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Abstract

Recently, there has been much interest in Markov random field (MRF) model-based
techniques for image (texture) segmentation. MRF models are used to enforce reasonable
physical constraints on segmented regions, such as the continuity of the regions, and have been
shown to improve segmentation results. However, in these techniques, parametric probability
models which do not have sufficient physical justifications are often used to model observed
image data because they are computationally tractable. In this paper, we outline an MRF
approach to image segmentation in which the probability distribution of observed image data
is modeled by using a multi-layer perceptron (MLP) which can “learn” the distribution from
training data. Furthermore, we propose a technique to achieve unsupervised image segmen-
tation using this approach. We hope that this will improve the current MRF image segmenta-
tion techniques by providing a better model for observed image data.
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model observed image data because they are computationally tractable. In this paper,
we outline an MRF approach to image segmentation in which the probability distribution
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improve the current MRF image segmentation techniques by providing a better model for

observed image data.

10n leave from: Department of Electrical Engineering and Computer Science, University
of Wisconsin-Milwaukee, Milwaukee, WI 53201.






1. Introduction:

Recently, there has been much interest in stochastic model-based image segmentation
techniques. In such techniques, an image is separated into a set of disjoint regions that
belong to a finite number of classes of different statistical properties. The image is usually
modeled on two levels. On the first level, pixels that belong to the same class are modeled
as a (conditional) random field. We will refer to the models on this level as the models for
the image classes. On the second level, the spatial distribution of different image classes is
also modeled by a random field known as the Markov random field (MRF'). The MRF is
used to enforce physical constraints, such as the continuity of the regions, to the resultant
segmentation and has been shown to improve the quality of the segmentation [1]-[10].

Indeed, since the MRF model has been widely accepted as a model for the spatial
distribution of regions, research is directed towards investigating the first level of image
modeling, i.e., the models for the image classes. This involves trying out different texture
models on, and learning such models from, real-world image data. The texture models
used previously for image segmentation have been mostly parametric and largely Gaussian.
While these parametric models (e.g., various Gaussian mixture models) may have simplified
the structure of segmentation algorithms, they often lack “physical” justifications in the
sense that they are not based on considerations of how images of different textures are
formed.

As for learning, most previous techniques are supervised in that they assume the
existence of training data. However, it is often desirable to have unsupervised learning, for
example, when one wants a completely automated system (there is no operator intervention
to select training data from some images, or regions of a single image). Bouman and Liu
[11], Kelly et al. [12], Zhang [13], [15], and Shen [14] have proposed several unsupervised
learning schemes. However, they all use parametric models for the image classes.

In this paper, we outline a non-parametric approach to modeling the observed image
data. More specifically, we propose to use the multi-layer perceptron (MLP) for these
models. MLPs, which are a form of “neural” network, can be trained to approximate many
(or any, as claimed by Hecht-Nielsen [16]) multi-input multi-output functions. Therefore,

when properly trained, they may provide a better model for the probability distribution of
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the image classes (or textures) than the somewhat arbitrarily selected parametric models.
While MLPs ordinarily require supervised learning, we propose a “bootstrap” technique
which may realize unsupervised learning.

The approach described in this paper is inspired by the work of Bourlard and Morgan
[17] in speech recognition. In their application, the original speech signal is processed and
features are extracted at time intervals known as frames. The likelihoods for these features
can be calculated using an MLP, and the negative log likelihoods used as the local cost of
a potential classification. These costs can then be accumulated to estimate the global cost
of interpreting a continuous utterance as a particular sequence of phonemes. Bourlard and
Morgan showed that when MLPs are used properly for estimating the joint likelihoods,
the performance of the recognition system improves. In this paper, we attempt to use the
MLP in an MRF approach to improve the performance of image segmentation procedures
by generating better estimates of local likelihoods.

The organization of this paper is as follows. In Section 2, we formulate the image
segmentation problem more precisely as a Bayesian estimation problem and describe an
MRF approach to this problem. Then in Section 3, we outline how an MLP can be
incorporated in the MRF approach and describe the computational requirement of such

an approach. Finally, a summary is given in Section 4.

2. The MRF Approach:

Let S be a set of sites on a two-dimensional lattice on which the image is defined. We
introduce the following notations:

Yy = {vi},i € S — the gray levels of image pixels;

z = {z;},1 € S — the class indicator vectors for the pixels;

p(z) — prior for z;

p(y|z) — likelihood of y.

We would like to make several remarks about these notations. First, a class indicator
vector z; = (2i1,2i2,...,2ik ), where K is the number of image classes, is a binary vector
with all but one component being zero. z;; = 1 means y; belongs to class k, 1 < k < K.

