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Abstract

Artificial Neural Networks (ANNs) have been heralded as a form of massive paral-
lelism that may significantly advance the state of the artin machine intelligence and perception.
While these expectations may or may not be realistic, this class of algorithms has already been
useful for difficult problems in signal processing and pattern recognition over the last 25 years.
However, for extension to awider class of problems, a key requirement is the parallel hardware
implementation of such systems, since ANN implementation on conventional Von Neumann
machines is often prohibitively slow. While the ANN mainstream has focused on analog VLSI
ANNs, some projects have shown the potential of a fully digital approach. We report here on
progress in developing a methodology for digital ANN design, including a new object-oriented
CAD interface, and a set of ANN-specific library cells. A new measure for efficiency of silicon
ANNE 1s also described.
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INTRODUCTION

Artificial Neural Networks (ANNs) are systems that, like the real networks for which they are
named, consist of a number of elements that perform computations on the weighted outputs of one another.
Such a system could also be called "connectionist” [1], because information is represented in the pattern
and strength of connections between elements. Analogies between such systems and biological networks
have probably been exaggerated in the last few years. However, experience over the last 25 years has
confirmed that even fairly simple systems of this type can be useful in such problem areas as signal pro-
cessing, pattern recognition, and artificial intelligence [2][3].

One of the key advantages of such systems is the apparent match to parallel implementation. By pro-
viding a family of algorithms that are inherently parallel, ANNSs offer the promise of simpler development
of powerful silicon engines for machine intelligence. However, researchers have thus far achieved limited
results. Special-purpose designs have performed well [4](5], but have required a lengthy design process.
The high performance of these designs is probably due to their special-purpose character; they are not pro-
grammable, and very little silicon is used for control.

This tradeoff between specificity of function and programmability is a fact of life in VLSI design.
The key to high performance in custom ICs has been the rapid development of associated CAD techniques,
so that the limits of the technology can be pushed without prohibitive design times. This has been particu-
larly apparent in signal processing, where semi-automatic tools have generated high performance designs
for speech and image processing [6][7][8].

Unfortunately, the corresponding tools for ANN-CAD are still in their infancy. High performance
ANNs require major design efforts, and minor changes to algorithms cannot typically be incorporated
quickly in the circuit design. Part of this inflexibility is due to the fact that most ANN chips are analog and
experimental [9]. In time the art may mature, and powerful CAD tools may be developed for analog ANN
circuits. However, analog approaches have a number of limitations that are currently problematic for pros-
pective ANN system designs:

1)  Resolution/accuracy - In principle, analog circuits can represent continuous variables (i.e., have
infinite resolution), and ANN algorithms are generally modeled on biological mechanisms that are
known to function with inaccurate components. However, practical circuit restrictions limit the smal-
lest resolution with which values can be represented or discriminated from one another. For
instance, the Intel ETANN chip, which uses "floating gate” mechanisms for storage of connection
strengths, can only store weights that are one of 16 possible values, over a dynamic range of about
100.

Furthermore, many of the more popular ANN algorithms poorly model biology, and frequently
require a wide dynamic range in order to converge to useful solutions. In particular, stochastic gra-
dient algorithms such as back-propagation have been shown to require 12-16 bits of range, or
roughly four orders of magnitude between the largest possible weight values and the smallest weight
change [10][11]. This class of ANN algorithms is actually the one that is most commonly used today,
and analog circuits have been unsuccessful at providing the resolution required for convergence of
the learning algorithm,

2)  Scaling to smaller geometries - While functions can be calculated directly by device physics in
clever analog designs, these computations tend to be more critically dependent on the circuit size
than they are for scalable CMOS digital designs. In particular, thermal noise power is roughly
inversely proportional to the length unit (A) of the process so that extremely small analog ANN cir-
cuits may be so noisy as to be unreliable for realistic algorithms. Thus, as minimum circuit sizes
scale to submicron dimensions, performance improvements should be more evident in the digital
world than in the analog one.

