.)




4 Finite Dimensional Machines over a Ring R

Now we describe our formal model of computation over a ring. Let R be an arbitrary
ordered commutative ring (or field).

Definition: A finite dimensional machine M over R consists of three spaces: input space
T, state space S, and output space O of the form R', R, R™ respectively, together with a finite
directed connected graph with four types of nodes: input, computation, branch and output.

The unique input node has no incoming edges and only one outgoing edge. All other nodes
have (possibly several) incoming edges. Computation nodes have only one outgoing edge, branch
nodes exactly two (left and right), and output nodes none. Each node has associated maps:

At the input node, there is a linear map [ taking points from the input space to the state space.

Each computation node has an associated polynomial or rational map g : R* — R" of the
state space to itself,

Each branch node has an associated polynomial function h : R* — R from the state space
R" to the ring R. For a given state z in R" at such a node, branching left or right will depend
upon whether or not A(z) < 0.

Finally each output node has an associated linear map from the state space to the output space.

If R is a field and g is a rational map associated with some computation node, we will assume
that previous nodes have tested for the vanishing of the denominators occurring in g and branched
away as necessary. (Thus we are assuming that a map associated with a computation node is
defined at every input to the node.)

INPUT node, 1
1:7- 3

L e L =

COMPUTATICN node, 1Y
9,: 5%

FIGURE 3 A finite dimensional machine M: I and O are the maps associated with the Input and
output nodes respectively. For » a computation node, g, ks the assoclated “computation map”; and
for r a branch node, A, Is the assoclated “branching function.

For n an input node or a computation node, 8, is the unique next node following n. For n a
branch node, 57 Is the next node along the left outgoing edge and 5; the next node along the right

outgoing edge.



Thus the Newton machine is an example of a machine over R. (Again we are viewing C
as R? and the Newton map N, as a rational map g = (gy,92) : R? — R?. By expressing the
stopping rule as |f(z)|* < €2, we get an equivalent real polynomial condition k(z,y) < 0.)

It is quite natural to view M as a discrete dynamical system. Here it is convenient to assume
there is only one output node with associated map O. Thus we may let N = {1,..., N} be the set
of nodes of M, where 1 is the input node and N the output node. We call the space of node/state
pairs N x S the full state space of the machine.

Implicitly associated to M is the computing endomorphism

H:NxS—-Nx3S

of the full state space to itself. That is, H maps each node/state pair (n,x) to the unique next
node/next state pair (3(n, z), g(n, z)) determined by the directed graph of the machine and its
associated maps (see Figure 3.) in the following way:

ﬁ(l,:) = f, g(l,:) = 2.

If n is a computation node:
ﬁ[nlz)=ﬁﬂl g(n|:)=gﬂ(z)'
If n is a branch node:

o if ha(2)co
Blma) =153 it pse S(m2)==.

B(N,z) =N, g(n,z) =z.

The computing endomorphism is our main technical as well as conceptual tool. For example,
we can use it to define the input-output map ¢y of a machine M as follows:
__ With input y in 1, let z = I(y). Then with initial point zo = (1,z) of the full state space
N x S generate the computation (i.e. the orbit under iterates of H)

Zp = (1,3),21 = H(Zu),ZQ = H(Z1),...,Zj; =H(Z;_1) = (n;,,z;,),.

Halt when (if ever) the first point z7 is produced which has the form zp = (N, w). If this is the
case, the resulting finite sequence is called a halting computation; we say M halts on input y in
(halting) time T with output O(w) and define s (y) = O(w). If there is no such T, then M does
not halt on input y (i.e. the halting time is infinite) and s is not defined.

The halting setof M, Q¢ is the set of all points in T on which M halts. Thus, g : Q4 — O.

