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Abstract

This paper introduces a first approach for the automatic worst case complexity analysis.
Itis anextension of previous work on the automatic complexity analysis of functional programs.
The language is afirst order parallel functional language which allows the definition of indexed
data types and parallel execution of indexed terms. The machine model is a parallel reduction
system based on eager evaluation. It is shown how parallel programs based on the basic design
principles balanced binary tree technique, divide-and-conquer technique and pointer jumping
technique can be analyzed automatically. The analysis techniques are demonstrated by various
examples. Finally it is shown that an average case analysis of parallel programs is difficult.
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Chapter 1

Introduction

This paper introduces a first approach for the automatic worst case complexity analysis. It is
an extension of previous work on the automatic complexity analysis of functional programs. The
language is a first order parallel functional language which allows the definition of indexed data
types and parallel execution of indexed terms. The machine model is a parallel reduction system
based on cager evaluation. It is shown how the basic design-principles of parallel programs can be
analyzed automatically. The programs in this report are designed for EREW-PRAMS. Iowever,
the analysis technique for programs having concurrent reads is the same. The analysis techniques
are demonstrated by various examples.

The design principles covered in this paper are the balanced binary tree method, the divide-and-
conquer technique, the compression technique, and the pointer jumping technique [GR88, KR8S8]. In
a functional language, the compression technique and the balanced binary tree method lead often
to the same program. At least in our examples, it is in fact the same algorithm.

As far as known to the author the method introduced in this paper is the first method for the
automatic complexity analysis of parallel algorithms. For sequential ones, there are well-known
methods based on recurrences [Weg75, HC88, LeM88, Zim90b] and on generating functions [FSZ88,
Ila88, FO88, FSZ91, Zim89, Zim90a]. An overview of the main results on both methods can be
found in [Z2Z89).

The second chapter introduces the language PARSTYTL (parallel simple typed functional langua-
ge. The syntax and semantics are not defined in a complete formal way, but it can be done similar
to [Zim90b]. In the third chapter we introduce the analysis method in general, and apply it to
algorithms designed by the balanced binary tree method and divide-and-conquer technique. In the
fourth chapter, the difficulties with the pointer jumping technique are discussed, and how they can
be solved by a powerful heuristic. Finally, we give an outlook towards further work in the field.

The algorithms analyzed in this paper base on the algorithms of section 1 in [GRS8S] and section
2.1 in [KR8S].



Chapter 2

The Language PARSTYFL

Each PARSTYFL-program II consists of a set of type definitions T and a set of function definitions
F. Sometime we denote this fact by Il = (T, F'). Therelore, this chapter is divided in two sections.
In the first section we introduce the syntax and semantics of the types in an informal way. TFor
the design of parallel programs it is useful to have indezed types. This is in fact the only extension
of STYFL [Zim90b] on the type level. The second section introduces the program structures
of PARSTYFL. The extensions to STYFL are the use of indices in indexed objects of indexed
types and the parallel execution of terms containing indices. The semantics, the definition of time
complexity, space complexity and processor complexity (i.e. the number or processors used by a
program) is given in a formal way, while the syntax is defined in an informal way.

2.1 Types and Indexed Types

Types are described by an algebraic specification mechanism. They could be parametrized. Each
type consists of a declaration of its name, of the types (i.e. sorts) used in the definition of a type,
of a set of constructors together with their signature, of a set of operations together with their
signature, and of a set of equations. We describe therefore a type syntactically by:

type Name(Aj,...,A,)
sorts 51,...,5,
constructors
cp . I1‘1 X X II.H ?—"OI

Ck :fk‘l Ko X Ik,rk — O
operations
op: Iy X - x 17, +— 0%

1351

o;:fﬁlx---xffﬂa—,Of’



variables 1 : T1,...,2m : Ty

equations
LHS = RHS,
LHS,= RHS,
where:

-4myn,p,g20,r;>20for1<i<k,s;>0for1<j<!{,and k> 1.

- All 1; ;, ff:j, O;, O¢ and T; are in {S1,...,5m}-
- The terms LHS; and RHS; are terms of the same type and contain only the symbols

By tha B yones Dy WA oo By

We call Name the name of the type, the A; the parameters of the type, the set § = {Si,...,Sn} the
sorts of the type, the set © = {¢,...,¢ck,01,..., 0} together with their functionality the operations
of the type, the set C = {¢1,...,¢,} the constructors of the type, and the set E({z,:T},..., T :
Tm})={LHS; = RHS,...,LHS, = RHS,} the equations of the type. In proofs and comments
we denote these facts by T' = (Name(A1,...,4,),%,C, BE(X)).

The semantics of a type is the classical quotient term algebra [EM85]. We require that the quotient
term algebra is isomorphic to the term algebra for the constructors C'. This can for example be
achieved if the set of equations satisfies the definition principle of Huet and Hullot [HHS0].

Example 2.1 (Lists) The following type defines lists similar to the lists in LISP':

type List(A)
sorts List, A, Bool
constructors
nil v List(A)
cons : A X List(A) — Lisi(A)
operations
empty : List(A) — Bool
car : List(A) — A
cdr : List(A) — List(A)
variables ! : List(A), a: A
equations
empty(nil) = true
empty(cons(a,l)) = false
car(cons(a,l)) = a
cdr(cons(a,l)) = [

'The type Bool contains the boolean constants true and false, as well as the basic logical junctors
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For parallel programs it is useful to have indexed data types (i.e. arrays) and to perform operations
in parallel on the objects refered to by the indices. An indexed data type is a parameterized type
(with one parameter) together with an operation defining the size of the terms (i.e. the number
of subterms of the parameter type) and a random access function to the i-th object in a term. In
particular it is expressed as?:

indexed type Name(A)
sorts Sy,...,95,
constructors
4] :I'l.l PR o Il.r; — O1

(ad f_:;J X X Ik.r,‘ — O
operations

. 4 o

01 . lo‘lx"'x.rla’sl |_.Ol

o Iy x ---x 1P, OF
variables z; : Ty,..., 25 : T
equations

LIIS, = RH S,

LIS, = RIS,
indexing

length : Name(A) — N
# Equations defining fength

LHS! = RHS!

LHS, = RIS},

access : Name(A) X N — A
# Equations defining access

LIS} = RHS}

LHSE = RHSS

The semantics is just the same as if length and access would be added to the operations and the
equations defining length and access to the equation part. We abbreviate access(t,1) by t[i].

Keeping this in mind, we sometimes mean by Ty the set of all constructors and operations defined
in any type of a program II, by Cp the set of all constructors defined in any type of II, and by
En(Xn) the set of all equations of the types of II.

%N denotes the type of natural numbers, it contains the numbers {expressed by the 0 and successor function) and
the usual arithmetical operations



Example 2.2 (Indexed Lists) The following type defines indezed lists. Remember that indered
lists and arrays is nearly equivalent (in arrays the boarders are ezplicitly specified while in a indezed
list | the boarders are 0.length(l) — 1).

indexed type List(A)
sorts List, A, Bool
constructors
nil :— List(A)
cons : A X List(A) — Lisi(A)
operations
empty : List(A) — Bool
car : List(A) — A
cdr : List(A) — L:st(xl)
variables ! : List(A), a
equations
empty(nil) = true
empty(cons(a,l)) = false
car(cons(a,l)) = a
edr(cons(a,l)) =1
indexing
length : List(A) —
length(nil) = 0
length(cons(a,l)) = 1 + length(l)
() : List(A) x N— A
cons(a,l)[0] = a
cons(a,l)[i + 1] = [[7]

Remark 2.3 (Indexed Types with More than One Parameter) The restriction to one pa-
rameter in the definition of indezed types is easy to extend to more than one parameter. Just define
an indez-tuple where the i-th tuple entry refers to the i-th object of type of the i-th parameter. It
makes therefore sense to define for each parameter its own length and its own access function. This
way of the extension is a kind of currying, t.e. T(A1,...;Am) = T(A1)(Ag) -+ (An).

Even if we use in this paper just indexed lists, it should be clear that indexing is not restricted to
lists. It could for example also be applied to binary trees: if the index of a node is 7 then the index
of the left son to 2 -1 and the index of the right son to 2 1 4 1.

2.2 Functions and their Semantics
Syntactically, functions are equations of the form

fun et liye B b dg) O =B



where the [; are the input types of the function f, the O is the output type of f, and B is the
body of f. Each input type and the output type must be declared in the type part of the program.
The body of the program must be an expression of type 0. Expressions can be constructed by
the program structures which are defined below. The semantics is an operational call by value
semantics. This semantics tells how to evaluate an expression under a given program II and an
environment ENV. Environments give for each variable occuring in an expression its value. Thus,
environments are finite mappings from variables to constructor terms (remember that the types
are interpreted by the set of their constructor terms). They are denoted by a sequence of pairs
[v — t] where v is a variable and ¢ is the constructor term. We denote environment by p and the
value of a variable v under an environment p by p(v). The semantics of expressions is therefore a
function

EVAL: EXPR x PROG x ENV — T¢

where PROG is the (syntactic) set of all PARSTYFL-programs, EN Vs the set of all environments,
EXPR is the set of all expressions, and T the set of all constructor terms of the types defined in
the program. We give below the syntactical program structures together with their semantics.

Definition 2.4 (Variables) A variable v is an ezpression. Let 11 be a program and p be an
environment. Then

EVAL[v] I p = p(v)

Definition 2.5 (Constructor Call) LetII be a program and ¢ : Iy X - -+ X I, — O a construclor
defined in the types of Il. Furthermore, let ty,...,t; be terms of type I1,..., I, respectivly. Then,
the constructor call

e(tyen oy tp)
is also an ezpression. Its semantics is defined by:

EVAL[ c(tyy...,t6) ] M p=c(EVAL[ ;] 1 p,...,EVAL[ t ] Up)

Definition 2.6 (Operation Call) Let Il be a program and o : [ X --- x I, — O be an operation
defined in the types of Il. Furthermore, let ty, ..., t; be terms of type Iy, ..., Iy, respectivly. Then,
the operation call

o(tla- --1t.k)

is also an ezpression.



Let now LHS = RHS be an equation, where LHS matches the term

o EVAL[t; ] T p,..., EVAL[ t ]I p)

under an environment p, i.e. there is a substitution ¢ such that o(LHS) yields the above term.
Then the semantics of an operation call is defined by:

EVAL[ o(t1,...,tx) ] I p=o(RHS)
Definition 2.7 (Function Call) Let
fun gleys By wteih) s0=8

be a function definition in a program I, and ty,
Then, the function call

y[:h,...,tk)

ooy U cxpressions of types Iy, ..

is also an ezpression. Ils semantics is defined by:

EVAL[ g(t1,...,t.) ] M p=

EVAL[B] Tl plzy — EVAL[t,] T p]---[zx — EVAL[ t ] TI p]

.y Ik, respectivly.

Remark 2.8 (Strict and Lazy Semantics) The strict semantics arises from the fact that the
environment contains only constructor terms and that in the operation calls and function calls
the arguments must be evaluated before performing the body. In a lazy semantics it would also be
allowed to have arbilrary expressions in the environment. In the operation calls and function calls,
the environment would just be extended by the terms as they appear (not evaluated). The semantics
of a variable is then the evaluation of the corresponding expression in the environment.

Definition 2.9 (Conditional Statement) Let b be an expression of type Bool or an equation
s1 = s where sy and sp are terms of the same type. Furthermore let t{ and t; be two expressions
of the same type. Then the conditional statement

if b then ¢, else ¢,

is also an ezpression. Let Il be a program and p be an environment®:

EVAL[t; ] Tp if EVAL[b] T p = true
EVAL[if bthent elset, | Mp=< EVAL[t, ] T p if EVAL[b] 11 p = false

B

31 defines the bottom element (“undefined”)

otherwise



1 if EVAL[s1 ] T p=Llor EVAL[s; ] I p= 1
EVAL[s1=s ] Mp={ true if EVAL[s;] Hp=FEVAL[sy] L p# L
false otherwise

Definition 2.10 (Local Variables) Let z be a new variable (not occuring somewhere in an en-
vironment p) and t; and ty two expressions of not necessarily the same type. Then the local use of
z denoted by

let x =t in ¢y
is also an ezpression. Its semantics under a program Il is:

EVAL[letz=t1inty | M p=EVAL[to ] U plz — EVAL[ t; ] 1T p]

Definition 2.11 (Parallel Statement) Let Il be a program and {(i) an expression containing i
and ub be a natural number. Then the parallel statemeni

forall ¢ < ub do in parallel {(z) of type N(T)

is also an ezpression. If t(i) is type T, then the parallel statement is of an indezed type N(T'). If

N(T) is clear from the context or plays no role, then its declaration is ommitted. Its semantics is
defined by:

EVAL] forall i < ub do in parallel (i) of type N(T) ] l p=1=z
where z[i] = EVAL[ t(i) ] Il p for all 0 < i < ub.