3)  On-chip Communication - The ultimate limitation in planar silicon designs is the connectivity
between elements. For the particular case of ANNs, a number of analyses have shown that large sys-
tems require communication multiplexing. Analog signals can also be multiplexed, but at the cost of



further tricky design.

4)  Off-chip Communication - It is tricky to interconnect high-speed analog signals at the board level,
due to the effects of radiated noise, crosstalk, power supply isolation problems, etc. Digital com-
munication in a large system is currently reliable up to the Gbit/second rate.

5)  Viral Neurons - A simple probabilistic analysis [11] shows that large silicon connectionist systems
may require each physical computational element to implement many more than one "neural” unit.
This computational multiplexing may be implemented with analog components, but much care must
be taken to reduce the effects of crosstalk, and a large silicon area is required for the digital control
circuitry.

6) Inflexibility - For most cases, minor algorithmic changes (e.g., the unit nonlinearity) force a major
analog circuit redesign. For digital circuits, such changes can frequently be accommodated by sim-
ply generating a different logic array.

7)  System Integration - With the exception of circuits integrated with transducers, most computational
circuits must work with standard digital components such as semiconductor memories, disks, unipro-
cessor CPUs, etc. In this case the "real world" is digital, and interface for system operation and test-
ing is much more convenient with a digital part.

The last point is in practice one of the most important. ANNSs are subject to Amdahl’s Law!, so that
speed improvements from a lightning-fast analog "neuron” may not be visible if the remaining subsystems
are implemented by relatively slow digital components. Therefore, a simpler approach would be to design
the entire system using fast digital implementations that will work well together, both for "neural” and
"non-neural” parts. We believe that such an approach is a viable solution to the ANN system design prob-
lem, and that custom IC design can provide overall system performance that at least approaches the
throughput of a clever analog system design.

These considerations have led to the development of a design methodology for digital ANNs that is
described in the remainder of this paper, including a preliminary design example. We first describe some
new developments in VLSI design at Berkeley that are relevant to our goals.

OBJECT-ORIENTED CUSTOM IC DESIGN

Ideally, the task of implementing an custom IC design of an ANN would consist solely of the
preparation of a behavioral description for input to a silicon compiler. Silicon compilation is an active
research area, but presently human intervention is necessary in the behavioral to physical translation pro-
cess if competitive designs are to be achieved. This labor can represent a considerable expenditure in
design time,

As device densities increase we can expect far greater emphasis to be placed on the reuse of existing
subsystems. The VLSI designer’s task has already become less overall chip design and more implementa-
tion of library cells catering to a wide variety of users. At the highest level, relatively naive users will
require modules equivalent to application specific silicon compilers. For example, a high level library
might be capable of generating complete ANNs parameterized by unit type and interconnection pattern.
High level systems designers will view VLSI as simply an advance in packaging technology and will
expect to be able to combine predesigned modules as easily as they currently combine chips on a board.
Gate array and standard cell technologies are currently popular solutions in this area. Moving towards more

'Amdzhl’s Law : the perfformance improvement 10 be gained from using some faster mode of execution is limited by the frac-
tion of time the faster mode can be used (as stated by Pauerson and Hennesy in [12]).
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aggressive designs, VLSI designers will require much more malleable libraries that can be tuned to particu-
lar design objectives such as ANNs. This level of tuning will require rich interfaces to the library modules
as many interdependent parameters may need to be considered. At this level of design, the user should
have the tools to hand design the required part. On the other hand, the library must be sufficienty flexible
and easy to use to render these hand designs unnecessary most of the time. However, the design of library
cells requires a uniform mechanism for composing circuit primitives and pre-existing library modules to
form new library modules.

These requirements for flexibility, reusability, and extensibility mirror the more general software
requirements that have generated widespread interest in object-oriented programming languages such as
Smalltalk or Eiffel, and for object-oriented extensions of traditional languages, such as C++. The key
observation is that a modem object-oriented language can implement CAD specific objects that are as easy
to manipulate as primitive objects in a special purpose procedural layout language. CAD objects are
merely data structures with associated operations, and map naturally into the object-oriented paradigm.