The conditions describing halting computations are essentially (semi-)algebraic; they serve
as the key technical tool in the proof of the NP-Completeness Theorem, as well as in an algebraic
proof of Godel's Theorem (see (Blum and Smale, 1990)). The basic idea is that the relevant sets
can be defined in terms of these conditions. For example, the time T halting set of M can be
defined as the set of all points y in T for which there are solutions z, ...,z and w to the (time
T) register equations (of M):

z0=(1,I(y)),2r = (N,w) and z; = H(zz—y) for k=1,...,T.



Now having defined our formal notion of machine over R, we can easily formalize all related
concepts including those in Sections 2 and 3. For example, we define a map

p:Y=R",YCR

to be computable over R if it is the input-output map of some machine M over R, i.e. if o = ¢y
and Y = Qu. We say M computes .7 A set S C R! is decidable over R if its characteristic
function is computable over R. Qtherwise it is undecidable over R.

In this setting, Penrose’s question may thus be posed quite formally: Is the Mandelbrot set
M decidable over R?

But before addressing this, it is worth noting that M', the complement of M, is semi-decidable
over R. That is, there is a machine over R that on input z € R3 outputs 1 if z € M’ and otherwise
outputs 0 or is undefined. A semi-decidable machine for M' can be constructed (see Figure 4)
using the fact that M is also characterized as {c € C | [p?(0)] < 2}.

W o=
Z2+0

|Zhﬂ

IHPUT

CCMPUTE

ouTRUT
FIGURE 4 A semi-decision machine for the complement of M.
Now as in the classical theary, it is easy to see that a set is decidable just in case both it and
its complement are semi-decidable, and that the semi-decidable sets are exactly the halting sets.
Thus we are now ready (o take a closer look at halting sets. Here it is convenient to return
to the directed graph picture of a machine M over R. To each point y in the halting set Q,; we
associate its halting path, i.e. the finite sequence of nodes

ng=1,m,...,n0=N

traversed from input to output in the computation of ¢p(y). (The halting path is the sequence
obtained by projecting each element of the halting computation with input y onto its first
coordinate.)

There are only a countable number of halting paths. For each halting path v let Ty be the
set of all points in the halting set Q,, that have v as their halting path. It is easy to see that
for distinct 4’s the I+'s are disjoint. Also, each Ty is a semi-algebraic set® Note also that M
7

We remark that the new theory reduces to the classical when R=Z. That is, the computable functions
over Z are exactly the recursive functions (see BSS). Therefore, our model of computation is sufficiently
powerful to develop the classical theory. (By Church's Thesis, we would have cause for concern had we
produced more functions computable over Z.)

* Aset S C R is basic semi-algebraic (over R) if it is the set of elements inR' that satisfy a (fixed)
finite set of polynomial equalities and inequalities (over R). A semi-algebraic set is a finite union of basic
semi-algebraic sets.



acts like a “straight line program” on Jy. Indeed, by concatenating the input, computation, and
output maps that occur along the path +, we see that yp,, restricted to [y is just a polynomial (or
rational) map .. Thus we have the following:

PROPOSITION 1. The halting set of a machine M over R is a (disjoint) countable union of
semi-algebraic sets (over R); the input-output map s is a piecewise polynomial (or rational) map.

So, for example, halting sets have integral Hausdorff dimension.

PROPOSITION 2. (Sullivan 1990). The Mandelbrot set is not the countable union of
semi-algebraic sets over R.?

COROLLARY. The Mandelbrot set is not decidable over R.

The same holds for most Julia sets since, from the theory of complex analytic dynamical
systems, we know that most Julia sets have fractional Hausdorff dimension. Indeed, for hyperbolic
rational maps of the Riemann sphere, we have the following

THEOREM (BSS) A Julia set is decidable if and only if it is

[

a round circle,
an arc of a round circle, or
3. the whole sphere.

M

5 Infinite Dimensional Machines over R

The classical construction of a universal machine assumes an effective coding of machines
by (natural) numbers. In effect, the coding is a collapsing of sequences of numbers into a single
number. Over the integers this can be done by a gidel coding. However, in general over a ring
R (e.g. over the reals), such an invertible collapsing cannot be done by a computable map. But
even more, this collapsing destroys the algebraic structure of the underlying spaces and so we
wish to avoid this approach in our development.

