A Monte-Carlo Algorithm
for Estimating the Permanent

TR-90-063
November, 1990

N. Karmarkar
Bell Labs, Murray Hill, N.J.

R. Karp
University of California, Berkeley and
International Computer Science Institute, Berkeley, Calif.

R. Lipton
Princeton University

L. Lovasz
Hungarian Academy of Sciences and Princeton University

M. Luby
International Computer Science Institute, Berkeley, Calif.

Abstract

Let 4 be an n x n matrix with 0-1 valued entries, and let per(4) be the permanent of
A. We describe a Monte-Carlo algorithm which produces a “good in the relative sense”

estimate of per(4) and has running time poly(n)Zm, where poly(n) denotes a function that
grows polynomially with #.

1 Introduction

Let A be an n xn matrix with 0-1 valued entries, let det(A) denote the determinant
of A and let per(A) denote the permanent of A. The marked contrast between the
computational complexity of computing det(A) versus that of computing per(A),
despite the deceiving similarity between the two tasks, has bafled researchers for
years. One of the reasons for interest in computing per(A) is that A can be viewed
as the adjacency matrix of a bipartite graph, H = (X,Y, E) where X corresponds
to the rows in A, Y to the columns in A, and A;; = 1 if there is and edge between
X and Y;. The quantity per(A) is exactly the number of perfect matchings in H.

It is well known that det(A) can be computed in poly(rn) time. On the other
hand, the fastest algorithm known for computing per(A) runs in n2" time [Ryser].
Solid grounds for arguing that computing per(A) is an inherently difficult problem
were first provided in [Valiant], which shows that the problem is # P-complete.
One implication of this result is that if P # NP then there is no poly(n) time
algorithm for computing per(A).

Because of the apparent nonexistence of a poly(n) time algorithm for comput-
ing per(A) exactly, we focus our attention on finding an algorithm that produces
a good estimate of per(A) and has a small running time. An (¢,§) approzimation
algorithm for per(A) is a Monte-Carlo algorithm which accepts as input A and
two positive parameters € and §. The output of the algorithm is an estimate ¥ of
per(A) which satisfies

Pr[(1 — e)per(A) <Y < (1 + €)per(A)] =1 6.

The papers [JVV], [KL], [KLM] discuss (¢, §) approximation algorithms for count-
ing problems in greater detail. We develop an (€, §) approximation algorithm for
per(A) which runs in 2*/?% log($)poly(n) time. For fixed € and § the running time
of the approximation algorithm is essentially the square root of the running time
for the fastest known algorithm that computes per(A) exactly.

In [Broder], [JS1], [JS2] (€, 6) approximation algorithms for per(A4) are given
which run in poly(n) time in the special case when each row and column in A
contains at least n/2 1’s. Whether or not there is an (¢, §) approximation algorithm
for per(A) which runs in poly(n) time for general A is still an open problem.

2 Some General Considerations Regarding (e, §)
Approximation Algorithms

Suppose we would like to estimate some quantity @ and have available a stochastic
experiment whose output is a random variable X such that E[X] = Q and E[X?]
is finite. Suppose further that we can repeat this experiment as many times as
we wish, and that the outcomes of the successive trials will be independent and
identically distributed, with the same distribution as X. Let X; be the outcome of
the i* trial. A straightforward application of Chﬁbychev’s Inequality shows that, if
we conduct N trials, where N = %E%;}E then Z—Li-,'i gives an (¢, §) approximation
to Q.

We can improve the dependence of the number of trials on § using a well-known
trick. Setting § = 1/4, we find that, if N = ‘gh‘f}z -c-ly, the probability is at least
3/4 that the average of the N trials will lie within € of Q. To obtain an (e, §)-
approximation algorithm, we repeat such an N-sample experiment K times, where
K is an odd integer greater than a suitable constant ¢ times log(1/§), and take as
our estimator of) the median of the estimators produced by the K experiments
of N-samples each. Let us say that the outcome of a N-sample experiment is good
if it lies within € of Q. Then the median of the K outcomes will be good whenever
the majority of the K outcomes are good. Using the fact that the outcomes are
independent and identically distributed, and that each outcome has probability at
least 3/4 of being good, standard bounds on the tail of the binomial distribution
[Chernoff] reveal that the median is good with probability at least 1 —§. Thus, the

number of trials required for an (€, §) approximation to @ is O (%ﬁ—;}fg log(:ls—)).

