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Abstract

We consider an algebraic approach to the statement and solution of general Boolean
constraint satisfaction problems (CSPs). Our approach is to consider partial valuations of a
constraint network (including the relational constraints themselves) as sets of partial functions,
with the operators of join and projection. We formulate all the usual concepts of CSPs in this
framework, including k-consistency, derived constraints, and backtrack-freeness, and formulate
an algorithm scheme for k-consistency which has the path-consistency scheme in [Lad-
Mad88.2] as a special case. This algebra may be embedded in the cylindric algebra of Tarski
[HeMoTa71, 85], via the embedding of [ImiLip84], and a connection with relational database
operations. CSPs are shown to correspond to conjunctive queries in relational database theory,
and we formulate a notion of equivalence of CSPs with hidden variables, following [ChaMer76,
Ull80], and show that testing equivalence is NP-hard.
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1 Introduction

We consider the general algebraic formulation of general finite Boolean con-
straint satisfaction problems (CSPs). Suppose zi,....z, are variables. A
general Boolean CSP is given by a formula Ajcq,..n) Pi(Z1), where Ty is the
sequence of variables (z; : ¢ € I). For each i, we have a range of values D;
for z; in mind, and each predicate symbol P; denotes a subset St of &, D;.
A solution of this CSP is conventionally a tuple of values {a,...,a,) such
that, for each I, {(a; : ¢ € I} € S;. For many I we may expect S; to be
a non-informative predicate, i.e. S; = ®;ec; Di, so these cases are usually
omitted from the formulation of the CSP.

In this paper, we consider the specification of CSPs and their algebraic
structure. We find that the concepts that have proven to be useful in describ-
ing and solving CSPs may be formulated algebraically, using the concepts of
partial function, join and projection of such functions. One advantage to this
more formal approach is that algorithms and algorithm schemes may be for-
mally verified, using algebraic laws over these operations. Another advantage
is that results such as those of [LadMad89), in which a class of hard examples
for parallel path-consistency is presented, are more easily obtainable using a
more mathematical approach.

Firstly, we consider the definition of all the usual concepts of CSPs, and
we follow this by a simple example to illustrate the use of the concepts in the
case of a small finite CSP. Next, we point out the connection with conjunctive
query evaluation in relational database theory [Ull80], and adapt a theorem
of Chandra and Merlin [ChaMer76] to show that computing equivalence of
CSPs with hidden variables is NP-hard. We next consider an embedding of
CSPs into the cylindric algebra of Tarski [HeMoTa71,85]. In the context of
relational databases, this embedding was due to Imiclinski and Lipski [fm-
iLip84], and we adapt a structure theorem of theirs to the case of CSPs.
We consider an algorithm scheme for computing k-consistency in our frame-
work, and prove it correct. The scheme generalises existing k-consistency
algorithms in the same sense in which the path-consistency scheme of [Lad-
Mad88.2], which used a relation algebraic formulation for binary networks,
generalised existing path-consistency algorithms. Finally, we consider the
condition for backtrack-[ree solutions proposed in [I're82]. We show that it
conrresponds to a simple equational condition in our framework.
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Definitions and Essential Lemmas

In this section we give the definitions that are the basis for our algebraic
approach. The definitions are given unillustrated, and in the next section we
give an example which we hope will make these more clear.

Definition 1 1. Suppose A is a finite CSP on variables z1...z,, with

domains Dy...D,. Let1.n = {1,...,n}. The domain of A is the set
D={1} x DU {2} x DaU...{n} x D,. (In the case that D, = D, =
oo =L 0y B fptist Lo B

An element of D is of the form (k,d), and we also denote it by k — d.
A partial relation R on A is a subset of D. A partial function f on A
is a partial relation on A that is functional, i.e. for given k < n there
is at most one pairk — d in f.

The domain of R ts the set {k: (3d)(k+— d € R)}. The range of R is
the set {d: (3k)(k— d € R)}. Notice that f is always a total function

dom(f) — ran(f).

More generally, we call a set D a domain if D is a collection of pairs
such that dom(D) = 1..n for some n.

The restriction of R to I, I 4 R, where [ C 1..n, is the set {k — d :
keIAkw— deR).

Suppose I3 1s a sel of partial functions on D. The projection of 3 on

I, 7i(B), is{I<df:f€ B}

The joinof fand g, fUg, is fUg if this is functional, else is undefined.
The join of B and C, sels of partial functions, is the sel {fUg: () €
B)A(g € C)}, and is denoted BUC'. The join B, U B, U...UDB,,, is
denoted | |,e; Ba, where [ = {ay,...,a,}, and we shall use other simple
conditions on the subscript of | also.

We use the notation f : A — B for total functions [ from A to I3,
and [ : A 4 B for partial functions. A constraint is a sel of partial
functions on A all with the same domain. The domain ol a constraint
1s the domain of its members.