We have not yet defined that the execution of this statement is parallel! This is the task of the
definition of the complexities. The semantics of the parallel statement is complete because indexed
types explain how to build up structures, when they are defined via indices. In trees for example,
balanced binary trees will be built up (according to the remarks at the end of the last section).

The definition of time is based on the basic complexities in figure 2.1. These basic complexities can
be defined by the user of an automatic complexity analysis system. We will assume for simplicity
that each of these complexities needs 1 time unit. That represents the number of (parallel) EVALs
needed to be evaluate an expression. The execution time of an expression is defined by a function:

TIME : EXPR x PROG x ENV — N

Its defining equations are given in the following definition:



Tf foreach fe &

Twr for a reference to a variable

Teatt  for function calls, defined in the function part
Tif for evaluation of conditionals

Te;  for checking terms on equality

Tiet  for introducing local variables

Tpar fOr starting the parallel statement

Figure 2.1: Basic Complexities

Definition 2.12 (Time Complexity) The execution time of an ezpression t under a program Il
and an environment p is defined by the following equations:

(1) For a variable v:
TIME[v] L p= Ty
(i1) For a constructor call or operation call o(ty, ..., t;):
TIME[o(t1,...,tx) ] Up=ro + TIME[t; ] W p+---+ TIME[ t, ] Tl p
(iii) For function call g(t1,...,1t):
TIME [ g(ts,....t5) ] T p=reau+ TIME[6: ] M p+---+ TIME[tx ] 1L p+ TIME[ B] 11 ¢

where

- fun g(zy: Liy...,2x 2 Ii) : O = B is a function definiton in II, and
-p=plry — EVAL[ t; ] T p]--+[zr — EVAL[ tx ] T p]
(iv) For a conditional statement:

TIME [if cthen!jelset; | I p=

T+ TIME[c] Dp+ TIME[t; ] T p if EVAL[c] 11 p= true
r"f+TfM"E[[c:[} Dp+TIME[t, T T p it EVAL[c] IT p = false

00 otherwise
TII‘-!E[[Sl‘:SQ]]Hp=
Teg+ TIME[ 6 ] D p+ TIME[t2 ) M p f EVAL[G ] M p# Land EVAL[ 6 ] T p# L
= otherwise
(v) For the introduction of local variables:

TI!"{E[[ let z = by in g ]] IT P = Tl + T;ULIE[[ Ly ]] II P+ TIME [[ ta ]] IT ‘0;

where p' = plz — EVAL[ t; | T p]
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(vi) For the parallel statement:

TIME [ foralli < ub do in parallel (i) ] 1T p = rpar + TIME [ub] Il p+ max TIME[4())] 115

Now it is clear why the parallel statement is in fact a parallel execution. In part (vi) of the
above definition, the evaluation of the parallel statement takes a time determined by the mazimum
execution time of the execution of the body. This means that the body statements are executed in
parallel, and the whole parallel statement is completed when the last process terminates.

The following two definitions confirms also the parallel execution. In the space complexity the
number of symbols in a term is counted. The space complexity counts the maximum number of
symbols needed to evaluate an expression. Ilence, the parallel evaluation of terms needs the sum
of all space complexities needed by the parallel evaluation processes. The space complexity is a
function

SPACE : EXPR x PROG x ENV — N

Its meaning is defined in definition 2.13. Finally we have to define the processor complexity. That
is the maximal number of processors used by the evaluation of an expression. It is obvious that
the only statement which needs more than one processor is the parallel statement. All the other
statements are intended to be sequential and need therefore only one processor. The processor
complezity is a function

PROC : EXPR x PROG x ENV — N
which will be defined in definition 2.14.

Definition 2.13 (Space Complexity) The space necded for the evaluation of an expression !
under a program Il and an environment p is defined by the following equations:

(i) For a variable v:
SPACE[v] I p = size(p(v))
where size counts all the non-constant symbols in a constructor term.

(ii) For a constructor call e(ty, ..., tx):
SPACE [ e(t1y.. .,tx) ] L p=
14+ max{SPACE([ ¢; ] 1 p,...,SPACE[ . ] 1 p,
L+ size(EVAL[ t, ] T p) + -+ -size(EVAL[ t; | 11 p)}
(iii) For an operation call o(ty, ... t;):
SPACE[ e(or,...,t) ] Ip = 14+ max{SPACE[t; ] U p,...,SPACE [t ] 11 p,
1+ size(EVAL[ o(t1,...,t:) ] 1T p)}

11



(iv) For function call g(t1,...,tk):

SPACE[ g(t1,...,tx) ] T p = max{SPACE[t: ] I p,...,SPACE[t«] 1l p, SPACE[ B] T p'}

where

- fun g(z1 : Lh,...,2 : Iy) : O = B is a function definiton in II, and
-p=pley — EVAL[ t; ] IL p]---[zx — EVAL[ tx ] 11 p]
(v) For a conditional statement:

SPACE[ifcthentielseta ] I p=

max{SPACE[¢] Il p, SPACE[t1 ] Il p} i EVAL[c] Il p= true
max{SPACE[[c¢] Il p,SPACE[[t2]] T p} H EVAL[e] 1 p= false

oo otherwise

SPACE[[S]ZSQ]] Hp:

1 4+ max{SPACE[t; ] Il p,SPA_CE[[!z]] Mp} HEVAL[tL ] Hp#L
and EVAL[[t; ]] Mpep#L

00 otherwise

(vi) For the introduction of local variables:
SPACE[letz=t;int; ] Il p = max{SPACE[ ;]| Il p, SPACE[ t; ] 11 p'}

where p' = plz — EVAL[ ¢; ]| 1T p]
(vii) For the parallel statement:

ub—1
TIME [ forall i < ub do in parallel t(z) ] Il p=1+ Z SPACE[t{(:)] p

=0

Definition 2.14 (Processor Complexity) The number of processors needed for the evaluation
of an expression t under a program Il and an environment p is defined by the following equations:

(i) For a variable v:

PROC[v] Mp=1
(i1) For a constructor call, or operation call o(t,, ..., t;):

PROC [ c(t1,...,tx) ] T p=max{PROC[t; ] M p,...,PROC[ t; ] 1 p}
(iii) For function call g(ty,...,t):

PROC [ g(t1,...,ts) 1 T p=max{PROC[t,] W p,...,PROC[tx ] Tl p,PROC[ B] 1 ')

where
- fun g(zy : L1,...,2¢ : Iy) : O = B is a function definiton in 11, and

12



-p=plzy = EVAL[t; ] T p]---[zx — EVAL[ tx ] 1 p]
(iv) For a conditional statement:

PROC [ifcthentielsetz ] Il p=

max{PROC[[c] Il p, PROC[ 1] W p} if EVAL[c] I p = true
{ max{PROC[[c] I p, PROC[t2] Il p} if EVAL[[c] Il p = false

o0 otherwise

PROCIIS‘L:SQ]] r[p:
max{PROC [ t; ] T1 p, PROC[ ;] T p} [ EVAL[t, ] T p# L
{ and EVAL[t J Op# L

oo otherwise

(v) For the introduction of local variables:
PROC[letz=t1inty ]| Tl p = max{PROC[ t, ] Il p, PROC[ta ] I p'}

where p' = plz — EVAL[ t; ]| 11 p]
(vii) For the parallel statement:

ub—1
PROC [ foralli < ub do in parallel (i) ] 1 p= Y PROC[#(i)] M p

=0

Sometimes the size or the length of the evaluated expression is needed. This can be defined in
a similar way as above by defining function SIZE and LENGTH by similar equations. It is left
to the reader to do this exercise. In the following chapter we demonstrate how the complexity
analysis of parallel programs can be mechanized, yielding a correct result w.r.t. the definitions in
this chapter. It cannot be expected that this method is complete, because computing the time
complexity is in general a non-computable function (the halting problem would become decidable).
We demonstrate the method for the time complexity, but it should be clear that the method works
also for the other complexities of this chapter.

13



Chapter 3

Analysis of Algorithms based on the
Balanced Binary Technique

This chapter deals with the general analysis method. With this method it is in principle possible
to analyze programs designed by the balanced binary tree technique and by the divide-and-conquer
technique. In a functional parallel language these two techniques leads often to the same program.
This is no surprise, because the parallel execution of a divide-and-conquer program can be described
by a balanced binary tree. The only dilference between these two techniques is that the balanced
binary tree technique starts computation from the leafs propagating information just to the parent
nodes, while in the divide-and-conquer technique information control is also from the root to the
sons. Hence, the balanced-binary-tree method results in bottom-up computation, while the divide-
and-conquer method results in top-down computation. It is therefore obvious, that the same
complexity analysis technique can be applied to programs designed by both methods.

We consider here just the time complexity analysis (and if it is necessary also the output length
and output size of a function). The analysis is divided into 4 substeps. In fact these substeps are
the same as for sequential algorithms [Zim90b, Weg75]:

1. Derive a set of functions, which compute the time complexity of the original functions, i.e. if
f(z) is a function in a program II then time_f(z) is the function yielding for each argument
t the time needed for the evaluation of f(2).

2. Perform some normalization steps on the functions derived in step 1. These are transforming
the body of the functions time_f into a special form (no nested conditionals), eliminating
irrelevant argument positions.

3. Perform symbolic evaluation, i.e. try to find substitutions for the argument, such that con-
ditions in the body of a function time_fbecomes true and false, respectivly, and evaluate this
function with the above arguments.

4. Map types to naturals by the two mappings length and size. This step is exactly the same as
in the case of sequential algorithms. We describe it therefore just shortly. The result is now
a set of recurrences to be solved. This step requires sometimes the analysis of output length
or output size of certain functions.

14



5. Solve the recurrences.

It should be clear that the analysis of the other complexity measures differs only in the first step.
We describe in the first sections the particular substeps in the automatic analysis method. We
demonstrate the ability by the example finding the minimum of a list of elements. Later sections
are dealing with more complicated examples. Note that the pointer jumping technique is not
discussed in this chapter. We will discuss this in the next chapter.

Example 3.1 (List Minimum) The problem to be solved is stated as follows:

Input: A list | = [ag,...,@n—1] of natural numbers.
Output: A z €l such that z < a; for all i.

We assume that n is an integral power of 2 (otherwise exlend | by a suttable number of cos). The
balanced binary lree technique works as follows: Compare always for i < n/2 in parallel ay; and
a9i41. Proceed recursivly with the minimas obtained by these comparisons. At the end remains just
one element which is the minimum. The program is therefore:

type nat \* as usual including a binary min-operation *\
indexed type list(4) \* as in chapter 2 *\

fun 1list_min(l: list(nat)):nat =
if empty{cdr(l)) then car(l)
else
let 1’ = forall i < length(1)/2 do in parallel min(1[2#i],1[2%i+1])
in list_min(1?)"

end

3.1 Deriving the Time Functions

This section deals with the first step in the complexity analysis. It defines a transformation TE [ - |
on expressions and a transformation TF [ - ] such that the program I’ defined through IT and
the by TF transformed functions compute the time complexity of expressions, i.e. in terms of the
semantic functions in chapter 2:

EVAL[TE[t] ] ' p= TIME[t] N p

for all expressions ¢ and environments p. The transformations are given in figure 3.1. For other
complexities it is possible to define similar transformations. It is easy but tedious to prove the
correctness (i.c. the above formula) of this transformation by structural induction. If we apply the
time transformations to example 3.1 we obtain

15



(0) A program Il = (T, F) is transformed into II = (T, F U F') where

F' = {TF [ def ] |def € F}
(1) For function definitions

TF[fun f(z1:y,...,2n: 1n): O=B] = fun time_f(z1: I, ..., 5n : In) : nat = TE[ B |
(2) For constructor and operation calls:

TE[ e(tr,.-stn) ] = e+ TE[ ¢, 1 +--+TE[t:]
(3) For function calls:

TE[ f(t1,--»ta) ] =7Tean + TE[ #; | +--+TE[ 1, | + time_f(t1,...,ts)
(4) For conditionals:

TE[ifbthent: elset, ] =if bthenry + TE[6] + TE[ 4 ] elsery + TE[5] + TE[ & ]
TE[s1=s]=7r,+TE[s ] +TE[s;]

(5) For local variables:
TE[letz=tyint; ] =1, + TE[ ¢ ] +TE[ ¢t; ][t « 2]

(6) For parallel evaluation:

TE[ forall i < ub do in parallel (i) ] = ryor + TE[ ub ] + Mak(TE[ (i) ])
z =0

Figure 3.1: Time Transformations
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if by then
if b, then i, else i,
else i3
if bl A -‘52 then t],
else if b; A b, then £,
else t;

Figure 3.2: Elimination of Nested Conditionals

Example 3.2 (List Minimum, Time Function) We assume that each basic complexity has the
value 1. This results in counting (parallel) reductions for the evaluation.

fun time_list_min(l:list(nat)): nat =
if empty(cdr(l)) then 6
else 13 + max(0<=i<length(1)/2,11)
+ time_list_min(for all i < length(l)/2 do in parallel min(1[2#i],1[2*i+1]))

This simplifies to

fun time_list_min(l:list{(nat)) : nat =
if empty(cdr(l)) then 6
else 24 + time_list_min(for all ... do in parallel ...)