3 The Godsil/Gutman Estimator of per(A)

The discussion of the last section shows how an (e, §)-algorithm for approximat-
ing a quantity @ can be constructed from any computable stochastic experiment
whose outcome is a random variable ¥ such that E[Y] = Q and E[Y?] is finite.
The efliciency of the algorithm will be based on the computational difficulty of per-
forming the stochastic experiment, and on the ratio %% The rest of the paper is
devoted to studying two particular stochastic experiments for estimating per(A).
The first of these, which we call the Godsil/Gutman estimator, was suggested in
[GG]; the second one is a variant of the Godsil/Gutman estimator which has a

smaller second moment and thus leads to a more efficient algorithm.

3

The Godsil/Gutman estimator is defined as follows:

(1) An n X n matrix B is formed from A as follows:
Forall 7,5,1<1i,j <n,
If A;; =0 then B;; « 0
Elseif A;; = 1 then randomly and independently choose B;; € {—1,1},
each choice with probability 1.

(2) Y — (det(B))2.

This stochastic experiment can be executed in poly(n) time.

In what follows we introduce some technical language that is appropriate for
all of the following analysis, show that E[Y] = per(A) and derive an upper bound
on E[Y?].

4 Terminology

Let P be the set of all n! permutations of 1,...,n. Forall ¢ € P, let sgn(o) = —1,
where t is the number of transpositions to form o.

Let P(A) C P be the set of all permutatlons o such that for ¢ = 1,...,n,

Aigiy = 1. Then, per(A)= > 1 = |P(A)]. For each ¢ € P(A), for i =
c€P(A)

L,...,n, welabel < i,0(i) > with the symbol o. Let P?(4) = P(A) x P(A). For
ea,ch & =< 01,09 >€ P?(A), let G(6) be the unlabelled graph where there is an
unlabelled node for each < i,j > which is labelled with either or both of ¢y, o5,
and where there is an edge between two distinct nodes < i,j > and < ', 5 > iff
i =1 or j = j'. Each connected component of G(¢) is an isolated node or an even
length cycle. For each cycle in G(¢), designate one of the nodes in the cycle as
the root of the cycle. Let D = {G(¢): 6 € P?*(A)}. For each graph G € D, let
¢(G) be the number of cycles in G. For each G € D, let

eq(G) = {6 € P*(A): G(¢) = G}.
Proposition 1 |eq(G)| = 2¢(9).

PROOF: Let ¢ =< 01,0, >€ €q(G). Each isolated node in G is labelled with
both o, and o5. Let ¢ be a cycle in G. If the label of the root in ¢ is ¢; then every

4

node at an even distance from the root in ¢ must be labelled o, and every node at
an odd distance from the root in ¢ must be labelled o,. The case when the root is
labelled o, is symmetric, interchanging the roles of ¢; and 3. Thus, for each cycle

there are two possible labellings and the total number of labellings of all cycles is
then 2¢¢). MW

Let D' = {G € D : ¢(G) = 0}.
Proposition 2

(1) G(< 01,02 >) €D & 0y =0,

(2) G(< 01,01 >) = G(< 02,00 >) & 0y = 0,
(3) |D'| = per(A)

(4) For all G € D', |eq(G)| = 1.

5 Analysis of the Godsil/Gutman Estimator
Theorem 1 (Godsil/Gutman) E[Y] = per(A4).

PROOF: For each & =< 0,0, >€ P%(A), let

z(¢) = I (sgn(ffk)ﬁBmm) -

k=1 i=1

Then, since det(B) = > sgn(ao) [[Bis@),
aEP(A) i=1

Y=(det(B))’= 3 =z(6)=3 > =(6)

FEP2(A) GED seeq(G)

= > z(¢) (1)

e=<0o1,01>EP2(A)

+ 2 > (%) (2)

GeD-D' ¢eeq(G)

For each & =< 01,07 >€ P?(A), z(¢) = 1 independent of the values chosen for
B. Thus, part (1) 1s equal to per(A) because the number of terms in the sum is