9. A constraint network A is a domain D, along with a set of constraints
{P,... Pn} with domains I,,... I, all C dom(D), such that the I} are
pairwise unequal. We shall denote P, also as P;, where I = [,. We
denote such a constraint network by (D, Pr,,...Pr,.). We also use the
notation D = (D), and in particular D; = Dyg;.

10. Suppose A= (D, Py,,...Pr,) is a constraint network. Pr,..., P are
the explicit constraints on A. The derived constraint on I, I C l..n,
is Cr = | |ycy Py, unless there is nothing in the join, in which case the
derived constraint is defined to be I 4 D (i.e. all possible values). The
solution set of A is Cy.,, i.e. the derived constraint on 1..n. The partial
solution set on I C l..n is another term for the derived constraint on

I

11. A is k-consistent if and only if C; = w((Cy) for all I,J such thal
[ =((k-=1),|J|=k I CJ.

It 1s easy to check of this final definition of k-consistency that it is equiv-
alent to Freuder’s notion of k-consistency [Fre78].

There are a number of easy but essential lemmas that follow [rom this
definition, which we shall make use of in proving later theorems. We state
these lemmas here without comment, for our future use.

Lemma 1 U is an associative and commutative operation
Lemma 2 C; = |;c;Cy
Lemma 3 For any S, |jc; 7u(S) = 71(.5)

Lemma 4 Suppose Dj is a any constraint with domain I, and I} « constrainl
1 i ] '

with domain J D I. Then m(DrU E) = (DU = (£))

Lemma 5 Suppose X;;1 € I Yi,1 € I are all conslrainls, and for cach 1,
X:,Y;: have the same domain and X; C Y. Then |Jie; Xi C |ier Vi

Lemma 6 Let {Dp, : 1 € I} be a collection of constraints, with dom Dy, =
K;. Then f € lie; Dk, if and only if g, (f) € Dg, for each 1 € I.

Lemma 7 For I C K, PrUCkr =Ck
Lemma 8 If [ C K, then wi(zx(D)) = (D).

Lemma 9 Suppose D is a constraint whose domain includes J. Then ||, mi( D) =

75(D).



Figure 1: Constraint Network of a Coloring Problem.

3 An Example

We give in this section an illustration of the definitions above.

Consider, for example, a coloring problem represented by the constraint
network shown in figure 1 with variables z;, z2, x3, and z4. Suppose that
the domains of z;, z,, and z3 are {r,g,y} and that the domain of z, is
{r,g,y,b}. We define the domain of the network as the union of the domains
of each variable indexed with the the corresponding variable (or, rather, the
subscript of the variable in this case). (Definition 1.1)

This results in the following domain:

{(157)1 (l,g), <11y>:
(2,r)y (2,9), (Z9),
<3:7)3 (339)‘- <315’>s
(41?)? (L,‘g,')} <11?f>= (‘U’H

Such a domain can also be represented using the notation &k — d instead
of the pair notation {(k,d), and is more appropriate for our purposes. On
the basis of Definitions 1.1 - 1.7, the notions of a constraint and a constraint
network can be defined in a straightforward way, as in Definitions 1.8 and
1.9.

To illustrate the definition of constraints and constraint network in Del-
inition 1.8 and 1.9, we consider the following subsets ol variables in the
example:

Il = {11,']}:1:2}}1{2 = {.Ifl._..'l’,'(;}, 113 = {{82,.1,'3}, )I_.| = {;I}g,:t’3,;!f_|}



These are the domains of the constraints Py, P, P3, and Py, respectively,
whereas their ranges are subsets of {r,g,y,b}.

Suppose that the constraints Py, P, and P; demand their variables to be
unequal. Then P; is defined as follows:

P = {{k1 = di, ks = do} : {k1, ko} = I; Ady,da € {r,g,y} Ads # da}

So far, we have defined the notions of variables, domains, constraints, and
constraint networks. However, we also need a means to combine constraints
in order to compute several kinds of consistencies. This is the purpose of Def-
initions 1.10 and 1.11, which introduce derived constraints and consistency
conditions. Suppose that P;, P, and P are defined as above, and that P is
given by:

Rl = {{2 —* d2,31“+ d3,4 — d4} : d?adﬂ & {r,g,y} A

dd = {Tagay!b} A
(d2 = d,i v d;_a, = (:{‘l)}

Then, the derived constraint on 1..n is the following set:

P.={{1—r2-43-19y4g)),
l>r2-y,3- 9,40 g),

l=r2—g3— 34—y
l—r2—y,3—g4d—y
l—g,2—7r3—yd—r l— g2 r3—=yd—y

l—y,2—~rd—gd—r l—y,2—=r3—gl—yg

( ) | )
( b y)
( b 4 )
(1—¢g,2—y3—rdor), (1—g¢2—y3—rd-y)
{ b 4 )
{ b A 9)}

l—y,2—=¢g3—rd—-r), (Il—y2—=g3—=rd—g

This set represents the solutions of the constraint network. Since it is
expensive to compute the complete set of solutions, one is often only inter-
ested in transforming a given network into an equivalent, k-consistent one,
For connections between k-consistency for various values of k, and solutions
(so-called global consistency) see [Fre78].