3.2 Normalisation

The normalisation step is an extension of the one described in [Zim90b]. This extension arises
from the parallel statement. If no parallel statement is used, it leads to the same result as in
[Zim90b]. It consists of the two transformations described in figure 3.2 and figure 3.4, and the new
transformation described in figure 3.3.

The elimination of conditionals as an argument of the maximum operation is not covered by the
transformation of figure 3.2.

The removal cannot be done by the above transformation, and a simplification is at this stage not
yet possible (even if there are some special cases where it is possible). Assume that there is a
maximum with a conditional argument:

}‘;?_5%]3; if b(i) then t;(i) else t5(i)

Then the time complexity of the overall statement is the maximum of the complexities £;(i) in
the then-part and the time complexities t5(7) in the else-part (remember that we consider time
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max®5 1 if b(7) then 1, (i) else t,()

max®5! f'(i,21,...,24)

fun f'(i,zq,...,2%) =
if b(¢) then ¢,(7) else to(1)

where z1, ...,z are free variables in b(7), t1(7), and t5(2), and
f"is a new function symbol.

Figure 3.3: Eliminating Conditionals in Parallel Statements

computing function here). This simplification is always possible for computing an upper bound,
but it cannot be done before the functions used in #;(z) and ¢3(7) have been analyzed. For the
average case the analysis is even more complicated. If the complexity of the conditional is not
constant, then there is one term £;(4) or t3(7) dominating for large input sizes. Then it is necessary
to compute the probability that b(i) becomes true and false, respectively, for all i.

But if a conditional argument in a maximum is left as it is, the preconditions of subsequent analysis
steps would not be satisfied anymore (symbolic evaluation). We therefore introduce a new function
definition for the body of such parallel constructs (figure 3.3)

In the example, no normalisation as described in figures 3.2 and 3.3 is necessary.

The final substep is the elimination of irrelevant argument positions. These are defined as in
[Zim90b):

Definition 3.3 (Irrelevant Argument Positions) Let f(zy,...,zk) be a function in a program
IL.

(a) The argument position f/i is called irrelevant, iff for all arqguments t1,...,tim1,tig1,---, Lk for
the formal parameters z,,...,%i_1,2i41,...,2 and arguments t,t' for the argument x; holds:

f(il‘:' . '1£f—1!t:tf+19" w“:) — f(‘tla‘ . ‘1“—113!1 t%'-f-].?' "!tk)
Otherwise, the arqument position f[i is called relevant,
(b) An argument position f/i occurs in a term t, if the formal parameter x; occurs in t.

If an argument position is irrelevant it can be removed safely from function definitions and function
calls. These transformations are described in figure 3.4 and are exactly the same as in [Zim90b].

It is a well-known result from computability theory that it is undecidable whether an argument
position is irrelevant or not. There is a closure algorithm [Zim90b] which determines relevant
positions. If an argument position is not marked as relevant, then it is an irrelevant argument
position, but not every argument position relevant as marked need necessarily be relevant. It could
be in fact irrelevant. The algorithm is described in figure 3.5. It holds:
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If f/¢is an irrelevant argument position, then:
1. elimination in function definitions:

fun 24, 0000 i1 86 Tigin s T) =B
fun f(mls"'!mi—laxl'+11"".r‘“q:k) = B

2. elimination in function applications:

Jligs oentions BisBipny soea Bh)
f(tl!'"!ti'—l:t!.ﬁ-l!"'?hb‘)

Figure 3.4: Elimination of Irrelevant Argument Positions

Input: A program Il = (T, F).
Qutput: A set of irrelevant argument positions
Algorithm:

1. [Initialisierung]: R :=0

2. [Closure]

Repeat

R := RU{f/i|f/ioccurs in a non-recursive expression}

U{f/i|f/i occurs in a condition}
U{f/i|f/i occurs in an argument on a position g/j € R}

until there is no change in R

3. [Output]

{I/ilfunf(xh'-'?ka =BeF1<i<k fCd R}

Figure 3.5: Finding Irrelevant Argument Positions
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Theorem 3.4 (Soundness of Algorithm 3.5) Each argument position found by the algorithm
in figure 3.9 is irrelevant.
Proof: [Zim90b)]

In our example, the argument position time_list.min/1 is relevant, because it occurs in the con-
dition empty(cdr(1)). Hence no transformation is applicable, and the program is not changed by
the normalisation step.

3.3 Symbolic Evaluation

In this step the time functions are transformed into a set of equations specifying the time complexity.
This transformation is based on symbolic substitutions for the formal parameter (yielding an LHS of
an equation), and symbolic evaluation of the body with this argument (yielding the corresponding
RIIS of the equation). The transformation is described in figure 3.6. This mainly the same as
the symbolic evaluation step as in [Weg75] or [Zim90b]. The substitutions must be complete, i.e.
together they must describe the whole type (assuming that variables can be substituted arbitrarly).
As shown in [Zim90b] the suitable substitutions can be found by a narrowing procedure described
in [Ech88]. If we perform this step in our example we would obtain ! = cons(a, nil) and | =
cons(a, cons(b,!)) and:

6
time_list_min(cons(a, cons(b,1))) = 24 + time_list_min(for all i < length(1)/2+ 1

time_list_min( cons(a, nil))

do in parallel
min(cons(a, cons(b,[))[2 ],
cons(a, cons(b,1))[2 i + 1]))

If the expressions cons(a, cons(b,!))[2 i] would be simplified, this would lead to a new case dis-
tinction (z =1 and ¢ > 1). On the other hand if we just use [ as the symbolic argument, it would
lead to a simpler form, and as we will see later, it is possible to proceed with this simpler form.
Hence, if we have a parallel statement in an argument, the symbolic argument will be just the

parameter used together with indices. In other words, we don’t consider the non-indexed structure
of an indexed type, if indices are used in an argument. We therefore obtain in our example:

Example 3.5 (Symbolic Evaluation)

timelist.min(cons(ea,nil)) = 6
timedist_min(!) = 24 + timelist_min(for all 7 < length(/)/2
do in parallel min(/[2 {],![2 ¢ + 1]))

If there remain conditional equations we write

RHS5, if cond;
LHS = ' '

RHS,I;_1 if COTIdk_1
RISy otherwise
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1. Transforming a function definition to a simple equation:

fon fizi 1 Ty ermyBaiTu): T= R
f(@1y...y2q) =B

2. Transforming equations by symbolic evaluation

f(t1, ey tn) = if b(zq,...,2;) then s, else s,

f(tior, ..., thar) = 5100
f(t102,.. ., taog) = 5209

where @) is a substitution, such that b(z1,...,zx)o1 = true and o, is a substitution,
such that b(zy,...,zr)oe = false, and (o1(21),-..,01(2,)), (g2(z1), ..., 02(2,)) define a
partition of T} X ++- x T,.

Figure 3.6: Symbolic Evaluation

instead of

LHS = 1if cond; then RH S,
else if cond; then RH S,
elseif ...
else if cond;_; then RH S;_;
else RH S

At the end of this step is always a set of (possibly conditional) equations describing the time
complexity of the program. :

3.4 Deriving Recurrences

By applying length or size onto the arguments of the equations, recurrences can be obtained (fig-
ure 3.7). This is always the case by applying size, but not always by applying length. However
there are necessary and sufficient criteria when length can be applied [Zim90b]. Another easy way
is just to apply length to an argument and see whether a recurrence is obtained or not. If a re-
currence is obtained by applying length, then the time complexity depends on the length of the
corresponding argument, otherwise it depends on the size. Compared to the sequential case just
two enhancements are necessary:

length(for all i < ub do in parallel {(Z)) = ub

ub—1
size(for all i < ub do in parallel t(i)) = Z size(1(7))
=0
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The following three transformations are applied in the corresponding order. Each of these
transformations is applied as long as possible.

1. Applying one M € {length, size} to argument position f/i on the LIIS of equations:

f(tl'}'"1ti—lati';£i+la"'a£n) = RIS
FC yoees Bt DI ) B i b

2. Applying this M € {length, size} to the same argument position f/i on subterms of the
RIS of equations:

f(tla' . 'stf—ljif$!f+11 . "rinj
f(tl':" wti—l}ﬂf{ti)rl"f—{-la . "1!'1-1)

3. Introducing new variables (over naturals):

RHS, if cond;
LHS = " ) .
| RHSk-1 if condp_
| RH S otherwise
RHS 1 o if cond,
LEHS 6= ¢ : :
RIHSi._1 o if condi_q
| RHS, 0 otherwise
where 0 = [n; — M(xz;)|z; is a variable]. & = 1 is possible, in this case the equation is
unconditional. :

Figure 3.7: Transformation to Recurrences
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Example 3.6 (Creating Recurrences) We apply the length mapping to the equation and with
the substitution [n = length(l)] get the recurrence:

time_list_min(l) = 6

time_list_min(n) = 24+ time_list_min(n/2)

which has the solution:

time_list_min(n) = 6 + 24 log, n

This a linear geometric recurrence with constant coefficients. Such kinds of recurrences are very
often obtained in the analysis of parallel algorithms. The reason is the division of the input data
and their assignment to processors. Let the input size be n. Then, by applying the divide-and-
conquer technique, the complexity of the program is computed from the complexity of the merge
step and the complexity of the p subproblems of size n/p. By applying the balanced binary tree
technique or the compression technique, the complexity depends mainly on solving a problem of
size n/2.

Sometimes it is necessary to analyze the output length or output size of certain functions. This
is the case il the second transformation creates terms M(f(¢1,...,%) where f is function in the
program to be analyzed. In this case the output M of f has to be analyzed. It is just necessary
to change the first step, in order to obtain M computing functions. All the other steps are the
same. We can therefore substitute M _f(iy,...,t,) for M(f(t1,...,2). It is sometimes possible
that such new analyses must be done in analyzing the output M of f. If already considered,
then it can be substituted as above. Otherwise, the entire analysis process has to be invoked again.
Nevertheless, the analysis terminates at this step, because M € {length, size}, and there are finitely
many functions in a program.

At this step, a complete system of recurrences is obtained. This recurrences could be conditional
recurrences (derived from conditional equations) or recurrence families. In [Zim90b] it is described
how to solve such a recurrence system, and how for conditional recurrences and recurrence families
lower and upper bounds on the solutions as well as the average solution can be determined. We
do investigate solution methods of recurrences in particular examples. The power of automatic
complexity analysis methods depend on the power of the recurrence solver used there. Tt makes
therefore sense to consider classes of recurrences, obtained by the analysis of program examples.

It should be clear, that the process of creating recurrences always terminates. The quality of
the recurrences depend on the symbolic evaluation step (how many conditions can be solved by
symbolic evaluation), but this does not affect the termination.
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3.5 Example: Prefix Sums

Many parallel algorithms are based on this example [KR88, GR88]. The automatic analysis of this
method proves therefore the usefulness of the method. The problem is stated as follows:

Input: A list [ap,...,a,—1] of naturals.

J
Qutput: A list [sg,...,8n—1] where s; = Zaf
i=0

This problem can be easily generalized to lists over arbitrary types T and associative operatores @

over T
Input: A list [ag,...,@,_1] OVer a type i
J
Output: A list [sg,...,8,—1] where s; = @a{
i=0

In this section, however, we consider just the list over naturals. It should be clear that the analysis
for the generalized prefix sums is the same as the analysis over naturals.