5

|P(A)| = per(A). We show that the expected value of part (2) is equal to 0 as
follows. Fix G € D — D' and ¢ =< 01,0, >€ €q(G). We show that E[z(d)] = 0,
thus showing that the expected value of every term in part (2) is 0. Because
G € D — D', G contains at least one cycle. Let < i, > be some node in some
cycle of G. Because either < i,j > is labelled with o; and not with o, or vice-
versa, z(¢) can be written as y(&)B; ;, where y(¢) does not contain B, ;. Because
B; ; 1s independent of y(¢),

E[z(d)] = E[y(6)]E[B; ;]-

Because E[B; ;] =0, E[z(¢)]=0. R

6°(G)
Theorem 2 Eg;} = G§)2"(G}'
GeD
PROOF;
EY] = (per(4))’= 3. 1=}, > 1=3 29,

<ay1,03>EP2(A) GeD <oy,02>€6q(G) GeD
where the last equality is from Proposition 1. Let P*(A4) = P(A) x P(A) x P(A) x
4 n
P(A). For each & =< 0,0y, 03,04 >€ P*(A), let z(5) = [] (sgn(ak)ZB,-‘,k{,-)).

Then, e =
Y? = (det(B))* = Z z(d)

FEP*(A)

and
EY?)=) E[z())]
FEPL(A)

Let ODD = {& € P*(A) : there is some < i, > which is labelled with an odd
number of labels from {71, 03, 03,04}}, and let EVEN = P*(4) — ODD. For each
¢ € ODD, there is some < ¢,j > such that z(&) can be written as y(5)B; ; where
y(&) does not contain B; ;. Thus, E[z(5)] = E[y(¢)]E[B;;]. Because E[B; ;] = 0,
E[z(4)] = 0. For each & € EVEN, for each row i = 1,...,n, either there is a j
such that < 4,7 > is labelled with all four of {0y, 0,03,04}, or there is a j and a
J' # j such that < 7, > is labelled with exactly two of {¢,03,03,04} and < 7, ' >
1s labelled with the other two. Let G(&) be the graph where there is a node for
each < 7,5 > such that < i,j > is labelled with at least one of {0}, 02,03,04}.

6

There i1s an edge between two distinct nodes < 1,7 > and < ¢,j7' > iff i = ¢ or
j = 3. Then, {G(d¢): & € EVEN} = D, where D is as previously defined. For
each G € D, define
€q(G) = {6 € EVEN : G(¢) = G}.

We claim that |ég(G)| = 6°(%). The reasoning is similar to that used for the proof
of Proposition 1. Let 6 =< 0y,09,03, 04 >€ €3(G). Each isolated node in G is
labelled with all four of {o1,0,,03,04}. For each cycle ¢ in G, the root of ¢ and
every node at an even distance from the root must be labelled with the same two
elements of {01, 0;,03,04} and every node at an odd distance from the root must

be labelled with the remaining two. Thus, there are (;1) = 6 possible labellings

of each cycle, and consequently a total of 65(¢) labellings.

It 1s not hard to see that for each &6 € EVEN, z(¢) = 1 independent of the
values chosen for the entries in B, and thus E[z(&)] = 1.

Thus, EY?] = 3 1= 5 699, Since E[Y]? = ¥ 299, the proof is com-
$€EVEN GeD GeD
plete. W

Corollary 3 The Godsil/Guiman estimator yields an (e,8)-approzimation algo-
rithm for estimating per(A) which runs in time poly(n)Bgfglog@).

PROOF: Each evaluation of the estimator can be performed in time poly(n).
6°(G)
Also, %[;—]le = %—W < maxgep 3%¢) < 372, where the last inequality follows

GeD
because there are at most n/2 cyclesin any Ge€ D. W

6 A Better Estimator and Its Analysis

We now present a variant of the Godsil/Gutman estimator which yields a more
efficient (¢, §)-approximation algorithm for per(A). Let

1 V3 1 V3,

wo =1, w1 = —3 + T, Wy = —5 — =

be the three cube roots of unity. If y = a+ bi is a complex number, then ¥ = a —b:
is the complex conjugate of y.

The estimator is computed as follows.

T

(1) An n x n matrix B is formed from A as follows:
Forall 4,7, 1 <4,5 < mn,
If A;; =0 then B;; « 0
Elseif A; ; =1 then randomly and independently choose
Bi;,; € {wo, w1,w;}, each choice with probability .

(2) Z « det(B)det(B).
This estimator can be evaluated in poly(n) time.
Theorem 3 E[Z] = per(A).