An initial experimental system, BOSS, has been developed as part of a graduate course at U.C.
Berkeley [13]. BOSS consists of C++ classes built on top of the Berkeley Octtools database [14][15]. The
Berkeley Octiools database provides persistent storage for design data and is widely used in academia and
industry. Many tools have been developed that communicate through this database. C++ was chosen as it is
a relatively mature and stable language, and provides a natural interface to the C code that comprises most
of the existing CAD software [16]. The classes in BOSS can be split into those that provide a wrapper
around the objects supported by the Octtools database, and higher level abstractions to support VLSI lay-
out.

For example, one higher level abstraction is a two dimensional array of cell instances. Operations
defined on this array allow rows and columns to be populated with other instances. Further operations
allow connections to be routed between elements within the array a row or column at a time. During layout
generation the array elements are interrogated to determine bounding box information. Many popular VLSI
structures, such as RAMs, ROMs, and PLAs, map naturally into this kind of array abstraction. By factoring
out the layout code common to all such structures, we can substantially reduce the development time of
new structures.

BOSS also provides some very simple routing functions. These are intended to be used under pro-
grammer control to implement small local wiring connections in known wiring patterns. Such fairly regular
local communications dominate the wiring in most designs, and giving the programmer explicit control
saves execution time and potentially produces better results than a large scale router. This example illus-
trates a general theme in this approach. The use of tool functions needs to be built into library cell
definitions. Hence, tools should also be provided as classes operating on CAD objects, not as monolithic
entities. This has the advantage of simplifying the design of the tool, since no user interface is required and
what would previously have been implemented as a single monolithic tool can now be provided as many
smaller, more specialized tools.

Several library cells have been laid out using BOSS, including an ANN datapath described later in
this paper. These experiments have convinced us of the value of this technique. BOSS was only intended
as a prototype system, and our experience has suggested a number of major modifications. We are there-
fore currently developing a successor system, OctC++, which will be used for our future ANN VLSI
designs [17]. While BOSS was designed as a single module to speed implementation, OctC++ is being
split into more manageable chunks. The lowest layer of OctC++ will consist of C++ wrappers around the
Octtools database. This code will help isolate the higher layers from future changes in the design database.
Higher level layers will implement the abstractions present in BOSS, such as cell arrays and wiring prag-
mas. BOSS is fairly conservative in its use of the novel features of C++, while OctC++ attempts to further
capitalize on inheritance, dynamic typing, and operator overloading to ease the library design process.

So far the discussion has centered on layout generation. However, we believe the object-oriented
approach can be profitably applied to other areas of VLSI design.

Object oriented techniques were originally developed to aid in the writing of simulations [18], which
are among the more time consuming parts of VLSI design. C++ is already a popular language in which to
perform simulation work, and we are making extensive use of the language in our architectural simulations.
In particular, the ability to modify the behavior of arithmetic operations without changing algorithmic code
is especially useful for ANN design, due o the range of arithmetic precision required for different
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variables in an ANN (e.g., 12-16 bit for connection strengths and 1-8 bits for unit outputs).

We are also investigating ways to integrate functional simulation, circuit simulation, and chip testing.
We already perform functional simulation in C++, in effect creating a C++ object to model our hardware
element. The interface to this C++ object defines the required interface to the hardware system. If we pro-
vide circuit simulators as library tools operating on layout objects, it becomes possible to implement the
same C++ interface by interacting with generated layout through the simulator code. Hence the same algo-
rithmic code used to define the architecture can be used to test an implementation. The same interface can
also be implemented using libraries that communicate with a chip tester. The same algorithmic code can
then be used to functionally test fabricated chips. In C++ we would define an abstract base class represent-
ing the hardware interface. The designer would then inherit this interface in three subclasses corresponding
to the three different implementation of the interface.