The parallel algorithm is based on the balanced binary tree technique. We assume that n is a power
of 2. Otherwise extend the list by a suitable number of zeros. First, the pairwise sums ay; + @41
are computed in parallel for all 0 < i < n/2. Second, the partial sums of [as; + a2i41|0 <7 < n/2]
are computed. Let the result of this step be [s;]0 < ¢ < n/2]. Observe that s; = ag + -+ + a2i41.
Hence, for odd j we have the partial sum already computed: it is 313/2]- For the even numbers, we
have just to subtract a;;; from s;/5. This adjustement is therefore the final step in the computation
of the prefix sums. It can be done in parallel for all 0 < 7 < n. The PARSTYFL-program looks as
follows:

indexed type list(A) \* compareh example 2.2 *\

fun partial_sums(l:1list(nat)):list(nat) =
if empty(cdr(l)) then car(l)
else let n = length(l) in
let 11 = for all j < n/2 do in parallel 1[2*j] + 1[2+j+1] in
let 12 = partial_sums(11) in
for all j < n do in parallel
if odd(j) then 12[(j-1)/2] else 12[j/2] - 1[j+1]

In the analysis of the time complexity, we assume that each basic complexity has the value 1.

Step 1: Derivation of the time functions.
Applying the translations of figure 3.1 yields after subsequent arithmetic simplifications:

fun time_partial_sums(l:list(nat)):nat =
if empty(cdr(l)) then 6
else time_partial_sums(for all j < length(1l)/2 do in parallel 1[2%j]+1[2*j+1])
+ max(0<=j<length(1l),if odd(j) then 10 else 14) + 32
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Step 2: Normalization

The transformations of figures 3.2 and 3.4 are not applicable (time_partial_sums/1 is according
to the algorithm in figure 3.5 a relevant argument position). The transformation in figure 3.3,
however, is applicable, because a conditional statement is an argument of a max-operation. Hence,
the following program is obtained: '

fun time_partial_sums(l:list(nat)):nat =
if empty(cdr(l)) then 6
else time_partial_sums(for all j < length(l)/2 do in parallel 1[2*j]+1[2*%j+1])
+ max(0<=j<length(l),f1(j}) + 32

fun £1(j:nat):nat = if odd(j) then 10 else 14

Step 3: Symbolic Evaluation.

In this step, two equations for time_partial_sums and £1 are created, respectivly. The first one,
considering the then parts are obtained by the substitutions [[ — cons(a, nil)] and [j — 2 j+ 1]. In
the second equation for time_partial sums the parameter / is left as it is, because the argument in
the recursive call is a parallel statement. The second equation for £1 is obtained by the substitution

[7:= 2 4]:

time_partial_sums(cons(a, nil)) = 6
time_partial_sums(l) = time_partial_sums(for all---do in parallel- . -)
+" AR A7) + 32

where length(l) > 1
A2i+1) = 10
h(27) = 14

Step 4: Mapping onto Naturals.

This is only necessary for time_partial_sums, because f; has as its argument already a natural. The
function time_partial_sums has as its argument in the recursive call a parallel statement. IHence, the
mapping length is chosen. By applying the transformations in figure 3.7, the following recurrence
is obtained:

time_partial_sums(l) = 6
time_partial_sums(n) = time_partial_sums(n/2)+ [?ﬁéc fi(g) +32
J=
wheren > 1
f1(2 i+ 1) = 10
h(zj) = 14

Step 5: Solving the Recurrence.

In a first step, the maximum term has to be evaluated. In this example, the evaluation is easy,
although in general the evaluation of maximums within recurrences could arise serious problems.
We know here that each natural is either odd or even. Therefore the max;-‘;[} f1(F) evaluates to 14.
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More precisely, it has to be proven that the proposition Y0 < k < n Vj : k # 2 j is not satisfiable.
The contradiction is obtained by the special value j = 0. In general we make use of theorem
proving at this step. We will see in further examples what to do if such a kind of propositions can
be satisfied. We get after these considerations the recurrence:

time_partial_sums(1) = 6
time_partial_sums(n) = 46 + time_partial_sums(n/2)

wheren > 1

which has the solution (obtained by standard techniques for geometric recurrences):
time_partial_sums(n) = 6 + 46 log, n

In fact, this is the time complexity we expected (and compatible to the well-known O(log n) results
in algorithm books [GR88, KR88]).

3.6 Polynomial Evaluation

This is an example of an algorithm designed according to the divide-and-conquer technique. While
in the balanced-binary-tree technique the computation tree is processed from the bottom to the
top, in the divide-and-conquer technique it is processed from top to the bottom. It is therefore no
surprise that nearly the same analysis technique can be applied to the divide-and-conquer technique.
As we will see in this section, only the normalisation step need to be enhanced by a transformation.
The problem of polynomial evaluation is stated as follows:

Input: A polynom p(z) = ag ¢?+ - +a; ¢ + ap and a value zg
QOutput:  The value p(zq)

The algorithm is based on the fact that the polynomial can be evaluated by p(z) = r(z) +
z(d+1)/2 4(z), where r(z) and ¢(z) are polynomials of degree (d + 1)/2 — 1. We assume with-
out loss of generality, that d = 2F — 1 for some natural k (otherwise enhance the polynomial by
the suitable number of zero coefficients). The values r(z¢) and ¢(zo) are computed recursively (in
parallel). The computation of p(z¢) can be done in constant time, because the .'L:E;H'IV2 can be
computed from the previous powers of zg just by squaring. In figure 3.8 a computation tree is
shown, making the computations clear. The polynomial is represented by the list of its coefficients:
[ag,...,aq). For computing the intermediate powers of ¢ and the polynomial evaluation of lower
degree, it is necessary to introduce a function poly1 performing both computations at the same
node. The output of this function is a pair of values. The first component is the value of a poly-
nomial of degree d, evaluated at zq, the second component is the value zd. Thus the algorithm is
performed by the following program:
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(28,20 + a1 2o + az 2F + a3 2]k a4 2§ + a5 2] + as 2§ + a7 7)

(23,0 + a1 o + a3 23+ a3 z3) (2§, a4 + as Zo £ as % + ar z3)
(zd,a0 + @1 o) (23,00 + a3 zo) (23,04 + a5 20) (23,06 a7 To)
(z0,a0) (z0,a1) (%o,a2) (zo,e3) (zo,a4) (To,as) (zo,as) (To,a7)

Figure 3.8: Computation Tree for Polynomial Evaluation

indexed type list(A)

indexed type pair(A,B)
sorts A,B
constructors
(.,.): A xB -> pair(4,B)
operatiocns
first: pair(A,B) -> 4;
sec: pair(4,B) -> B;
variables a:A, b:B
equations
first((a,b)) = a;
second((a,b)) = Db
indexing
length: pair(A,B) -> nat;
length((a,b)) = 2;
((a,b)) [0]
((a,b))[1]

aj;
b

fun poly(p:list(nat),x:nat):nat

\* see example 2.2 %\

first(polyl(p,x))

fun polyi(p:list(nat),x:nat):pair(nat,nat) =

if empty(cdr{(p)) then (car(p),x)

alse let 1 = split{(p) in

let y = for all i<2 do in parallel poly1(l[i]l,x) in
(first(y[0])+second(y[1])*first(y[1]),second(y[1])*second(y[1]))
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fun split(p:list(nat)):pair(list(nat),list(nat)) =
for all i<2 do in parallel
for all j < length(p)/2 do in parallel p[j+ixlength(p)/2]

1st Step: Tranlation to Time Functions
The transformation of figure 3.1 compiles the above program into:

fun time_poly(p:list(nat),x:nat):nat = 4 + time_polyl(p,x)

fun time_polyi(p:list(nat),x:nat):nat =
if empty(cdr(p)) then 8
else 41 + max(0<=i<2,time_polyli(split(p)[i],x) + time_split(p) ~

fun time_split(p:list(nat)):nat = 20

2nd Step: Normalisation

There are no nested conditionals in the program. Hence the transformation of figure 3.2 is not
applicable. It turns out — by the algorithm of figure 3.5 - that time_split/1, time_poly1/2, and
time_poly/2 are irrelevant argument positions. Thus their elimination by the transformations in
figure 3.4 yields:

fun time_poly(p:list(nat)):nat = 4 + time_polyli(p)

fun time_polyl(p:list(nat)):nat =
if empty(cdr(p)) then 8
else 41 + max(0<=i<2,time_polyl(split(p)[i]) + time_split() -

fun time_split():nat = 20

No conditional statement is an argument of the maximum operation. Therefore the transformation
of figure 3.3 is not applicable.

In the fourth step, a suitable mapping M : list(N) — N for time_polyi/1 has to be found.
For this purpose the term split(p)[i] is not useful in this form, because M(split(p) [i]) has
to be evaluated, and there is no definition for this evaluation. In fact, a function computing
M(split(p) [i]) must be obtained in that step. This becomes easier if split(p) [i] is folded to a
function access_split(i,p), because then the same techniques as for M(f (x)) where £ is a function
can be applied. The function access_split(i,p) is obtained from split(p) by performing (-)[¢]
on each possible output. The whole transformation is described in figure 3.9. Because from a
logical point of view, this transformation fits better into normalisation than into mapping onto
naturals, it is performed here.
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Let fun f(z; : I1,...,
o: Ty x -+ x0OX--

z, : I,) : O = B be a function definition in II (and therfore in II'), and
- X T — T a type operation (not a constructor!). Then the following

transformation is performed:

O(zla-"af(sla--

.,Sn),...,th

O-f{ylu'--‘rymssls"'ssn)

where y1,...,¥n are variables of type Sy, ..., m, respectivly, and used in the terms tq1,..., .
The following function is added to II’:

fun o_f(y; : Sy,.-

ol b B R Bomeni®ie s LY 82 035y I8 wany i)

where the following simplifications are applied to evaluate the body of the new function:

s, S PR

,if b then u; else u,,..., ;)

if b then o(ty, .

o(tyy ...y flug,..

vy Ulye. oyt ) elseo(ty, ..oy, ..., Tk)

.,uﬂ],...,ik]

O—f(ylv"'ﬁymvula"wun)

O(t]_, ai

Llet z = uy inug, ..., k)

let z = o(ty,...

,1!.1,...1};) inz = O(th...,'ﬂ.g,...tk)

for all i < ub do in parallel (i))[7]

t(4)

Figure 3.9: Elimination of Operation Calls
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The elimination of operation calls yields:

fun time_poly(p:list(nat)):nat = 4 + time_polyi(p)

fun time_polyi(p:list(nat)):nat =
if empty(cdr(p)) then 8
else 41 + max(0<=i<2,time_polyi(acces_split(i,p)) + time_split()

fun time_split():nat = 20

fun access_split(i:nat,p:list(nat)):list(nat) =
for all j < length(p)/2 do in parallel p[j+i*length(p)/2]

3rd Step: Symbolic Evaluation
The only time function where symbolic evaluation has to be performed is time_polyl (with p —
cons(a, nil) and p — cons(b, cons(a,p))). Then the [ollowing equations are obtained:

time _poly(p) 4 + time_poly!(p)
time_polyl(cons(a,nil) = 8
time_polyl(cons(b, cons(a,p))) = 41+ time_split +
+ mlax time_poly I (access_split(i, cons(b, cons(a,p))))

i=

time_split = 20

4th Step: Mapping onto Naturals

The mapping length is chosen for time_poly1 /1, because the body of access_split can be evaluated
under length (i.e. it depends on the length of its second parameter). The choice of length for
time_poly1/1 implies the choice of length for time_poly/l. Hence, the following equations are
obtained (n = length(p)):

time_poly(n) 4 + time_polyl(n)
8

41 + time_split +

time_poly1(1)

I

time_polyl(n + 2)

+ mlad\c time_poly1(length(access_split(1, cons(b, cons(a,p)))))
=

time_split = 20
Thus the length of access_split(i, p) has to be analyzed:

Step 4.1: Translation into length Functions
By the application of a similar transformation as in figure 3.1 on access_split yields:

fun length_access_split(i:nat,p:list(nat)):nat = length(p)/2

30



Step 4.2: Normalization

The algorithm in figure 3.5 detects length_access_split/1 as irrelevant. Other transformations
are not applicable:

fun length_access_split(p:list(nat)):nat = length(p)/2

Step 4.3: Symbolic Evaluation
There is no condition in the body of length_access_split. Ilence the following equation is ob-
tained:

length_access_split(p) = length(p)/2

Step 4.4: Mapping onto Naturals
It is obvious to choose length for length_access_split /1, because the RHS already contains length(p).
Thus, the following equation is obtained (n = length(p)):

length_access_split(n) = n /2

Using this result, we get the following recurrence system:
time_poly(n) = 4+ time_polyl(n)
time_poly1(1) = 8
time_polyl(n+2) = 41+ time_split + IE’I._laﬁY time_poly1(length_access_split(n + 2))
time_split = 20 B
length_access_split(n) = n/2

5th Step: Solving the Recurrence System
First the third equation is simplified to:

time_polyl(n) = 41 + time_split + time_polyl(length_access_split(n))
wheren > 2

Second, the non-recursive equations are unfolded and eliminated:
time_poly(n) = 44 time_polyl(n)
time_polyl(1) = 8
time_polyl(n) = 61+ time_polyl(n/2)

This recurrence can be solved by standard solution method for linear geometric recurrences with
constant coeflicients:

I

time_poly1(n) 8+ 61 log, n

time_poly(n) 12 + 61 log, n
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Chapter 4

Algorithms based on Pointer
Jumping

The pointer jumping technique is a often used design principle for parallel algorithms. Especially
for algorithms in asynchronous machine models [CZ90], it is necessary to use this technique.