PROOF: Similar to the proof of Theorem 1. For each ¢ =< 0y, 05 >€ P2%(A), let

z(0) = sgn(o1)sgn(o;) H By Bioats)-

i=1

Then,
Z =det(B)det(B) = > z(¢)
GEP2(A)
= » z(6) (3)

=<0y ,01 >EP? [A]

) @
GeD-D' seéq(G)
For each & =< 01,0, >€ P%*(A), z(¢) = 1 independent of the values chosen for B.
Thus, part (3) is equal to per(A). Showing that the expected value of part (4) is
equal to 0 is very similar to the corresponding portion of the proof in Theorem 1.
The observation needed is again that for any <i,5 >, E[B;;]=0. W

4¢(G)
Theorem 4 g{?].} = GEZDT(G}'
GeD

PROOF: The proof follows exactly the outline of the proof of Theorem 2. We
only note the differences here.

For each & =< 01,03,03,04 >€ P(A), let

z(o) = (H sgn(G’k)HB‘ a,‘{;)) (H sgn(Uk HB- ox(i))

i=1

Then, E[Z*] = > E[z(¢)]. ;From the definitions in the proof of Theorem 2,
GEPL(A)

P‘*(A):ODDUEVEN:ODDU(U(U 0))

GeD &Ec'q{G)

For ¢ € ODD there is some < #,j > such that z(&) can be written as y(¢)B;;
or as y(&)B,,;, where in either case y(¢) contains neither B;; nor B;;. Because
E[B;;] = E[B;;] = 0, E[z(6)] = 0. For each G € D we further partition €g(G) as

follows:

€q'(G) = {7 € €q(G) : in each cycle c in G the root of c is
labelled with exactly one of {0}, 02} and with exactly
one of {o3,04}}.

Because there are four possible labellings for each cycle in G, |€q'(G)| = 49
For each ¢ € €q/(G), for each node < i,j > in G there are an equal number of
occurrences of B;; and B;; in z(&). Thus, 2(§) = 1 independent of the values
chosen for B, and E[z(6)] = 1. For each ¢ € €q(G) — €q '(G), there is some node
<1,7>1In G such that B;; occurs twice in z(¢) and B; ,; does not occur at all.
Thus, 2(&) can be written as y(&)B?, where y(&) contains no occurrences of B; ;

or B;;j. Then, E[z(5)] = E[y(3)|E[BZ,]. Because E[B};] = 0, E[z(5)] = 0.
Putting this together, E[Z%] = Y 4®) and thus

GeD
4¢(G)
BI2Y _ 2
E[Z]2 Z zc((_‘;}-

GeD

Corollary 4 The estimator Z yields an (€,6)-approzimation algorithm for esti-
mating per(A) which runs in time poly(n)2';';1.;.-log(%).

PROOF: Each evaluation of the estimator can be performed in time poly(n).
Z 4C(G]

Also, Eg;z] = CE) =) < maxgep 2€%) < 272, where the last inequality follows

GeD
because there are at most n/2 cyclesinany Ge D. W

7 Some Special Cases

We have introduced two unbiased estimators of per(A4): the Godsil/Gutman es-
timator ¥ and a second estimator Z which refines the Godsil/Gutman technique
by using cube roots of unity. We showed that

Z ge(G)
E[Y? (ep
E[YP - Z oc(G)
GeD
and
T 440
E[Z?] éeD
E[Z]2) 2¢@)
GeD

We then obtained an upper bound of 3% on %[;;} and an upper bound of 2%
on %%231 using the trivial observation that, for all G, ¢(G) < £. Although this
bound seems terribly pessimistic, the following example shows that there are cases
in which it is close to the truth. Let n be even and let A be the n x n matrix
such that for i = 1, ceay -g, Azi—l.2£—1 = Ag,‘hl,g,‘ = Az,‘_'g,'_l = Az;'g; = 1 and all other
entries in A are 0. For the first algorithm the expected number of trials before
there is even one trial where ¥ # 0 is (2%), and for the second algorithm it is
Q((2)%). There is a lot of room between 3% and 2% and between (3)% and 2%; we
are not sure which bound is closer to the worst case behavior for the respective

algorithms.

Despite this bad example, one suspects that in most situations, these bounds
are far too pessimistic, since ¢(G) will “typically” be much smaller than n/2. As
one heuristic indication of this phenomenon we note that, if & =< ¢y, 0, >, where
01 and o, are independent random permutations, then ¢(G(¢&)) will be close to
In(n) with very high probability.