Perhaps the greatest advantage of this object-oriented approach is the common control through the
same general-purpose language of many different libraries and objects. There are no restrictions on how
these elements can be combined with each other and with non-CAD specific libraries. For example, with
C++ it is possible to use the Stanford InterViews library to provide an object-oriented interface to the X
windowing system for graphical interfaces,

In summary, CAD design is increasingly a software art. Object oriented design developed for
software management is directly applicable to CAD design resulting in the same benefits of increased
reuse, enhanced flexibility, and straightforward extensibility. We are currently in the process of building a
design system with these goals in mind. Later in this paper we describe our experience with the preliminary
system (BOSS) for ANN hardware design.

APPLICATION: SPEECH RECOGNITION

To demonstrate the applicability of these techniques to a problem of interest, it is necessary to take a
small detour into a machine perception application of interest to us at ICSI. In our work on ANN applica-
tions, we have developed a phoneme-based, speaker-dependent continuous speech recognition system [19].
The system utilizes a layered ANN to generate emission probabilities for a Hidden Markov Model (HMM)
recognizer. We have shown that this method is an effective way to smoothly estimate joint densities with a
number of training samples that is insufficient for simple histogram-based techniques. The ANN is capable
of performing statistical pattern recognition over the undersampled pattern space without many restrictive
simplifying assumptions. The ANN can also combine multiple sources of evidence, such as multiple
features and contextual windows, in a straightforward and efficient manner. Initial experiments indicate
that this method compares favorably with conventional HMM speech recognition systems [20].

In this system, continuous features (such as spectra) are extracted from speech input and passed to a
vector quantizer that maps the input speech frame into one of a set of prototype vectors or features. The
ANN is fed a sequence of vector quantized frames that provide a sliding window into the input speech
stream. The ANN uses this contextual information to recognize phonemes and/or generate the probability
of each phoneme given the input.

Each vector quantized frame is represented using unary encoding. That is, there is a binary input
neuron for each possible feature value, only one of which can be active at a time. For the networks
described in [19], the vector quantizer selects one from 132 feature values and the ANN is fed a window of
9 frames. This gives 132x9 = 1188 input layer neurons, of which only 9 will be active in a given pattern.
The output layer consists of 50-64 neurons, corresponding to the number of phonemes to be recognized.
The best experimental results were obtained without hidden units, and so the input layer is directly and
fully connected to the output layer. Error back-propagation training is used [21][22].

The network algorithms are summarized in the following equations. Input neuron i is connected to
output neuron j by a weight w;;. The output of neuron j is given by
0; =f (s;) (1

where
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Bias values are treated as an extra weight connected to an always active input neuron.

Input values are either 1 or 0, and for each feature within each frame only a single input is active, We
can split weight memory into 9 banks, one per frame. The sum can then be efficiently computed as

sj =2 W (kv(k)) @)
k

where W (k,v) selects weight v in weight bank k, and v(k) is the feature value for input frame k. We
require only 9 additions to sum the unit bias and the 9 connection weights for each vector-quantized
feature. No multiplies are required, which simplifies the hardware; however, the connections for each
input pattern are sparse (mostly zeros), which complicates the design.

The training algorithm derives a weight update value Aw;; using a cross entropy error criterion [23]
AW“I‘ = —a(oj—dj)o,v (5)

where d; is the desired output value for neuron j, and « is the learning rate. Note that o; is O for inactive
inputs so the comesponding weights w;; need no updating. For the active inputs, the value of Aw;; is
—oo;—d;) which is independent of /. With no performance degradation, o can be restricted to negative
powers of 2. This replaces the leamning constant multiplication with an arithmetic shift. For the single-
feature case, we require 10 additions for each neuron to perform weight updates, 9 for the weights and one
for the bias. Note that the difference between output and target can be simply calculated by a PLA, since
the target is alwaysa l ora 0.