4.1 Introduction to Pointer Jumping

Because arrays (indexed types) are used, pointers are introduced explicitly (they are also implicitly
present in non-indexed types, but we need not to care about them, because of the term repre-
sentation). Assume there is an object  of an indexed type T. Then an indexed list p of length
length(l) can be used to introduce additional pointers in [, i.e. if p[¢] = j then a pointer from (]
to {[j] is introduced. We therefore call such arrays pointer arrays. The range of the array must
be {0,...,length(l)}. If graphs based on p are constructed ((7,7) is an edge iff p[i] = j) then each
node of this graph will have outdegree 1. Linear lists can be represented by letting point the last
element to itself. The main operation of pointer jumping is :

fun double(p : List(nat)) : List(nat) =
for all ¢ < length(p) do in parallel

(if pli] # plp[i]] then p[p(i]] else p[i]

If EREW-PRAMs are used to compute this operation, then the indegree of nodes 7, where p[i] #
p[p[i]] is at most 1, otherwise read conflicts can occur. The graph defined by p consists therefore
only of components forming a single loop or linear lists pointing to a fixpoint (i.e. i = p[i]). Tt
is possible that more than one list points to a fixpoint. The technique is called pointer jumping,
because if the end of a list is not yet reached, then it jumps to the position following the successor
of i. In figure 4.1 the effect of successive applications of double on a list is shown.

After three operations each element has as its successor the last element. The pointer jumping
technique is based on the fact that log length(p) repeated calls create this situation. Unfortunately
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Figure 4.1: Pointer Jumping on Lists
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Figure 4.2: Pointer Jumping on Odd Circles

this is not always the case, consider for example figure 4.2. In general, a circle containing an odd
number of nodes jumps into a circle containing an odd number of nodes. On the other hand the
pointer jumping technique works well for circles with 2¥ nodes (see in figure 4.3 for a circle with
four nodes).

Situations like odd cycles must be excluded from pointer jumping. If pointer jumping is applied
to a proper pointer array p and the application program uses the condition p[i] # p[p[é]], then it
must be examined how long it must be iterated until for all i holds p[i] = p[p[i]]. In programs
based on pointer jumping such situations usually never occur, because unnecessary applications of
double would be done. In an automatic complexity analysis system, however, we have to take into
account this possibility. It is therefore necessary to compute the number of necessary applications
of double. If applied to a proper pointer array p, after k = log length(p) calls of double it always
holds p[i] = p[p[i]] for all i. On the other hand, if pointer jumping is applied to an improper pointer
array p, there is always a j7 where p[j] # plp[f]]- Unfortunately, in the proper case, it could hold
pli] = p[p[d]] for all ¢ even earlier, see for example figure 4.4. In general only logk iterations are
needed to reach the final situation, where & is the length of the longest chain (or longest circle) in
p.
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Figure 4.5: The Final Situation in Pointer Jumping

The outline of this chapter is as follows: First, a necessary and sufficient condition on the pointer
array p is defined, such that pointer jumping can be applied properly and this condition is main-
tained by double(p). It is therefore just necessary to check this condition on the initial pointer
array. In the second section, it is shown how the information derived by the first section can be
used to analyze the complexity of algorithms based on pointer jumping. In the third section, we
show the analysis of an algorithm, where pointer jumping is not based on the condition p[i] # p[p[¢]]
and there is in fact one case where no jumps are made.

4.2 Proper Pointer Jumping

Recalling the remarks in the introduction of this chapter, proper pointer jumping is based on the
fact that the pointer array p defines a set of lists and circles of length 2% for naturals k. These
lists can have the same final element, but other elements are not shared. If these elements would
be shared, then concurrent reads would be necessary for performing double(p). Thus, it is easy
to generalize this section for CREW-PRAMs or CRCW-PRAMs. The results are very similar to
the results in this section. After each application of double, the length of the lists and circles are
halved, their number is doubled. The end of a list is given by an index satisfying i = p[¢]. These
indices are called fizpoints. The pointer jumping is ready, if for all 7 holds p[t] = p[p[i]], i.e. each i
is either a fixpoint or points to a fixpoint. The final situation is shown in figure 4.5.

The goal is now to find a condition C'(p) ensuring on the one hand that double(p) halves the length
of each list and cycle, and on the other hand ensures that C(double(p)) holds. Then it is easy to
see that [log, max(f, m)] (I is the maximal length of a list, and m the maximal length of cycle)
iterations on a initial pointer array p are needed for reaching the final situation. This property and
the above notions are now defined formally. The required properties will be proven.
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Definition 4.1 (Final Situation) A pointer array p is in the final situation iff for all 0 < i <
length(p):

(1) i = pli], or
(i) pli] = plpli]]

The i in condition (i) is called a fixpoint, and denotes the end of a list.

Corollary 4.2 (Pointer Jumping on the Final Situation) A pointer array p is in the final
situation iff p = double(p).
Proof: Follows directly from definition 4.1 and the definition of dowuble. .

A slight generalization is the following lemma:

Lemma 4.3 (Pointer Jumping on Predecessors of Fixpoints) Letp be a pointer array, and
0 £t < length(p).

(a) If p[i] = plp[i]] then for p’ = double(p) holds alse p'[i] = p'[p'[i]].

(b) Ifi is a fizpoint in p, then i is also fizpoint in double(p).

Proof: Follows directly from the definition of double. (]

As already discussed pointer arrays define functional graphs:

Definition 4.4 (Graph of a Pointer Array) The graph of a pointer array p is @ direct graph
G(p) = (V, E) defined by:

= {0,...,length(p)}

14
E = {(&pli) [ i€V}

Corollary 4.5 The graph G(p) if a pointer array p is functional, i.e.

(i) If (i,7) € E and (i,k) € E then j = k, and

(11) For each i € V thereis a j € V, such that (i,j)€ E

The following definition characterizes the required properties for pointer jumping on EREW-
PRAMs:

36



Definition 4.6 (Condition on Proper Pointer Jumping) A pointer array p satisfies the con-
dition on proper pointer jumping iff each connected component of G(p) satisfies the following prop-
erties: '

(i) It is a cycle of length 2% for a natural k, or

(ii) it contains a cycle of length 1, and for all i, j holds:

i # j Apli] = plj] = pli] = plple]] (%)

Remark 4.7 (Pointer Jumping with Concurrent Reads) The condition (*) is needed because
concurrent reads have to be avoided. If concurrent reads are allowed, then this condition is not nec-
essary. It is also allowed that arbitrary non-cyclic graphs are connected with cycles of length 2%, if
the graph is still functional. However, other cycles are not allowed, because the behaviour for odd
cycles (figure 4.2) doesn’t change. Ience, if concurrent reads are allowed the requirements on the
graph are:

(i) It contains a cycle, and

(ii) each cycle has the length 2% for a natural k

The following lemma shows the behaviour of pointer jumping on circles:
Lemma 4.8 (Pointer Jumping on Circles) Let p be a pointer array.

(a) If G(p) contains a cycle ¢ = (ig,11,...,22m-1) of length 2m, then G(double(p)) contains two
cycles ¢; = (ig,19,. .., lom—2) and ¢3 = (11,23,...,i2m_1), both of length m.

(b) If G(p) contains a cycle ¢ = (ig,i1,...,172m) of length 2 m + 1, then G(double(p)) contains
the cycle ¢ = (19,12, ..., 02m, 11513, - - -, l2m—1) @lso of length 2 m + 1.

Proof: Let p be a pointer array.

(a) Follows directly from the definition of double and the fact that always p[i;] # p[p[¢;]] for all
fj € c.

(b) If m = 0 the claim follows from lemma 4.3, otherwise for all 7; € ¢ holds p[i;] # p[p[i;]] and
then the claim follows directly from the definition of double. [ |

The next lemma states the behaviour of pointer jumping on lists. This lemma holds for EREW-
PRAMs. For PRAMs allowing concurrent reads, a more general lemma is possible.
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Lemma 4.9 (Pointer Jumping on Lists) Let p be a pointer array satisfying the condition on
proper pointer jumping. Let' m = (i = io,...,i|z-1 = j) be a path in G(p) from a vertez i to a
fizpoint j. Then G(double(p)) contains the following two paths my and my:

(i) If |r| =2 m then

1 = (foy2y.++s2m=2,])
m - (il$i3a"'1i’2m—1 :J)
Thus, |m1| = m+ 1 and |73| = m.
(ii) If [r| =2 m+ 1 then
m = (iﬂai'Zv"'ai?m:j)
m = (ilsiSs"'si'Zm—l?j)

Thus, |m| = m+ 1 and |7 = m + 1.

The lemma is visualized in figure 4.6.

Proof: The claim follows directly from the definition of double and the observation that for all
j <|m| =1 holds p[i;] # p[p[E;]], and plijz-1] = p[plEjr|-1]]- u

Corollary 4.10 If p is a pointer array satisfying the condition on proper pointer jumping, then
each path = in G(p) containing no vertez in a cycle is divided into two paths w; and 7, in
G(double(p)) which contain no verter in cycles and satisfy |r1| = [|x|/2] and |72| = ||7|/2].

Proof: Delete in lemma 4.9 the last vertex in the paths. [ ]

Remark 4.11 (Concurrent Reads) If concurrent reads are allowed, then it is possible to have
circles of length > 1 at the end of lists. Thus two further cases occur:

(itr) If |7| = 2 m and p[j] # j then:
1 = (loy22y+ .-y t2m—2, P[J])
T - (ilai?}}"'ai'Zm—l:j)
(tv) If |7 =2 m+ 1 and p[j] # j then
T = (l0,22,-.-yt2m =7)
T o= (i11£31"°1£2m—17p[j])

The proof of lemma 4.9 makes no use of the fact that = is a part of list. Thus the lemma
holds also if concurrent reads are allowed.

!|r| denotes the length of a path =
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Figure 4.6: The Cases of Lemma 4.9
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Now the tools are provided to prove the requirements for proper pointer jumping:

Lemma 4.12 (Maintainance of the Condition on Proper Pointer Jumping) Ifp salisfies
the condition on proper pointer jumping then double(p) does.

Proof: Consider a connected component of G(p). If 7 is not weakly connected to j in G(p) then it
isn’t in G(double(p)). Thus it is according to definition 4.6 sufficient to prove:

(i) Assuming G(double(p)) contains a cycle ¢ not of length 2% for a natural k. Then, if the length
of the cycle is odd by lemma 4.8, G(p) contains either a cycle of the same length, or a cycle
of the double length than that in G(double(p)). Both cases are not possible, because in none
of them, the cycle has the length 2% for £ > 0. This is not possible because p satisfies the
condition on proper pointer jumping.

If the length of the cycle is even, then by lemma 4.8 G(p) contains a cycle of the double
length. This is also not possible, because this cycle has not a length which is a natural power
of 2 and p satisfies the condition on proper pointer jumping.

Thus, the only possible cycles in G(double(p)) have length 2% for a natural &.

(ii) Assuming in p’ = double(p) are indices ¢ # j where p'[i] = p[j]. Thus, p[pi]] = plplj]]. I
pli] = p[j] then p[i] must be a fixpoint and hence p’[i] is a fixpoint by lemma 4.3.