Our resolution (BSS) is reminiscent of the viewpoint, and terminology, used by programmers,
i.e. that a program is its own code. To each machine M over R we associate a program 7(M)
which will be a finite sequence of elements of R describing the workings of M. Such a program
will be M’s code. This suggests that a universal machine over R should have the facility to take
as input finite sequences of unbounded length.

In addition, if we wish to have a natural framework for dealing with uniform procedures for
solving problem instances of arbitrary dimension (say for the Travelling Salesman Problem), we
are also led to consider machines that handle unbounded sequences.

With these considerations in mind we are motivated to extend our notions to infinite
dimensional machines over R:

The underlying spaces I, S, and O for an infinite dimensional machine over R each will be
R*, the infinite direct sum space over R, A point y = (y;,y9,...) in R* satisfies y, = 0 for
k sufficiently large. The length of y is the largest n such that y, # 0. Polynomial (or rational)
maps in this context are still defined by a fixed finite number of polynomials (rational functions)
that and depend only on a fixed finite number of variables

Here I would like to acknowledge helpful discussions with Michel Herman and Adrien Douady and
also with John Hubbard who provided an independent proof of this result,



The machine will consist of a finite connected directed graph now containing five types of
nodes, four as before, with associated maps. If the machine had only the previous type nodes it
would essentially be a finite dimensional machine. The increased power comes from the addition
of fifth nodes that allow accessing of coordinates of arbitrarily high dimension.

A fifth node may have several incoming edges but only one outgoing edge. The
associated map transforms state ¢ = (i,j,21,...,%j,..., Tk, ..., Ti,...) O stae z’ =
(4,7, 2153 2i, .-y Zky. .., Zi,...), assuming i and j are positive integers. That is, the fifth
node map writes z; in the “jth place™ of x and leaves everything else alone.

Thus, the first two coordinates of the state space play a special role which require
some minor modification of the other maps. For y = (y1,y2,...) in T we let I(y) =
(1,1,length(y),v1,0,¥2,0,3...). This initializes the indices i and j and leaves room for
workspace. Information about the length of y is often useful and so is also included. For
z = (i,j,z172,...) in 5, we suppose a computation node map can alter the first two coordinates
only by adding 1 or by setting to 1. Finally we let O(z) = (z2,z4,...)-

Computing endomorphisms, input-output maps, halting sets and all such related notions are
defined exactly as before. Note that a finite dimensional machine can be considered as a special
case of infinite dimensional machine.

See BSS for an explicit construction of a universal machine over R.

6 COMPLEXITY THEORY OVER a RING R

A goal of computational complexity theory is to quantify the intrinsic difficulty of solving
(solvable) problems. This theory had its origins in the 1960’s.® It was developed primarily
by rescarchers, originally trained in mathematics and logic, but who found more hospitable
environments for these interests in the newly emerging computer science departments, (For the

10

However, as early as 1948, von Neumann (1963) clearly articulated the need for such a theory. From
his Hixon Symposium lecture: “Throughout all modem logic, the only thing that is important is whether a
result can be achieved in a finite number of elementary steps or not. The size of the number of steps which
are required, on the other hand, is hardly ever a concern of formal logic. Any finite sequence of comect
steps is, as a matter of principle, as good as any other. It is a matter of no consequence whether the number
is small or large, or even so large that it couldn’t possibly be carried out in a lifetime, or in the presumptive
lifetime of the stellar universe as we know it...[On the other hand] in the case of an automaton the thing
which matters is not only whether it can reach a certain result in a finite number of steps at all but also
how many such steps are needed.” A primary concern here for von Neumann was his conviction that the
cumulative effect of the small but non-zero probability of component failure “may (if unchecked) reach the
order of magnitude of unity— at which point it produces, in effect, complete unreliability.” To the contrary
in fact, as far as I am aware, component failure has not posed difficulties anywhere near the magnitude posed
by the (apparent) intractability phenomenon.