10

In this section we analyze a concrete example in which the bounds of 3*/2 for the
Godsil/Gutman algorithm and 2"/2 for its refinement are provably too pessimistic:
the » x » matrix C in which every element is equal to 1. The permanent of this
matrix is, of course, n!.

Let the random variable Y be the estimator produced by the Godsil/Gutman
algorithm applied to the matrix C, and let Z be the estimator produced by the
refinement given in Section 6 applied to the matrix C. Our main result is as
follows:

Theorem 5 In the particular case of the n X n matriz C, = E[Y] < -(“—‘HK"—“l and
S n+1.

PROOF: Since the two estimators are unbiased, E[Y] = E[Z] = n!. In order to
discuss the second moments of ¥ and Z we require a definition: for any permuta-
tion ¢ of {1,2,...,n}, let d(o) be the number of cycles of length at least two in
the permutation ¢. We shall show that

E[Y]?=n!) 34

and
E[Z}] =n!} 2%
where each summation extends over the permutations of {1,2,...,n}.

As in Section 4, let P be the set of all permutations of {1,2,...,n}, and let D
be the set of graphs G(¢) associated with pairs of permutations in P. We know
from Theorems 2 and 4 that E[Y?] = ¥;6°¢) and E[Z?] = T, 49,

We define a relation R C D x P as follows: let G be a graph in D and let ¢ be
a permutation; then GRo if and only if there exists an ordered pair ¢ =< 01,0, >
such that G = G(¢) and ¢ = 07'0,. We note the following properties:

o If GRo then ¢(G) = d(o).

o For each ¢ € P there are exactly n! graphs G such that GRo; these are
exactly the graphs G(¢) such that ¢ =< 01,05 > where ¢ = o7 0,.

¢ For each G in D there are exactly 2°(°) permutations ¢ such that GRo.

It follows from these properties that gep 69¢) = !, ep 3%) and Y gep 456 =
n!Y,ep 24°) But it follows from [Lovdsz] (solution to Exercise 3.12, p. 203) that

11

n ! o 2 n n
Toep 3% < L0 and 7,p 24 < (n + 1)L Hence, i) < (48l 454
E[Z?
B <n+l. W
E[Z]: —

It follows that, in the special case of the matrix C, a quadratic number of
trials of the Godsil/Gutman Monte-Carlo algorithm, or a linear number of trials
of our refinement of the Godsil/Gutman algorithm, are sufficient for an (e, §)-
approximation. We conjecture that similar claims hold true for almost all n x n
zero-one matrices.

8 Comments, Generalizations, Refinements

For both algorithms presented here, once the values of B have been chosen, the
value of the estimator can be computed exactly in poly(n) time. In the second
algorithm, this requires that v/3 be represented symbolically. The symbol /3 will
not appear in the final answer, which is an integer.

Both Monte-Carlo algorithms can easily be modified to estimate per(A) when
the entries in A are allowed to be arbitrary positive numbers. However, in this
case there is an issue with precision; the estimators cannot be computed exactly
in poly(n) time, although they can be closely approximated. The modification
for the Godsil/Gutman estimator is to randomly choose B;; € {\/Z, —\/E},
each choice with probability 1/2. The modification for the second estimator is to
randomly choose B; ; € {\/A,-‘_,-wg, \/A,-T_.;wl, \/A,-,jwz}, each choice with probability
1/3. In both cases, the expected value of the estimator is per(A4) and the upper
bounds on the number of trials to guarantee an (¢,§) approximation algorithm
stated in Corollaries 3 and 4 still apply, assuming that at each trial the estimator is

computed exactly. The analysis would have to be modified to allow for truncation
error.

Each of our Monte-Carlo algorithms consists of O(log(3)) phases, with each
phase consisting of some number N of independent trials. We required that each
phase be an (¢,1/4) approximation algorithm. Our analysis of the upper bound
on the number of trials to guarantee this property was based on Chebychev’s
Inequality, and thus the analysis still holds if trials are pairwise independent.
Consider running the first Monte-Carlo algorithm with a fixed ¢ and §. As it
is written it requires ©(3%n?) random bits per phase in total, i.e. n? random
bits per trial to randomly choose the values for B. This can be reduced to O(n?)
random bits per phase using standard methods of generating pairwise independent
unbiased random bits [ACGS], [CG], [Luby].