Secondly, the prior model p(z) is used to enforce physical constraints on the segmentation,
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such as continuity (two adjacent pixels are likely to belong to the same class unless there

is an edge between them), and is usually an MRF with a Gibbs distribution:

p(z) = Z7 exp[-BU(z)), (2:1)

where U(z) is the energy function, Z is a normalization factor, and 3 is a positive control
parameter. Thirdly, most previous work has adopted parametric models for p(y|z); we will

not do so here. However, we do adopt an assumption made in most previous work, i.e.,

p(ylz) = HP(?J:‘ 12i): (2.2)

As has been shown in a related work [15], this assumption can be relaxed.
Based on the notation introduced so far, image segmentation can be described as
finding an estimate of z based on y. Our approach is to find a maximum-a-posteriori

(MAP) estimate, 7 4p, such that

Zmap = argm:\.xp(z|y). (2.3)

Using Bayes’ conditional probability formula and noticing that the maximization in (2.3)

is independent of p(y), (2.3) is equivalent to

Zmap = arg max{log p(y|z) +log p(z)}. (2.4)

Given the likelihood and the prior, the above maximization can be performed by simu-
lated annealing [2], the ICM [5], and the mean field theory [20]. The first method, while
potentially optimal, requires intensive computation. The second and the third are approx-
imations to simulated annealing which require a moderate amount of computation. The
prior is usually constructed before segmentation, while the likelihood has to be learned.

Learning of the likelihood is the focus, of the next section.

3. Learning by MLP:

Here, we consider two cases, supervised learning and unsupervised learning,.
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A. Supervised Learning:

This is the case in which training data is available. Let

T= {y.fszj}s J € S’

be a collection of training data, where y;’s are observed image data, z;’s are their known
class indicator vectors, and S’ is a collection of sites upon which the training data is
defined. Then, according to a proposition in Bourlard and Morgan [17], a simple MLP,
with a single input node (for y;) m hidden nodes, and K output nodes, can learn the
likelihood functional® p(y|z). Here, K is the number of image (texture) classes, and m is
a preset non negative number.

According to Bourlard and Morgan, the MLP works as follows. First, the MLP is
trained by the back-propagation (BP) procedure on the training set T, where y;’s are
used as inputs and z;’s are used as target outputs. When the weights converge, the
MLP will, for each input y; (training or testing), produce approximately the probability
p(zilyi) at its outputs. The likelihood functional p(y;|2;) can then be obtained by dividing
p(zilyi) by p(2i) (as estimated from the training data). Once the likelihood is learned, the
segmentation can proceed as described in Section 2. Finally, when the likelihood model is
more general than that of (2.2), for example, an MRF by itself, the structure of the MLP

can be extended by including the neighboring pixels® of y; as inputs.

B. Unsupervised Learning:

In this part, we propose an iterative (bootstrap) scheme for unsupervised learning
of the likelihood. This scheme is inspired by similar parametric unsupervised learning
techniques, such as the EM algorithm. Starting with an initial segmentation, denoted by
2(°), each iteration in this scheme involves the following two steps:

Learning: learn the likelihood p(™(y|z) by training the MLP on {y;, 2"V}, i € S,

as described in A for supervised learning;

?Here we use p(y|z) as a generic expression of the likelihood p(y;|z:)
3The neighboring pixels are, of course, determined by the neighborhood system of the
MREF.



Segmentation: use the new likelihood, p(®(y|z), to find a new segmentation (™) by
any of the maximization procedures described in Section 2.
Here, n > 1 represents the nth iteration. The iteration will stop if there is little change
in the segmentation or enough iterations have been performed. To get the initial segmen-
tation, one can simply generate a random segmentation or use any of the unsupervised

parametric methods in [11]-[15].

C. Computational Requirements:

A preliminary analysis of the per-pixel calculations for a typical run of the above
algorithm (using mean field calculations for the segmentation) shows that computation
(as well as memory requirements) is dominated by the MLP training. To facilitate the
MLP computation, either a special purpose computer such as the RAP [18],[19] or custom
VLSI hardware can be used to implement the MLP. Most of the other computations for the
segmentation stage (such as the estimation of the local mean field) can be accomplished by
lookup of clique functions, exponentials, logarithms, etc. Assuming roughly 5 arithmetic
operations per connection update, and something like 200 connections for a network to
estimate probabilities for about 10 textures, and assuming about 10 iterations for the
training, we would require about a billion operations for the training phase of a 100,000
pixel image. This would take a few seconds on the RAP machine or on a single special-
purpose chip. While still too slow for real-time video applications, this is fast enough for
research purposes, and would also permit more complex experimental networks. Initial

experiments should be feasible for overnight runs on a general-purpose computer.

4. Summary:

In this paper, we have described an unsupervised MRF approach to image segmenta-
tion using an MLP. The MLP is used to learn the likelihood of the observed data through
a bootstrap scheme. The potential advantage of this approach is that it may provide a
better estimate of the likelihood than a (possibly) arbitrary parametric model. This ap-
proach is inspired by previous work on speech recognition where an MLP is used in an
HMM approach and shown to have theoretical and practical advantages for recognition.

Experiments have been planned to test out the approach described in this paper.
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