Reducing arithmetic precision is important as it decreases weight storage requirements, as well as
reducing datapath circuitty. The results of our simulations indicate that in this application a weight preci-
sion of 12-16 bits is sufficient for learning using back-propagation. Output values require 6-8 bits. These
findings are in agreement with those discovered by researchers working with back propagation in other
application areas [11]. The systems we describe use 12 bit weights and 6 bit output values. Additionally,
we used only 6 bits for the weight increment Aw;;, corresponding to the least significant bits of the stored
weight, used only the most significant 6 weight bits for the forward connection strengths.

A further modification was made to the algorithms to simplify the hardware. The 9 input frames
presented to the network are grouped into three groups of three corresponding to past, present, and future
frames. Within each group, the three weights corresponding to a given feature vector are tied together so
that any update affects all three. This modification was originally added to improve generalization in the
speech recognition system, but has the additional advantage of reducing the weight storage required in an
implementation by a factor of three. The three frames within each group share a single bank of weight
memory. The total weight storage per neuron is 3x132x12=4752 bits (not counting the bias value).

These modifications were simulated on a Sun workstation, and for a German language test set of 200
sentences, performance matched our previously reported results within a few tenths of a percent. Thus, it
appears that a fixed-point algorithm with the required simplifications for efficient VLSI implementation
works essentially as well as the original floating-point version. This algorithm should map efficiently to the
cells that we are developing for ANN implementation.

DESIGN EXAMPLE: A SIMPLE DATAPATH

We have been studying the design of building blocks for the speech recognition ANN described
above [24]. In the course of this study we have compared our procedural approach to VLSI design with
DPP, a datapath generation tool from a Berkeley CAD management utility called Lager [25]. Lager acts as
a supervisory wrapper for a collection of design tools that use some of the features of the Oct database.
We made this comparison by designing a simple datapath using Lager, and then doing a functionally



equivalent design using BOSS and the Octtools VLSI CAD toolset. The datapath is the simplest possible
implementation of the arithmetic elements of a single-layer perceptron with binary inputs, the ANN con-
struct used in the speech-recognition research described above. The architecture of the datapath is shown
in Figure 1. Both designs were fabricated using the MOSIS 2.0 micron n-well process and then tested.

The sequence of steps used to produce a layout under the Lager design system was straightforward
and simple. First, a specification of the datapath logic without the logic needed to do two’s complement
saturating addition was developed, simulations were carried out to ensure the correctmess of the
specification, and a layout of the datapath was generated. Next, saturation logic was specified, simulated,
and implemented, and a complete datapath was assembled from the two blocks. Then, the control logic for
the datapath was specified, simulated and implemented, and the datapath and control logic were brought
together to form the chip core. The chip itself was then assembled from the chip core and a specification of
the pads. Before being sent out for fabrication, the chip design was simulated to ensure its correctness.

Figure 2 is a die photograph of an 8-bit Lager datapath design, fabricated as a 2 micron MOSIS Tiny
Chip. The large block in the center of the chip is the datapath. The saturation control logic is above the
left side of the datapath, and the control logic is below the datapath on its right side. The chip is functional
at 25 MHz (the design specification was 20 MHz). We found that the design proceeded rapidly, because
there was no need for hand layout of cells and because Lager provides a mechanism similar to the UNIX
"make" utility that helps the VLSI designer manage changes to the design.

The design process using BOSS and the Octtools was slower and more involved, primarily because
all datapath cells layouts had to be done by hand. First, the datapath was broken down into a collection of
leaf cells such as single-bit pipeline latches and two-to-one multiplexers. Next, all leaf cell layouts were
done, and the leaf cell designs were simulated to ensure functional correctness2. Extensive SPICE simula-
tions of the saturating adder cells were done to ensure that the adder would operate at 20MHz. Next, C++
code using the BOSS library of routines was written to assemble the leaf cells into circuit blocks such as
N-bit saturating adders. A code sample from one of these programs is shown in Appendix A. The correct-
ness of the layout generators and the leaf cells they use was verified by simulating several instances of each
generated circuit block. Then, another program was written to assemble the datapath from the smaller cir-
cuit blocks, The datapath generated by this program was simulated, and then a controller for it was syn-
thesized using the Mississippi State standard cell library. Finally, the datapath and controller were simu-
lated together, placed in a pad frame, and routed to generate the final chip layout.