If p[i] # p[7] then p[p[i]] must be a fixpoint, because p satisfies the condition on proper poinfer
jumping. Thus p[¢] is also a fixpoint. Therefore (*) holds. ]

Remark 4.13 (Concurrent Reads) Lemma 4.12 holds also if concurrent reads are allowed. The
proof is the nearly the same, showing that no cycles which are not of length 2% can be introduced,
and that G(double(p)) contains at least one cycle (because the graph is always funetional).

Now we are able to prove the termination property:

Theorem 4.14 (Termination of Pointer Jumping) Let p be a pointer array satisfying the
condition on proper pointer jumping. Let m the length of the longest path in G(p) containing no
cycle vertices, and | be the length of the longest cycle in G(p). Then after n = max([log, m],log, {)
iterations of double, the resulting pointer array is in the final situation, and with less iterations it
isn’t. In other words double™(p) is in the final situation and for n > 1 double™ '(p) is not in the
final situation.

Proof: by induction on n.
Base Cask: n = 1. Then, by the definition of n, m < 2 and [ < 2 and at least one of these
inequalities is also an equality. Thus p = double®(p) is not in the final situation.

By lemma 4.8 each cycle of length 2 is divided into two cycles of length 1. Thus every cycle in
G(double(p)) has length 1. By lemma 4.9 each path of length 2 containing no cycle vertex is divided
by double into two paths of length 1. Thus, G(double(p)) contains only paths of length 1 containing
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no cycle vertex. This means that double(p) is in the final situation.

INpDUCTION STEP: = > 1. Let p’ = double(p), ! the length of the longest cycle in G(p), m the length
of the longest path in G(p) containing no cycle vertices and n = max([log, m],log,{). Then, by
lemma 4.8, the length of the longest cycle in G(p') is {/2,if [ > 1. If m > 1, then the length of
the longest path in G(p’) containing no cycles is [m/2]. By the definition of n, at least one of the
values [ and m is greater than 1. Thus:

max (’rlog2 [%H , log, %) = max([log, m] — 1,log, [ - 1) =n -1

By the induction hypothesis, double™ ! (p') = double™(p) is in the final situation, and
double™ ?*(p') = double™ ! (p) is not in the final situation. . e

The next theorem tells the behaviour of pointer jumping if the pointer array does not satisfy the
condition on proper pointer jumping;:

Theorem 4.15 (Improper Pointer Jumping) If a pointer array does not satisfy the condition
on proper pointer jumping then either read conflicts occur, or for alln > 0 double™(p) is not in the
final situation.

Proof: Assuming no read conflict occurs. Then the pointer array p does not satisfy the condition
on proper pointer jumping iff G(p) contains a cycle not of length 2%, i.e. it contains a cycle ¢ of
length (2 m + 3) 2% for m, k > 0. First we show by induction on k, that G(double*(p)) contains a
cycle of length 2 m + 3. Second we show, that if G(double*(p)) contains a cycle of length 2 m + 3
then G(double**™(p)) contains a cycle of length 2 m + 3 for all n > 0. This completes the proof,
because by the corollary to definition 4.1 double!(p) cannot be in the final situation for { < k
(otherwise double*(p) would be in the final situation), and for [ > k it is not in the final situation
because of the above stated properties.

(i) G(double*(p)) contains a cycle of length 2 m + 3.
Base CAsEe: k = 0: trivial
INDUCTIVE CASE: k > 0: By lemma 4.8 G(double(p)) contains a cycle of length (2 m+3) 251,
Thus, by induction hypothesis G(double*~'(double(p))) = G(double*(p)) contains a cycle of
length 2 m + 3.

(ii) Let p' = double*(p). The graph G(double™(p')) always contains a cycle of length 2 m + 3.
Base Case: n = 0: proven in (i)
INpUCTIVE CASE: n > 0: Let G(double™ 1 (p')) containing a cycle of length 2 m+3 (induction
hypothesis). Then by lemma 4.8 G(double(double™ (p'))) = G(double™(p')) contains a cycle
of length 2 m + 3. u

Remark 4.16 (Improper Pointer Jumping with Concurrent Reads) If concurrent reads
are allowed then theorem .15 is easily modified: if a poinier array does not satisfy the condi-
tion on proper pointer jumping, then there is no iteration of double reaching the final situation.
The proof is as the proof of theorem 4.15, just removing the assumpion of no read conflicts.
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for all j < n do in parallel

if 7] # qlqls]] then g[g[j]] else ¢[j]
double(q)

Figure 4.7: Introducing the double operation

The tools provided in this section allow to analyze the complexity of parallel algorithms automat-
ically.

4.3 Analysis of Pointer Jumping Algorithms

In this section it is shown how the previous results can be applied to the automatic complexity
analysis of algorithms based on the pointer jumping technique. This analysis method enhances the
analysis of balanced binary trees, because it makes use of the fact that the program to be analyzed
uses pointer jumping. The information is only used in the solution of the recurrences, thus the
construction of the recurrences is the same as described in the previous chapter. However, first it
is necessary to extract from the program the fact that it is based on pointer jumping. This is done
by the application of the transformation of figure 4.7, which is performed after the translation to
the time computing functions. The operation double is the same as defined in the previous section.
If this transformation is applied at least once it is assumed that the program is based on pointer
jumping. Then the initial pointer array must be examined whether it satisfies the condition of
proper pointer jumping, and the number of iterations of double in order to reach the final situation
has to be determined (i.e. theorem 4.14 is used). The initial pointer array is explicitly constructed
by a program, or the necessary information is given as a comment in the corresponding procedure.
The default is that the pointer array describes a linear list, where the last element points to itself.
In order to determine whether the condition on proper pointer jumping is satisfied, a theorem
prover is called. If it is satisfied, then the number n as described in theorem 4.14 is determined
by proving the precondition of this theorem. The corresponding substitution yields the desired
number, if it is not already specified explictly. The extension to the pointer jumping method is
discussed by finding the minimum element of a list. It is also an interesting example, because we
can compare it with the time complexity of the same problem solved by the balanced binary tree
technique (cp. Example 3.1).
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Example 4.17 (List Minimum based on Pointer Jumping) The program based on poinier
Jjumping is:

type nat \* as usual including the binary min-operation *\
indexed type list(A) \* as in chapter 2 *\

fun list_min(l:list(nat),p:list(nat)):nat = /xp is the pointer array */
let 1’ = repeat(l,p,length(l)) in 1’[1]

fun repeat(l:list(nat),p:list(nat),n:nat):list(nat) =
if n=1 then 1
else let 1’ = for all i < length(p) do in parallel
if not p[il=p[p[il] then min(1[i],1[p[ill)
else 1[i]
in repeat(l’,double(p),n/2)

fun double(p:list(nat)):list(nat) =
for all i < length(p) do in parallel
if not p[il=p[pl[il] then p[plil] else pl[il

Hence, the default is assumed, i.e. the final situation is reached after log, n iterations (where n =

length(l) = length(p)).

1st Step: Derivation of the time functions.

fun time_list_min(l:list(nat),p:list(nat):nat = 13 + time_repeat(l,p,length(l))

fun time_repeat(l:list(nat),p:list(nat),n:nat) =
if n=1 then 6
else 19 + max(0<=i<length(p),if not p[il=p[p[il] then 19 else 13) +
+ time_double(p) + time_repeat(for all ...,double(p),n/2)

fun time_double(p:list(nat)):nat =
4 + max(0<=i<length(p),if not p[il=p[p[il] then 15 else 13)

Step 2: Normalization

The transformation of figure 3.2 is not applicable. The application of the transformation of fig-
ure 3.3 on the conditionals as arqument of the max-operations in the body of time_repeat and
time_double yields:

fun time_list_min(l:list(nat),p:list(nat):nat = 13 + time_repeat(l,p,length(l))
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fun time_repeat(l:list(nat),p:list(nat),n:nat) =
if n=1 then 6
else 19 + max(0<=i<length(p),time_repeat’(i,p)) + time_double(p)
+ time_repeat(for all ...,double(p),n/2)

fun time_repeat’(i:nat,p:list(nat)) = if not p[il=p[p[il] then 19 else 13

fun time_double(p:list(nat)):nat =
4 + max(0<=i<length(p),time_double’(i,p))

fun time_double’ (i:nat,p:list(nat)):nat = if not p[il=p[p[i]l] then 15 else 13

The algorithm for finding the irrelevant argument positions (figure 3.5) finds that no argument posi-
tion is irrelevant, thus the transformation removing irrelevant argument posilions is not applicable,
and the result of the normalisation step is the above program.

3rd Step: Symbolic Evaluation

The only symbolic evaluation is for the third argument in the function time_repeat, because this
is the only argument occuring in a condition which can be solved. Thus the following equations are
obtained:

time_list_min(l, p) 13 + time_repeat(l, p, lenght(p))

time_repeat(l,p,1) = 6

length(p)—
194 grtnz%}) : time_repeat' (i, p) + time_repeat(for all - . -, double(p), n/2)

time_repeat(l, p,n)

+time_double(p)where n > 1

time_repeat'(i, p)

{ 19 if pld] # plp[i]]

13 otherwise

hip)—
time_double(p) = 4+ Img{{lé{? 1 time_double’(i, p)
1=

{ 16 if p[z] # plp[i]]

; -
time.doyble’(y, ) 13 otherwise

4th Step: Mapping onto Naturals
With the exception of the parameters on positions time_double'[2, time_repeal’[2, and the ones
which are of type nat, the mapping length is chosen. Thus the following equations are obtained

(k = length(l), m = length(p)):

time_list_min(k,m) = 13+ time_repeat(k,m,k)

time_repeat(k,m,1) = 6

time_repeat(k,m,n) = 194 1?15071( time_repeat'(i,p) + time_repeat(k, lenght(double(p)),n/2)
=

+time_double(m) where n > 1



time_repeat'(i, p) 13 otherwise

{ 19 if p[i] # plplil]

time_double(m) = 4+ max time_double'(, p)

=l

time_double’(i,p) = { 16 1f p[s] # plp(é])

13 otherwise

Now the output length of double has to be analyzed yielding:
length_double(m) = m

This equation completes the recurrence system.

5th Step: Solving the Recurrence System.
Until now, the information that the program ts based on pointer jumping is not used. This informa-
tion in fact is just needed in this step. Consider for ezample the equation defining time_double'(i, p).
In general the following analysis would be obtained:

Best Cause: time_double'(i,p) = 13

Worst Case:  time_double'(i,p) = 16

Average Case: time_double'(i,p) = 13 4+ 3 Prob[p[i] # p[p[i]]]

Using this information in time.double yields:
Best Case: time_double(m) = 17
Worst Case:  time_double(m) = 20
Average Case: time.double(m) = 27 + 3 Prob[Vi: 0 < i < m : p[i] # p[p[?]]]

But this is not the truth, the time complezity of the program behaves deterministically for each input
of lenght n. If A calls of double are used to reach the final situation, then in the first X calls there is
always a j such that p[f] # p[plf]]. Thus in this case it is always time_double(m) = 20. After these
A calls, on the other hand, for all i holds p[i] = p[p[i]]. For time_repeat hold similar considerations
(maxiy! time_repeat'(i,p) = 20 if less then ) calls of double are performed, otherwise it is 13).
Using these results yields the following recurrence, which includes also the number of calls of the
operation double:

lime_repeat(k,m,1,A) = 6
time_repeat(k,m,n,0) = 44+ time_repeat(k,m,n/2,0)

time_repeat(k, m,n, A) 54 + time_repeat(k,m,n/2,\A — 1)

In this recurrence the parameters k and m are irrelevant according to a similar algorithm as in fig-
ure 3.5. Thus the solution does not conlain these parameters. This recurrence is in fact constructed
by two rccurrences. The first can be solved directly, if A is set to 0:

6
time_repeat(n,0) = 444 time_repeat(n/2,0)

time_repeat(1,0)

This is a recurrence in n which can be solved by standard methods:

time_repeat(n,0) = 6 + 44 log, n
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This is now the base case for the second recurrence. The inductive case is:
time_repeat(n, A) = 54 + time_repeat(nf2,A — 1)

Now, we have a recurrence on two paramelers, one behaves like a geometric recurrence, the other
like an ordinary recurrence. The only thing that can be done is to look what n would be if A = 0.
If 0 recursions are done then the value of n is not changed, and for each recursion the value of n
is halved, thus the desired value is a solution of the recurrence:

a(0) = n
a(A) = 1/2-a(A-1)
which has the solution a()\) = n/2). This solution method can be applied to any linear function

of n in the recursion. Now the value of a()) is substituted in the base case of the recurrence for
time_repeat, and the parameter n can then be removed. This transformation yields the recurrence

Il

time_repeat(0) 6+ 44 logon —44 A

time_repeat(A) = 54 + time_repeat(A — 1)

which has the solution:

time_repeat(n,A\) = 6 + 44 log,n + 10 A

It is now time to make use of the information we got from the fact that the program is based on
potnter jumping. The specific value of ) is subsituted for A\ in the above formula. In this ezample,
it is assumed that the pointer array defines a linear list of length n, therefore by theorem j.14, the
value A = log, n is obtlained. Finally:

time_repeat(n) = 6 4+ 54 log, n

Therefore the time complerity is:

time_list_min(n) = 19+ 54 log, n

where n is the length of the arrays ! and p.