12

9 Open Questions

(1) Is there an (¢, 6) approximation algorithm for per(A) which runs in poly(n)
time? One possible approach to solving this problem is based on the observa-
tion that the trials within a phase need only be pairwise independent, rather

4

than completely independent. The result of each phase is Zﬁlﬂ where £,
the number of trials, is exponential in n. Pairwise independence permits the
£ samples to be generated using only O(n®) random bits. Perhaps the rule
for generating the samples from the random bits can be designed so that the
quantity Y0, ¥; can be computed directly and efficiently from the random
bits, without the need to calculate the result of each trial explicitly. Similar
ideas have been used successfully in other contexts [ACGS], [Bach], [CG],
[CW], [KR], [Luby].

(2) Is there a deterministic algorithm with running time o(2") which accepts as
input A and e and which outputs ¥ such that

(1 —e€)per(A) <Y < (1 + €)per(A4)?

References

[ACGS]

[Bach)]

[Broder]

[Chernoff]

[CG]

Alexd, W., Chor, B., Goldreich, O., Schnorr, C.P., “RSA Rabin Func-
tions: Certain Parts Are As Hard As the Whole”, SIAM J. on Com-

puting, Vol. 17, 1988, pp. 194-209. A preliminary version appeared in
25" FOCS, 1984, pp. 449-457.

E. Bach, “Realistic Analysis of Some Randomized Algorithms”, 19t
STOC, 1987, pp. 453-461.

A. Broder, “How hard is it to marry at random (On the approximation
of the permanent)”, 18" STOC, 1986, pp. 50-58.

H. Chernoff, “A Measure of Asymptotic Efficiency for Tests of a Hy-
pothesis Based on the Sum of Observations”, Annals of Math. Stai.,
Vol. 23, pp. 493-509, 1952.

B. Chor and O. Goldreich, “On the Power of Two-Points Based Sam-
pling”, to appear in Journal of Complexity.

13

[CW]

[GG]

[351]

[752]

[IVV]

[KL]

[KLM]

[KR]

[Lovasz]

[Luby]

[Ryser]

[Valiant]

J. Carter and M. Wegman, “Universal classes of hash functions”, J.
Comput. System Sci., 18, 1979, pp. 143-154.

Godsil, C.D., and Gutman, I., “On the matching polynomial of a
graph”, Algebraic Methods in Graph Theory, I, L Lovasz and V.T.
S6s, editors, Colloq. Math. Soc. Jdnos Bolyai, 25, North-Holland, Am-
sterdam, 1981, pp. 241-249.

M. Jerrum and A. Sinclair, “Conductance and the rapid mixing prop-
erty for Markov Chains: the approximation of the permanent resolved”,
STOC 1988, pp. 235-243.

M. Jerrum and A. Sinclair, “Approximating the permanent”, Internal
Report CSR-275-88, Department of Computer Science, University of
Edinburgh, Submitted to SIAM J. on Computing.

M. Jerrum, L. Valiant and V. Vazirani, “Random generation of combi-
natorial structures from a uniform distribution”, Theoretical Computer
Science, 43, 1986, pp. 169-188,

R. Karp and M. Luby, “Monte-Carlo algorithms for enumeration and
reliability problems”, 24** FOCS, 1983, pp. 56-64.

R. Karp, M. Luby and N. Madras, “Monte-Carlo Approximation Algo-
rithms for Enumeration Problems”, J. of Algorithms, Vol. 10., No. 3,
Sept. 1989, pp. 429-448.

H. Karloff and P. Raghavan, “Randomized Algorithms and Pseudoran-
dom Numbers”, 20" STOC, 1988, pp. 310-321.

L. Lovéasz, “Combinatorial Problems and Exercises”, North-Holland,
1979.

M. Luby, “A Simple Parallel Algorithm for the Maximal Independent
Set Problem”, SIAM J. Computing, Vol. 15, No. 4, November 1986,
pp. 1036-1053.

H. Ryser, “Combinatorial Mathematics”, The Carus Mathematical
Monographs, No. 14, the Mathematical Association of America, 1963.

L. Valiant, “The complexity of computing the permanent”, Theoretical
Computer Science, 8, 1979, pp. 189-201.

14