Figure 3 is a layout illustration of the BOSS/Octtools datapath design. The large block in the center
of the chip is the datapath, and the small block above it is the controller. The chip is functional at 20MHz.
While the design of this chip took much longer than the Lager design, we feel that the time was well spent:
the datapath design is about half the size and consumes about half the power of the Lager design. Further-
more, the BOSS/Octtools datapath is more easily tiled than the DPP design because the BOSS/Octiools
design does not require an external adder saturation logic block.

While this comparison is useful, its results are not surprising. The BOSS/Octtools design is essen-
tially a full-custom design in which knowledge about the architecture of the chip could be used to guide the
low-level implementation. Thus, we were able to pitch-match all datapath cells and mirror them so that
they could share power and ground lines. Knowing that all cells would communicate through short con-
nections to other datapath cells, and that buffering could be provided as necessary to drive long lines, we
were able to use relatively small transistors for the cell layouts. Because we knew we would need a
saturating adder, we were able to build sawration logic into our adder design. The DPP library cells were
designed for general use, so it is not surprising that our custom design uses much less silicon while operat-
ing at roughly the same speed.

It seems, then, that we face a classic dilemma: to achieve high performance, one must do a time-
consuming custom design; to produce a design quickly, one must use a silicon compilation system and
sacrifice some circuit performance. We believe that our object-oriented approach to VLSI CAD has the
potential to alleviate this problem. The BOSS/Octtools design produced more than just a datapath chip; it
also produced parameterized block generators for a saturating adder, two-to-one multiplexer, transparent

2Cell 1ayouts within the (symbolic) Oct policy contain implicit connectivity information, which facilitates the direct simulation
of layout. The Ocutools set includes a simulator for this purpose.
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latch, and pipeline latch. Furthermore, many of the cells and almost all of the code used to generate the
saturating adder could be used to generate a standard adder, and the routines used for block generation are
easily modified to generate other circuit blocks. Thus, although the first few chips we do will require a
significant design effort in the layout of cells and construction of block generators, later designs will
proceed faster as we accumulate a collection of tools customized for the designs we create, Ultimately, we
expect that design time for our chips will approach what is available through the use of more traditional sil-
icon compilation tools, while maintaining a level of performance in our designs equivalent to what is avail-
able through full-custom design.

DISCUSSION: MAPPING AN ANN TO SILICON

The example shown above, while falling short of a complete ANN design, is illustrative of the kind
of considerations required for a digital VLSI approach. Most research on silicon ANNs has focused on the
fast implementation of dot products, either for connecting all units or for connecting one layer of units to
another in the case of feedforward nets. The dot product of interest is the connection weighting of equation
(2). One simple way to obtain fast dot products is by using a commercial processor that has been optim-
ized for single cycle multiply-accumulate operations, such as a DSP chip. Multiple DSPs have been
assembled in systems [26][27] that yield significantly higher performance than uniprocessors for the ANN
algorithms of interest. Part of the attraction of such systems is their programmability, particularly impor-
tant in a development environment.

A DSP chip, however, uses a significant portion of its area to support features that are not useful for
ANN algorithms. A custom IC optimized for a limited number of ANN sequences would require a tiny
amount of control logic and use a simplified bus structure compared to a commercial DSP. These differ-
ences, along with the more modest data word width for a customized chip, will yield throughput improve-
ments of as much as two orders of magnitude for the custom chip, using comparable technologies. Further-
more, in many instances, as in the speech example above, algorithmic variations can often at least partially
remove the requirement for explicit multiplications.