Much work of logicians since the 1930's had been in identifying and classifying decidable and undecidable
problems and theories. With the advent of the digital computer, and its promise of solving hitherto intractable
problems, interest perked the realm of the solvable (i.e. decidable) with the quest for efficient algorithms.
Although there were many successes, it soon became apparent that a number of problems (such as the
Travelling Salesman problem, while solvable in principle, defied efficient solution. These problems seemed
in essence intractable. Thus, amongst the solvable, there appeared to be yet another rich and natural hierarchy,
with the dichotomy of tractability/intractability mirroring the earlier dichotomy of decidability/undecidability.



seminal work in the theory, see (Rabin 1960), (M. Blum 1967), (Winograd 1970), (Cook, 1971),
(Karp, 1972) and (Levin 1972).)

Classical complexity theory deals primarily with combinatorial (discrete, integer) problems,
We extend the theory in order to consider a wider class of problems. As has been traditional
however, we focus on decision problems. These are problems with “yes/no™ answers (lo questions
generally of the form “Does there exist a solution 10...7”) and are classified as to their difficulty
into classes P, NP or as being NP-complete.

DEFINITION. A decision problem over R is a pair (Y, Yye,) with
Yyes CY C R™.

Y is the set of problem instances, and Y., is the set of yes-instances.

For example the Travelling Salesman Problem, stated over an ordered ring R, can be put in
this form by leting:

Y = {(n, A, k) | n is a positive integer, k > 0 and A = (a;;) is an n x n matrix over R}
Yyes = {(n, A, k) in Y | there is a tour 7(n) with Distance(A,(n)) < k}.

Here a four r(n) = (11, m2,..., ™) is acycle on the entire set (1,2,...,n) and Distance( A, r(n)) =
n—1
(Zj O,z +,) + ar,r,- By representing A by the sequence of its rows one after the other, we
have Y c R*.
A second example, which will be prominent in out theory, is the 4—Feasibility Problem

(4-FEAS) over R. Here,

Y = { multivariable polynomials f over R | degree f < 4}
Yyes = {fin F | f(€) = 0 for some ¢ = (€y,...,&) inRt}

We are supposing that polynomials are represented as elements of R® via the standard repre-
sentation (sece BSS).

Thus the 4-FEAS problem is: Given a multivariable polynomial fof degree 4 with coefficients
from R, does f(z) = 0 have a solution over R? While it may not at all be obvious how to decide
if such a solution exists, it is a straightforward procedure to verify one that may be presented
to us. Just plug the purported solution into the equation and check it out. Is this verification
tractable in our model of computation? The answer will depend on the underlying mathematical
properties of the ring or field, as well as our measure of complexity, But first we must formalize
the basic concepts of size and cost.

We first suppose we have a function height defined on R with values in the non-negative reals,
e.g. for R=Z or R, and y € R we might choose height (¥) to be logarithmic height, log,(|y| + 1),
or unit height, 1. Then for y = (y1,¥2,..-,¥s,0,0,...) € R, we define

size(y) = length(y) + height(y)

where height(y) = maz height(y;). Thus with unit height, size reflects the “dimension™ of
input, whereas over the integers with logarithmic height size reflects the traditional bit length.

10



For the remainder of this paper, unless otherwise stated, we will suppose unit height for R and
logarithmic height for Z.

Now suppose M is a machine over R with a height function defined. Then

costar(y) = Tm(y) X hmaz(y)

where Ty (y) is the halting time of M on input y (which may be finite or infinite depending on
whether or not y is in the halting set of M) and A, (y) is the maximum height of any element
occurring in the computation of M on input y. Over the reals, the cost reflects the number of basic
algebraic operations, whereas over the integers, the cost reflects the number of bit operations.
The following definitions make sense only in case height has been defined over R.
DEFINITION. A map ¢ on (admissible) inputs Y C R™ is polynomial time computable
over R if there is a machine M over R that computes ¢ and

costar(y) < poly(size(y)), forall y in Y.