This example should be discussed. First, if this result is compared with the time complexity of
the program for finding the minimum element of a list using the balanced binary tree technique
(example 3.6) which was time_list_min(n) = 6+24 log, n, then it must be concluded that under the
assumption that each reduction step costs one time unit, and that the computation is synchronous,
it is always preferable to chose the program lisi_min based on the balanced binary tree technique.

Even more interesting is the comparison of these parallel time complexities to the sequential time
complexity. The sequential algorithm is

46



n sequential balanced binary trees | pointer jumping
8 76 reductions 78 reductions 181 reductions
10 || 96 reductions 102 reductions 235 reductions
11 || 106 reductions 102 reductions 235 reductions
29 || 286 reductions 126 reductions 289 reductions
30 || 296 reductions 126 reductions 289 reductions
64 || 636 reductions 150 reductions 343 reductions

Table 4.1: Reduction Steps needed for List Minimum Programs

fun list_min(l:list(nat)):nat =
if empty(cdr(l)) then car(l)
else min{car(l),list_min{cdr(1)))

The automatic complexity analysis method for sequential programs leads to time_min(n) = 10 n—4
where n is the length of the list {. Table 4.1 shows for some values of n the time needed to perform
the corresponding algorithms (if » is not a power of 2 then [log, n] is used). This means that
even for n = 10 the sequential algorithm is faster than both parallel algorithms technique . The
sequential algorithm is even for n = 29 faster than the pointer jumping algorithm.

This comparisons gives hints to save processors, i.e. in the case of a balanced binary tree technique,
if the list is divided into sublists of 10 elements, and these sublists are computed sequentially the
overall running time is still faster than the completely parallel program but it needs just n/10
processors (instead of n processors).

4.4 Example: Finding a Sublist of a List

This example shows how pointer jumping can be applied dilfernently from the operation double.
Instead of the condition p[i] # p[p[i]], the program uses another condition for jumping. This
program is based on the algorithm for sublist computation in [GR88]. We give in this section
also a detailed average case analysis of this algorithm. This analysis leads also to some results in
summation of binomial coefficients.

Assuming that tliree arrays are available, the contents array val, the pointer array p and the label
array I. An element val[i] is labeled iff I[i] = true, otherwise it is not labeled. In this case is
I[7] = false. Suppose that p defines a linear list, and f points to the head of the list. The algorithm
for sublist computation modifies p and f, such that p and f deline the sublist of labeled elements
(i.e. they occur in the same order as in the input list defined by p). In the pointer jumping, p[é] is
only set to p[p[i]] if val[i] is not labeled. If this jumping operation is repeated [log, n] times, then
the only elements of the sublist which are eventually not labeled are the first and the last element
in that sublist. This occurs because after iterating pointer jumping f is not changed, and therefore
the first element in the sublist is just the first element of the input list. Also the last element is not
changed because p[i] = i. Thus there must some computation be done after iterating the pointer
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Figure 4.8: Pointer Jumping in Sublist Computation

jumping. An example is shown in figure 4.8. The labeled elements in this and the following figures
are indicated by filled circles while unlabeled are indicated by unfilled circles.

If the first element is not labeled then - after the iteration is finished — the second element must be
either labeled or the last element (if no element is labeled). If the last element is not labeled, then it
is the only element in the list which is not labeled. Thus each element which points to non-labeled
successor must point to itsself. These two adjustments for the example shown in figure 4.8 are
shown in figure 4.9.

Hence, the following program computes the sublist:

indexed type list(A) \* as in chapter 2 *\
type pair(A,B) \* as in section 3.6 x\

fun sublist(val:1list(A),p:list(nat),l:1list(bool).f:nat):pair(list(nat),nat)=
let p’ = repeat(p,label,length(p)) in
let f? = if label[f] then f else p[f] in
let p" = for all i < length(p) do in parallel
if 1[p?[i]] then p’[i] else i
in (p",£)

fun repeat(p:list(nat),l:1list(bool),n:nat):list(nat) =
if n=1 then p
else let p’ = for all i < length(p) do in parallel
if 1[p[il] then p[i] else plp[il]
in repeat(p’,l,n/2)
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Figure 4.9: Adjustment of the First and Last Element

1st Step: Translation into time functions
After some simplifications, the time functions are:

fun time_sublist(val,p,l,f):nat =
if 1[f] then 22 + time_repeat(p,l,length(p)) +
+ max (0<=i<length(p),if l[repeat(p,l,length(p))[i]] then 8 else 6)
else 24 + time_repeat(p,l,length(p)) +
+ max{(0<=i<length(p),if 1[repeat(p,l,length(p))] then 8 else 6)

fun time_repeat(p:list(nat),l:1list(bool),n:nat):nat =
if n = 1 then 5
else 13 + max(0<=i<length(p),if 1[p[il] then 9 else 11)
+ time_repeat(for all ... do in parallel...,l,n/2)

Step 2: Normalization

The transformation of figure 3.2 is not applicable. The conditionals as an argument of the max-
operation in the body of time_sublist and time_repeat, respectivly, can be eliminated by the
transformation of figure 3.3:

fun time_sublist(val,p,l,f):nat =
if 1[f] then 22 + time_repeat(p,l,length(p))
+ max(0<=i<length(p),time_sublist’(i,1,p))
else 24 + time_repeat(p,l,length(p)) + max(0<=i<length(p),time_sublist’(i,1l,p))

fun time_sublist’(i:nat,l:1list(bool),p:list(nat)):nat =
if 1[repeat(p,l,length(p))[i]] then 8 else 6
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fun time_repeat(p:list(nat),l:1list(bool),n:nat):nat =
if n = 1 then §
else 13 + max(0<=i<length(p),time_repeat’(i,1,p))
+ time_repeat(for all ... do in parallel...,l,n/2)

fun time_repeat’(i:nat,l:list(bool),p:list(nat)):nat = if 1[p[i]] then 9 else 11

The algorithm in figure 3.5 finds that the argument position time_sublist/1 is irrelevant. Thus,
by the transformation of figure 3.4 this position is removed. Finally, the operation call in the body
of time_sublist’ has to be removed. Therefore the resulting program is obtained by applying the
transformation of figure 3.9:

fun time_sublist(p,l,f):nat =
if 1[f] then 22 + time_repeat(p,1l,length(p))
+ max(0<=i<length(p),time_sublist’(i,1,p))
else 24 + time_repeat(p,l,length(p)) + max(0<=i<length(p),time_sublist’(i,1,p))

fun time_sublist’(i:nat,l:list(bool),p:list(nat)):nat =
if 1[access_repeat(i,p,1,length(p))] then 8 else 6

fun access_repeat(i:nat,p:list(nat),l:list(bool),n:nat) =
if n=1 then pli]
else let p’ = for all i < length(p) do in parallel
if 1[p[i]] then p[i] else p[p[il]
in access_repeat(i,p’,1,n/2)

fun time_repeat(p:list{nat),l:list(bool),n:nat):nat =
if n = 1 then 5
else 13 + max(0<=i<length(p),time_repeat’(i,1,p))
+ time_repeat(for all ... do in parallel...,l,n/2)

fun time_repeat’(i:nat,l:list(bool),p:list(nat)):nat = if 1[p[il] then 9 else 11

3rd Step: Symbolic Fvaluation
By the rules of figure 3.6, the following equations are obtained:

22 +time_repeat(p, !, length(p))

+ ma.xf:}fth(p]_l time_sublist’(i,p,l, f) if 1[£]

time_sublist(p, {, f)
24  +time_repeat(p, 1, length(p))

+ max:f__n(fm(p]—l time_sublist'(i,p,1, f) otherwise

tiriie-sublist i p,1) = {8 if 1{access_repeat(i,p,1l,length(p))]

6 otherwise

time_repeal(p,i,1) 5
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len -
time_repeat(p,l,n) = 13+ ‘ siﬂ'%? 1+time-r&p€at'(i,!,p)+ time_repeat(p,l,n/2)
1=

9 if1[p[il]
12 otherwise

time_repeat'(i,p,1) = {

4th Step: Mapping onto Integers
The length function is applied on time_sublist/1 and time_repeat/1:

22  +time_repeat(m,l, m)
+maxg! time_sublist'(i,p,l, f) if 1[£]
time_sublist(m,l, f) =
24 +time_repeat(m,l, m)

+ max:’;al time_sublist'(i,p, 1, f) otherwise

time_sublist'(i,p,l) =

8 if 1[access_repeat(i,p,l,length(p))]
6 otherwise

5

time_repeat(m,!,1)

time_repeat(m,l,n) 13 + 1?15,031-: +time_repeat'(i,1,p) + time_repeat(m,l,n/2)
1=

time_repeat'(i, p,!1)

12 otherwise

{ 9 if1[p(il]

5th Step: Solution of the Recurrences

We show in this section a complete average case analysis of this parallel algorithm. This analysis
seems hardly automatizable, but the results obtained here are interesting because they can be
compared with the estimates obtained by an automatic average case analysis method.

Suppose in this step, that the labels are uniformly distributed over bool = {{rue, false}, and that
they are independently chosen for each ¢ < length(p). Thus, there are m i.i.d random variables L;
over {(rue, false} where Prob[L; = true] = Prob[L; = false] = 1/2. The computation of

i ,
f{llz%x time_repeat'(i,1, p)
i=

yields:
Best Case: 9
Worst Case: 12
Average Case:  Prob[Vi: Ly = true] 94 (1 — Prob[Vi: Ly = false]) 12

The computation of ¢ = Prob[Vi : L,; = t{rue] is based on the assumption that initially p defines
a linear list. Based on this assumption, it is easy to see that only f # p[i] for all i. Thus

q= "ﬁl Prob[L,[i] = true] = (%)m_z

i=0,i%pli]
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Hence, the average execution time for the first iteration is

3
Qm—‘z

Ti(m) = 25 -
The following considerations are based on the following fact:
Lemma 4.18 (Pointer Jumping based on Labels) After one ezxecution of

for all i < length(p) do in parallel
if label[p[il] then p[i] else p(p[il]

the distance from an element to the next labeled element is halfed.

Proof: similar to lemma 4.9 u

An easy consequence of this lemma is that just [log, /] iterations are necessary to reach a stable
situation (i.e. each element points to a labeled element), where [ is the maximum number of
consecutive labels in the list. Thus, in the second step g is given by (without loss of generality
plil =i+ 1):

q=ProbV0<i<j<m-—-1:Li=trueAL;=true=>j—i<2Ai<1Aj>m-2]

Theorem 4.19 (Stable Situation after 1 Iteration) The probability that after one execulion
of

for all i < length(p) do in parallel
if label([p[i]] then p[i] else p[p[il]

the pointer array p is in a stable situation (i.e. every further application of this operation does not
change p) is:

o Fm+?.
= —2m

where F, is the n-th Fibonacci number.

Proof: Consider first the conditional probablity g, such that after one iteration of pointer jumping
the pointer array is in a stable situation, k elements are labeled. Then it is easy to compute ¢:

s m
Gz—mZ( ) qk
2 k=0 AJ

=03}



m
k

there are at most one consecutive false-label). Then, the computation is even easier:

because there are ( labelings with k labels. Let cg be the number of such labelings (i.e.