The performance of these approaches can be normalized by using the silicon area expressed in a
technology-independent way using the die area in units of of A, This is shown in the first column of Table
I, for a number of implementations of forward propagation for a fully connected layered net, which is
essentially a dot product. Note that in the table we have defined a Connection Per Second as CPS, and that
the unit performance normalized by the scalable area is called a COnnection Rate Density (CORD) for this
algorithm. The Adaptive Solutions chip, which is optimized for 16-bit dot products, shows much of the
expected improvement [28]. A further improvement is predicted for a dedicated pipeline approach [29]
using the cells described earlier in this paper. Finally, an analog chip recently developed by Intel, the
ETANN, gives the best performance, using relatively inaccurate weights. However, the improvement over
the digital custom approach is slight.

Using a related normalized performance measure, the Connection Update Rate Density (CURD),
these chips can also be compared for their ability to learn. The ETANN chip does not perform on-chip
learning, but if a similar technology were used to compute weight changes, the tunneling process used to
program connection strengths would limit the area-normalized performance to about .03 CURDs. This is
only an order of magnitude better than the fully programmable DSP chip, and quite a bit worse than the
custom digital IC. Of course, other analog weight change mechanisms can be quite a bit faster, so this
analysis does not prove that "digital is better.” However, the real point is that fast design techniques to gen-
erate extremely dedicated hardware, be it digital or analog, can bring enormous performance benefits.

While the CURD and CORD measures (which roughly cormrespond to the standard AT performance
measure for general VLSI designs) appears to be a useful way of comparing silicon ANNS, they still have a
number of limitations. Firstly, they still are not measures of the technology-independent efficiency of the
design, since the measures favor small geometries (which would have a faster connection or connection
update rate). This can be accounted for by a further scaling by the value of A in microns, yielding
NCORDS and NCURDS for the normalized versions. Note that these final measures essentially correspond

to % since the computation times are roughly inversely proportional to the minimum line widths. For

the cases of Table I, this final scaling would only affect the digital custom design row, which would be
multiplied by 2, since our MOSIS implementations are done in 2-micron CMOS, as opposed to the 1



micron processes used in the other cases.

A more fundamental limitation to these measures is the usual problem of condensing system perfor-
mance into a single number. The CORD and CURD ratings give no insight into the utility of the system,
its testability, how smoothly the ANN can be integrated with other components, etc. There is no easy solu-
tion to this objection; the reader must, as always, not be content with any succinct performance metric, and
use his or her intelligence to consider the larger context.

Networks with sparse connectivity are implemented with poor efficiency on dot-product engines, be
they analog or digital. This case can be handled in custom ANN design by sending addresses as well as
data (where the latter is required if the input is not binary). In the implementation of our speech system, for
instance, each speech pattern would consist of addresses of weights to be summed, corresponding to "on"
inputs determined by vector-quantized speech features. Such an application benefits from having a
moderate number of distributed memories, as opposed to the extremes of a weight vector per processor
(fully parallelized), or one central bank (as in a uniprocessor implementation). This trade-off can be optim-
ized for each new application.

SUMMARY

We have proposed that silicon ANNs can be flexibly and efficiently implemented with custom digital
ICs designed with object-oriented CAD. We have also described the initial application of these techniques
to the design of a datapath for use in a target problem in speech recognition. Finally, we have evaluated the
performance of several existing and proposed circuit implementations of common ANN algorithms, using a
measure that shows the relative effectiveness of silicon usage for the application. This result shows that
digital implementations of ANNs can be efficient, and furthermore that they can realize functions that are
difficult for an analog implementation (such as gradient descent using a wide dynamic range).
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Appendix A: Sample of BOSS Layout Generation Code

bossPipelatch(int height)
f[/ Define output of pipeline latch generator

BossFacet facet = BossFacet(form("pipelatch.%d" height),”symbolic”);
// Set up array of single-bit pipeline latches

BossInstArray pipelatch(height,1);

pipelatch.populate_all(facet LATCH_LOC, "physical","latch");

pipelatch.offsetBB_all(LATCH_BB_TOP,LATCH_BB_BOT,
LATCH_BB_LEFT,LATCH_BB_RIGHT);