Here poly is some polynomial with nonnegative integer coefficients. Polynomial time is meant
to formalize our notion of tractability,

Now we are in a position to formally define class P and class NP over R. While the first
definition is straightforward, the second is considerably more subtle,

DEFINITION. A decision problem (Y,Y,.,) is in class P (polynomial time) over R if the
characteristic function of Y., in Y is polynomial time computable over R.

DEFINITION. (Y,Y,.,) is in class NP (non-deterministic polynomial time) if there is a
machine M’ which takes as input pairs (y,w) (where y in Y is a problem instance and w in R is
thought of as a “guess” or “witness” for a solution to y), outputs 1 or O (yes or no) and satisfies:

1. If yis a yes-instance then there exists some (guess for a solution) w such that pa(y, w) = 1
and

costp(y, w) £ poly(size(y)).

2. Ifyisano-instance (i.e. not a yes-instance) then there is no (guess) w such that wae (y, w) =
(8

We remark that we need only consider guesses w for which size(w) < poly(size(y)).

M’ is called an NP-decision machine for the NP-problem (Y,Y,,,). Property 1 reflects
the non-deterministic aspect of this notion, i.e. for each yes-instance, we just require that some
polynomial time verifiable solution exists, not necessarily that one can be found. Property 2
requires that the verification process have some integrity, i.e. it can never output yes for a
no-instance input.

In this general setting it is natural to ask (analogous to the classical question over Z): Does
P=NP over R? For R=R, we have a new open problem.

Now let us retum to 4-FEAS. The halting time for verifying a purported solution 1o a
polynomial equation f(z) = 0 using a straightforward evaluation process can easily be seen to
be bounded above by a polynomial function of the length of f. (Recall we are supposing f is
standardly represented as an element of R*.} Thus over the reals, since size is length and cost
is halting time, this verification is polynomial time.

11



On the other hand, over the integers we know (by the undecidability of Hilbert’s Tenth
Problem) that even the smallest size of integer solutions to polynomial equations f(z) = 0
(solvable over Z) cannot be bounded above by any polynomial (in size(f)). Thus, even if
we only consider solutions of smallest size, there is no polynomial that will bound the cost of
verification; in general it would just take too long to even read in purported solutions.

The above arguments show thal 4-FEAS is in class NP over R but not over Z.

A key impetus for the development of classical complexity theory was the discovery (by
Cook (1971) and Levin (1973)) of the existence of NP problems (over Z) that efficiently encode
all NP problems.

DEFINITION, (?, ?,,,.) is NP-complete if it is in class NP and universal in the following
Sense:

For every (Y, Y,.,) in NP there is a polynomial time map ¢ : Y — Y such that for all yin¥
y is in Yy., if and only if ¢(y) is in ¥,.,.

Here ¢ is the efficient (i.e . polynomial-time) coding function. Thus any decision procedure
for (?, }79,,) can be easily converted (in polynomial time) into one for (Y,Y,.,) of not worse

complexity (up to a polynomial): To decide if y is in Y,.,, simply encode y into Y using a
polynomial time machine for ¢ and then decide if ¢(y) is in 17',,,,.

Thus an NP-complete problem is the “hardest” problem in the class NP; any NP problem
can be efficiently “reduced” to it

We have the following analogue over R, to the pivotal Cook Theorem (3-SAT is NP-
complete)!! over Z:

MAIN THEOREM (BSS). The 4-Feasibility Problem (4-FEAS) is NP-complete over the
reals.

REMARKS. This theorem has a number of immediate consequences which point to the
subde differences between the theory of NP over the integers and over the reals.