We transform now the probability space in order to simplify the computation of ¢; .. Let €' C
{1,...,m} be the indices of the k labeled elements incremented by one, and (ay,...,a;) be the
elements of C in increasing order. This sequence must have the following properties:

(i) 1<a1 L2
(i) 1 <ajpg—a; <2for 1 <i<k

(iii) ax > m -1
If we define

ay ]f1:0
A,‘:: aiy1 — a4 lf]_SE(k
m— ag ifi=k

then the above properties are equivalent to:
(i) 1<A;<2for0<i<kand 0 <AL <1

(ii) Za; =m

Thus, the number ¢ ,,, equals the number of possible choices of the vector (Ag,...,A) subject to
the above constraints. Define

Ne; = {ieN|k<i<j}
J
gr.:(2) = Zz‘
i=k

Hence, if & < m,

[2™]g% 2(2) g0,1(2)
[2]2% (1 42k

(k41
- m— k

Ck.m

Il
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Figure 4.10: Valid Labellings for Termination after 2 Steps

According to [GKP89], it is:

k Vi+4:z 2 2

k=0

i(n—k)zk: 1 ((Hm)“*‘_(l_m)”“)

Therefore, the following is obtained:

k41 N (m4l-k 1 T Ll e
g(m_k)=;§]( k )=E ((T) —-( 9 ) = Finga

where F} is the k-th Fibonacci-number. This completes the proof. [ |

In the second step, the average execution time of the iteration in repeat is therefore:

(O P2
21‘?‘!

This result has also a combinatorial interpretation. This is demonstrated by figure 4.10. f m = 0,
then there is one labeling: the empty labeling. If m = 1 there are two valid labelings: either
the element is labeled or it is not. Consider now an m-element list. Suppose that the last one is
labeled. Then the other m — 1 elements can labeled arbitrarily with a valid labeling. If the last
element is not labeled, then the second last must be. Otherwise the labeling would not be valid.
But then the first m — 2 elements could be labeled with any valid labeling. Therefore the number
a., of labelings obtains the recurrence:

ag = 1
a = 2
O = Gpm-1+0m-2

which has as its solution exactly the m + 2-nd Fibonacci-number.

This consideration is easy to generalize in order to determine the number (LL‘?} of valid labelings
if the maximum number of consecutive unlabeled elements is s — 1. The base cases are therefore
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obvious: Fl-(s) =2 for 0 < i < s. The case m > s is obtained as follows: If the last element is
labeled, then the other m — 1 elements can be labeled arbitrarily with a valid labeling. If the second
last element is labeled but the last is not, then the other m — 2 elements can be labeled arbitrarily
with any valid labelings. In general, if the last ¢—1 elements are unlabeled and the i-th last element
is labeled, then the other m — i elements can be labeled arbitrarily with a valid labeling. Clearly
i must be less than s, otherwise, the labeling would not be valid. We have therefore the following
recurrernce:

F® = 2iics

F‘r(rf) = F:lel +'“+FrE:ls+l

We call the numbers defined by this recurrence the generalized Fibonacci numbers. They grow for
large s nearly as 2™:

Theorem 4.20 (Generalized Fibonacci Numbers) For large s > 2 holds:

P (1 -2 e pll)egn

Proof: The upper bound is easy to see: there are at most 2™ labelings. Thus the number of valid
labelings never exceeds 2™. Consider

N = P L v d
and set A = 2, then the difference between the LHS and RHS is exactly 1. For the prove of the

lower bound we define a := 1 — 279 and ¢ := 27°. The lower bound is proven by induction on m:

Base Casgs: Trivial
INpDUCTIVE CASE: By induction hypothesis it is:

Frg-;s] 2 am—I 2m—1 Be.vssn e C'51'1l‘l—s+1 2m—3+1

s—1
It is therefore sufficient to prove: Z o 20> 2° o
=0

In this proof, the following fact is used:

1
—_ A4
1 _¢ = l1+4¢ (4.1)
Thus:
s=1 s—1 1 s—1i
ZZ’ a = a° 2 ( )
=0 ; 1—e
> {(4.1)}



s-1
a’ 221 (1 + E).s—i

i=0

s—1 '

s s 2\

= o' (1+¢) ;(1+5)
= { Summation Formula for 1 4 ---+ 2™}

-+ (4o

1—¢

{(4.1)}

& (20 (1 48)% — (1 +€)*)

&5 (254 1 =2 == 39720 3739
> o 2

The last inequality holds only if s > 2. This completes the proof. [ |

As aside-effect, by using the generating function method to determine the number of valid labelings,
the following formula is obtained:

m m+1 i
Y (kﬁl) (m}“)(—n":ﬂﬁfi

k=0 £=rm—k]

Proof: Consider the valid labelings with k labels. Let (ay, ..., ax) be the indices of labeled elements
in increasing order. Define as above

ay ifi=0
A= a1 —a; f1<i<k
m— Qg ife=k

Then A; must satisfy the following properties:

(i) 1<A;<sfor0<i<kand0< Ay <s-1

Ef}n of valid labelings using k labels equals to the number of vectors (Ao, ..., Ag)
satisfying the above properties. By the generating function method, this number is

cﬁfln = [ Q4244 22 )FH

_ o\ k1
= [zm-k](ll_z)
Lok G m-—s1 ;
2 (1) (M) e
i [k

=¥

Hence, the number ¢




The number of all such labelings is on the one hand

m m m+1 y
o=t 3 (M) (") e
k=0

k=0 ;= I'_mT—k,]

and on the other hand (by definition) F{). This proves the stated claim. |

By the above considerations the probability p;, that there is no change in the pointer array p after
[ iteration is given by F,E:/Qm, and therefore the following estimates hold:

1
(1-28)m<pr<
Ilence, it approache very rapidly to 1 as [ increases. There are many unnecessary iterations in the

average. With this result, the time complexity of repeatis computed as follows:

Best Case:

time_repeat(1) = 5

time_repeat(n) = 22 + time_repeat(n/2)
yielding time_repeat(n) = 5+ 22 log, n
Worst Case:

time_repeat(1l) = 5
time_repeat(n) = 25 + time_repeat(n/2)

yielding time_repeat(n) = 5+ 25 log, n
Average Case:

time_repeat(1,1) =5
time_repeat(n,l) = 25 — 3 py + time_repeat(l + 1,n/2)

The average case is then:

logy n

time_repeat(0,n) = 5 + 25 logon — = g Fr(lzf)

With theorem 4.20 the following estimates for the average case are obtained:

log, n
5+ 22 logy n < time_repeat(n) < 5+ 25 logyn—3 Z (L —2~%)
=0



and with theorem 4.24 for any § > 0:
time_repeat(n) < 5+ 22 log,n 4+ 3 (14 6) log,log, n + £(n)

where ¢(n) — 0 as n — 0.

Finally, we have to consider the time complexity of sublist. First, for time_sublist’(i,p,l), it has to be
considered how often label[access_repeat(i,p,l,length(p))] becomes true. By construction
of access_repeat it holds:

Corollary 4.21 Ifp’ = repeat(p,l,length(p) then for all 0 < i < length(p):
p’[i] = access_repeat(i,p,1l,length(p))
It is easy to prove by induction the following lemma:

Lemma 4.22 Let be p’ = repeat(p,l,length(p) where p defines a linear list. Then the follow-
ing implication holds:

p'li] = false = p'[i] = p'[P'[]]

Proof: Let G(p) be the graph defined by the pointer array p, and d(p) be the length of the longest
path (ag,...,a4(p)) in G(p)i, where ay,...,a4q)-;1 are all labeled with false, and if a4,y = plagp)]
then ay(,) be labeled arbitrarily, otherwise it is labeled ¢rue. Consider now the pointer array defined
by:

p’ = for all i < length(p) do in parallel
if label[p[il] then p[i] else plp(il]

Then it is the same proof as in the classical pointer jumping to show: d(p’) = d(p)/2. Let now
be m = length(p). Then after log, m iterations of the above operation (and therefore after the
execution of repeat), it is d(p) = 1. Thus for all 7 it is either label[p[i]] = true or p[i] = p[p[i]]. M

Corollary 4.23 The probability, that 1[access_repeat(i,p,1,length(p)] = true is 1/2™" L

This allows therefore the computation of the average case:

Best Case: time_sublist(n) = 33 + 22 log, n
Worst Case:  time_sublist(n) = 37 4 25 log, n
logy n :
Average Case: time_sublist(n) = 36 + 25 log, n — 23—“ Z B7rY_ grn
i=0

time_sublist(n) < 36 + 22 log, n 4+ 3 (1 + 6) log, log, n + c(n)
where § > 0 arbitrarily, and e¢(n) — 0 as n — o0
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As known from the considerations for the generalized Fibonacci numbers the average case is closer
to the best case instead of the worst case:

Theorem 4.24 (Number of Iterations) Let N be the random variable defining the number of
iterations on p necessary to reach a stable situation. Then the ezpected value of N is estimated by:

E[N] < (1+6) log,log, n + e(n)
where § > 0 arbitrarily, and ¢(n) — 0 as n — oo. Thus it holds E[N] = O(loglog n).
Proof: After at most log, n iterations, the final situation is reached. Thus we have

0< N<Llog,n (4.2)
It holds also (by theorem 4.20):

Prob(N > ] < 1- (1~ 2(-2‘))“ (1.3)
By using the Markov inequality for random variables 0 < X < s:

VYa > 0:E[X] < a+ Prob[X > a] s

Thus, by (4.2 the preconditions of the Markov inequality are satisfied and by the estimation ( 4.3)
the following estimate for the expected number of iterations is obtained:

E[N] < a+logyn (1-(1-2029)7) (4.4)
Let now 6 be any positive value greater than 0. If we take
a=(146) log,log, n

the following inequation is obtained:

E[N] < (1+6) logylogyn +logyn (1 ( _ o(~2(148) 1°821052"))”)

= (1496) logylog,n+log,n |1 - (4.5)
1],1052 n
: log.
= (1406) logylogon+ 3 [ T | (1) 2222 (4.6)
51 k nklogyn
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where (4.5) is obtained by using:

2_(2(1+.§) logzlog2 ™)) _ 1
nlogg n

and (4.6) is obtained by the power series of (1 — z)™.

It remains now to prove that

e(n) =) ( : ) (=T1)k+! logam

klogs
k>1 nilog n

as n — oo. This is done by observing that:

m < 3 (5) e

o1 nk-]ogg n
_ Zk__k (e logzn)k
- ] nlogg n—1

where we made use of the inequality

Furthermore, the powerseries 3 .01 k=*z* converges for all z € R. Thus its radius of convergence
is co. Because a powerseries converges uniformly within its radius of convergence, it holds:

k k
lim S kF (2220 log, n S k7F lim ¢ logyn
n—oo =1 nlogg n-1 v n=—00 nlogg n—1
= Z E*.0
k>0
= 0

Because always £(n) > 0 it follows that lim,_., £(n) = 0. This completes the proof. [ |
It seems that using inequalities to estimate the average case are very powerful tools, because most

of them make no use of particular distribution assumption, and an automatic complexity analysis
system need not to care about these distributions.
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Chapter 5

Conclusions

In this report we introduced a generic method for analyzing the worst case complexity of parallel
programs (e.g. list minimum based on balanced binary tree technique and pointer jumping, prefix
sums and polynomial evaluation). All these programs are not optimal in the sense that their
work is asymptotically more than the time complexity of the best sequential algorithm. Thus the
next step is to fix the number of processors to p and evaluate the worst case complexity as a
function T'(n,p) of the input size n and processor number p, and then choose p < O(n) such that
T(n,p(n)) = O(T(n)) where T'(n) is the complexity using an unbounded number of processors (i.e.
as evaluated by the method of this report). This extension allows then to analyze programs based
on the algorithms with a reduced number of processors.

The complexity analysis method should also be checked by applying it to more complicated ex-
amples like graph algorithms (using for example the Euler-Tour technique), sorting algorithms,
algorithms based on the pebble game, and algebraic algorithms.

The automatic average case analysis, as shown by the example of sublist computation, seems to be
very difficult. Because literature about average case analysis of parallel algorithms is very rare, it is
too early to design even an automatic estimation technique. It should be mentioned that it seems to
us that algorithms based on the balanced binary tree technique and divide-and-conquer technique
have at least asymptotically the same worst-cast and average-case complexity. However in pointer
jumping algorithms (and similar in pebble game algorithms) this seems different. Therefore, manual
estimations of average cases have to be done for these algorithms.

Another result of this report is the very general applicability of the pointer jumping technique. It
is not necessary to apply it to linear lists, but as shown in chapter 4 it can also be applied to a set
of linear list at some circles. If concurrent reads are allowed, then it can be even applied to “suns”
as long as the length of their circles is a power of 2. It should be investigated whether these more
general pointer structures can lead to new efficient parallel algorithms (especially for asynchronous

PRAMs).
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