J// Mirror every other latch in Y so that power and ground lines are shared

for(int row=0;row<height;row++)
if(row%2 = height%2)
pipelatch.transform_row(OCT_MIRROR_Y, row);

// Place pipeline latches in array
pipelatch.place_all();
// Specify nets (logical connections used for simulation) between latches

pipelatch.connect_col(0,"clk",BossNet(facet,"clk"));
pipelatch.connect_col(0,"clkn",BossNet(facet,"clkn"));

// Do reflection-dependent nets

int vflag = 0;
for (row=height-1;row>0;row--) (
if (vflag) {
BossNet Vdd(facet,form("Vdd<%d>" row/2)); // Create net
Vdd.add_term(pipelatch.elmt(row,0).term("Vdd")); J/ Attach terminals
Vdd.add_term(pipelatch.clmt(row-1,0).term("Vdd")); //to net
}
else (
BossNet GND(facet form("GND<%d>" row/2));
GND.add_term(pipelatch.elmt(row,0).term("GND"));
GND.add_term(pipelatch.elmt(row-1,0).term("GND")};
)
vilag = 1-vilag;

// Specify formal terminals (the interface to other circuit blocks)

pipelatch.promote_all(facet,"in1","in1"); J/ Convert terminal "in"
/i of each latch to a
J/ formal terminal "in<row>"
pipelatch.promote_all(facet,"in2","in2");
pipelatch.promote_all(facet,"outl","out1");
pipelatch.promote_all(facet,"out2","out2");
pipelatch.promote_all(facet,"Feed1","Feed1");
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pipelatch.promote_all(facet,"Feed2","Feed2");

BossFormal Term(pipelatch.elmt(height-1,0).term("clk™),"clk.t"); // Convert terminal " clk.t"
{/ of the top latch to the
// formal terminal "clk"

BossFormal Term(pipelatch.elmt(0,0).term("clk"),"clk.b™);

BossFormalTerm(pipelatch.elmt(height-1,0).term("clkn™),"clkn.t");

BossFormal Term(pipelatch.elmt(0,0).term("clkn"),"clkn.b");

BossFormal Term(pipelatch.elmt(height-1,0).term("Vdd"™),

form("Vdd<%d>" height/2));

// Do reflection-dependent formal terminals

vilag =0;
for (row=height-1;row>0;row--) {
if (vflag)
BossFormalTerm(pipelatch.elmt(row,0).term("Vdd"),
form("Vdd<%d>" row/2));
else
BossFormalTerm(pipelatch.elmt(row,0).term("GND™),
form("GND<%d>",row/2));
vilag = 1-vflag;
)
if (vflag)
BossFormal Term(pipelatch.elmt(0,0).term("Vdd"),"Vdd<0>");
else
BossFormal Term(pipelatch.elmt(0,0).term("GND"),"GND<{(>");
}
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Figure 1: This is the architecture of the datapath
described in our example. All parts of the datapath are
standard datapath elements, except for the adder.
Instead of overflowing, the adder will produce the larg-
est possible output and instead of underflowing it will
produce the smallest possible output.



Figure 2: Simple Datapath--DPP Design
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Table I: Connections Per Second / Normalized Silicon Area

(floating gate)

(7 bits weight range)

Forward Full Learning
7 6
or | LSRR o nreorns | 2R _yonsermns
8x10%A2 8x108\2
TMS320C30
(digital) | (floating pt weights)
9 8
adiptive, | 22 CES 4 popp AeRIEES _ oo cuRDs
1.6x10°A2 1.6x10°A2
Solutions
(digital) | (16 bit weights)
8 8
Projected ZRWEED =20 CORDs £oaliklie ] =10 CURDs
10722 2x107A2
approach
(digital) | (12-16 bit weights)
10
ETANN | 29CP5 _ 33 corps speed of host (very slow)
3x10%)2
(analog) (tunneling process would

limit to .03 CURDs)

Note: the areas for the 2nd and 3rd chips are estimates, based on assumed
components and technologies