For example, over the integers it is easy to see, using a simple counting argument, that NP
problems are decidable in exponential time (in the size of the instance). This is because, as noted
earlier, for problem instances y, we need only consider guesses of size at most poly(size(y)).
Over Z, there are at most 27°/¥(#i2¢(¥)) such guesses, and so a perfectly good decision procedure
is to check out each one in turn using an NP-decision machine for the problem.

On the other hand, over R there are a continuum number of such guesses, and so it is not even
clear that NP problems are decidable over R, no less decidable in exponential time. However,
by Tarski (1951), 4-FEAS is decidable over R. So by the NP-completeness of 4~FEAS we sec
that all NP problems are decidable over R. Moreover, (by Canny (1988) and Renegar (1988))
4-FEAS is decidable in exponential time (over R),'? and so all NP problems must be decidable

" Cook’s Satisfuability Problem is: Given a Boolean formula ¢(uy, ..., ux) is there an assignment to

the variables u,,...,us that makes the formula true? For 3-SAT the Boolean formulas considered are
conjunctions of clauses of the form “U or V or W™, Here each of U, V or W is either a variable or the
negation of a variable.

2 For related results with respect to bit complexity see (Grigor'ev and Vorobjov 1988).
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in exponential time. Thus we have the same result here over the reals as over the integers but
now for much deeper reasons.

The Main Theorem implies that the P=NP? problem over R is equivalent to the new open
problem: Is 4-FEAS in class P over R? (thus focusing our attention on an intrinsic algebraic-
geometric problem new to complexity theory.) In contrast, recall over the integers, 4-FEAS is
not even decidable over Z.

The analogous NP-complete problem over the complex numbers C is related to an effective
version of Hilbert's Nullstellensatz'® Thus, as in the case of the reals, the NPcomplete problem
here is of a fundamental nature. However, for the moment, these are essentially the only NP-
complete problems known over the reals or complex numbers.

To contrast, what makes the classical theory of NP-completeness so compelling has been the
discovery (indicated first by the work of (Karp 1972)) of a large number of seemingly unrelated
NP-complete problems. A polynomial time decision method for one would yield polynomial time
decision methods for all.

Open problem: Find other (seemingly unrelated) NP-complete problems over the reals or
complex numbers.

The TSP is NP-complete over Z and, as remarked earlier, in class NP over R.
Open problem: Is TSP NP-complete over R?

Proof of MAIN THEOREM (Idea). The task at hand is to show, for each NP-problem
(Y,Yy.,) over R, how to encode in polynomial time any problem instance y as a degree 4
polynomial ¥ over R such that:

Y is a yes — insfance if and only if ¥ = 0 has a solution over R..

The basic idea is to utilize the register equations for an NP-decision machine for (Y,Y,.,).
First suppose M is any machine over R. Note that the assertion “ M with input y outputs x
in time T ” is equivalent to asserting the system of equations

z0 = (1,1(y)), #r = (N,21),0(z1) = x and z; = H(z;—1) for k=1,...,T.

is solvable over R. We can convert (in polynomial time) this essentially semi-algebraic system
over R to a single polynomial equation of degree 4
f(er:ul:“ﬂ uT") =0

such that the original system is solvable over R if and only if the single equation is. Here
T’ = p(T) where p is some polynomial dependent only on M. See BSS for details.

13

A machine over C is similar to one over R except at branching nodes; over C branching left of right
will depend on whether or not a polynomial h evaluated at the current state x is equal to 0. The NP-complete
problem over C is: Given a system fi,..., fi of polynomials in n variables z;,...,z, over C, decide if
there is a common solution over C. By Hilbert's Nullstellensatz, fi,. .., fx has no common solution just in
case ] is in the ideal generated by fi,..., f. i.. if and only if 1 = a; f; +.. .+ ax fx for some polynomials
a1,...,ax over C in the variables z,,...,zn.
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Now suppose M is an NP-decision machine for (Y,Y,.,) with time bound a polynomial q.
For y in Y let T = g(sizey). Suppose w is in R® and size(w) = T. By the above we have:

“M with input (y,w) halts with output 1 in time T " if and only if there is a solution
o f((y,w),1,u,...,up) = 0.Here TV = p(T) = p(¢(sizey)).

Now we are ready to encode: For each y in Y let ¥ be the degree 4 polynomial
f((y,w),1,uy,...,ur) as above (having constant y and T + T’ variables w = (wy, ..., wt)
and u;,...,uy). This is a polynomial time encoding over R.

Now by the definition of NP-problems and NP-decision machines, y is in Y., if and
only if: there is a w in R™ with size(w) = T such that M with input (y,w) halts with
output 1 in time T. By the above, this holds if and only if: there is a solution over R
to f((y,w),l,ul,...,u-rr) =0, ie. 10? = 0.

7 Conclusion and Directions

Since this framework is new there are a number of open problems, some of which have
already been indicated and new directions to take. Many questions naturally arise concerning the
relationship between the classical and new fundamental "P=NP?" questions, and even whether the
various possible extensions of the classical notion of NP (e.g. via guesses or via non-deterministic
computation) are equivalent. (This is related to the question of whether or not the TSP is NP-
complete over R.) Here it is proving fruitful to investigate the fundamental question under varying
assumptions on height, computing power and branching criteria. (See (Shub 1990b).) In the
general setting, algebraic topology is providing useful tools for lower bound arguments on the
topological complexity (i.c. branching complexity) of problems (Smale 1987; Vasiliev 1988;
Levine 1989; Hirsch 1990). Related questions are also being pursued over other fields e.g. the
p-adics (Bishop 1990).

Another direction is to study questions of parallel and distributed computation, as well as
probabilistic algorithms, in this context. For the latter it would be natural to add *‘coin tossing”
nodes to machines. Related to distributed computation, Luo and Tsitstklis (1990) have recently
given tight lower bounds for the communication complexity of several algebraic problems.

To bring the theory closer to numerical analysis and scientific computation one must extend
the new model of computation 10 incorporate notions of round-off errors, condition numbers and
approximate solutions. See (Renegar 1990) and (Priest 1990). Here questions of the relationship
between the complexity and the condition of a problem arise. In this direction it would also seem
natural to adjoin nodes to compute limits of (rapidly) converging sequences, as well as other
reascnable functions.

Finally there are interconnections between logic (and computation/complexity theory) and
the theory of complex analytic dynamical systems to pursue. This is an intriguing direction. For
example, inspired by the "degree theory" of classical recursive function theory, one is led to
study the hierarchy of Julia sets imposed by various notions of relative decidability. Roughly
we say a set A is decidable relative to a set B (A < B) if a machine with an additional node
for deciding B (i.e. an *oracle” for B) can be used to decide A.The question then is: what is
the resulting hierarchy? Classically, it was an open problem for a number of years (a variant of
Post’s problem) to find two semi-decidable sets of integers that were incomparable with respect

14



to relative decidability. (See (Rogers 1967).) Over R, Chong (1990) has shown that the situation
appears to be quite the opposite, at least for undecidable Julia sets of quadratic maps.'* Thus we
ask: are there two comparable undecidable Julia sets? Alternatively, is there a natural way to
increase the power of machines so that the resulting hierarchy is meaningful?

In the opposite direction we have exploited the analog between computing machines and
dynamical systems in our NP-completeness proofs over the reals (Blum, Shub and Smale 1989) and
for a new proof of Godel’s Theorem (Blum and Smale 1990). Here the computing endomorphism
is our key technical tool. Can we exploit this analogy further and use techniques of dynamical
systems to better understand the nature of complexity of computations and of formal computing
machines? In concrete form, this approach has been successfully used by Bauerson (1990)
(following Shub (1983) and Smale (1985)) for the global analysis of classical algorithms of
numerical linear algebra.

" Technically, we are talking about the complements of Julia sets which are semi-decidable over R.
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