4 Connections to Relational Databases
Let (D, Py,,...Pr,) be a constraint network. Then the P ,... P can be

considered relations in a relational database, whose columns are labelled by
the variables z,,...,z,, alternatively by the integers 1..n.



Solving the constraint network is equivalent to taking the join of all the
relations in the database, equivalently answering the query formed by taking
the conjunction of all the primitive relations.

Such conjunctive queries have been considered in [ChaMer76, see also
Ull80]. In particular, let us consider the following problem.

Suppose we consider the equivalence of two CSPs (extensional equiva-
lence, i.e. having the same set of solutions). We extend the notion of repre-
sentation by CSPs to include the notion of hidden variables, i.e. we consider
CSPs on variables z1,...,%n, Tnt1,...,Tm Where one is only interested in
the set 71.4(C1.m), 1.e. the projection of the solutions onto the first n com-
ponents only. (The variables z,,4,...,2,, are called the hidden variables).
We consider equivalence between two networks which possibly use hidden
variables, and even different numbers of hidden variables, in their definition.
We give the following definitions informally, but it should be clear from the
informal definitions how the formal definitions should read.

Definition 2 Let a signature have its usual meaning, i.e. a collection of
predicate symbols, with arities assigned lo each predicate symbol. Let a type
be a signature along with a collection z., .., z, of n variables. Let a constrainl
network scheme be a constraint network, possibly with hidden variables, over
a type, i.e. the actual relations constraining each (hyper)edge are not given,
but symbols from the type are used instead, and z,,..,x, arve the explicit (non-
hidden) variables. Let an interpretation of a consirainl be an aclual relation
assigned to a schematic relation symbol, and an interpretation of a scheme be
network with an interpretation of cach explicit constraint. Lel a joint inter-
pretation of two or more schemes be interpretations of the schemes whercin
the same predicate scheme in each constraint scheme is assigned the same
interpretation. Call two schemes equivalent if they define the same relation
on Ty,...,x, for every joint interpretation.

Theorem 1 : [t is NP-hard to delermine whether two network schemes are
equivalent

Sketch of Proof: In [ChaMer76] it is shown that determining the equiv-
alence of two conjunctive queries is NP-hard. It is straightlorward to show,
using the definitions of (fUlI80]), that the problem of equivalence of network
schemes is translatable into the problem of equivalence of conjunctive queries,
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and vice versa.

End of Sketch.

An Algorithm for Equivalence

An algorithm for testing equivalence of conjunctive queries was given in
[Ull80], and this may be adapted directly to test equivalence of CSPs with
hidden variables, using the translation mentioned above in the previous the-
orem proof sketch.

5 Connections to Cylindric Algebra

The connections between relational databases and cylindric algebra have been
explored in [ImiLip84]. In this section, we indicate briefly how these con-
nections work in the case of constraint networks given our definitions above.
We assume some knowledge of [ImiLip84], and the concept of cylindric set
algebra as in [HMTANGS!].

In order to combine constraints on different sets of variables, we introduce
the operator h which extends a constraint in all possible ways.

Definition 3 (Embedding) Let I be a subset of the variables {1,...,m},
and let C be a constraint over a domain D (C C D™ ); then:

h(C)={de D™ | d[l] € C}

For a constraint network, we consider the simultancous interpretation of
all of the constraints via the [unction h. This gives an embedding into a
cylindric set algebra, described in the [ollowing theorem.

Theorem 2 The function h embeds the constraint C inlo a diagonal-free
cylindric set algebra under the interpretation of join as intersection, and
projection as cylindrification over the projected variables.



Sketch of Proof: The construction is essentially due to Imielinski and
Lipski [ImiLip84], following the observation that the join and projection op-
erators are those used in relational algebra. Their proof of the equivalent
theorem for relational databases adapts directly to our case.
End of Sketch.

We may consider the definition of derived constraint in the context of the
embedding. Using the information that join corresponds to intersection in
the embedding algebra, we have the following lemma.

Lemma 10 Let I denote a subset of the variables in a constraint network
given by A = (D, Py,...,Pr,) The derived constraint for I is given by

C[Z’.‘T] ﬂ h,(P[J)

rcI

There is considerable literature on cylindric algebras and cylindric set
algebras [ImiLip84, HeMoTa71,85, HMTANS!]. Using the embedding de-
fined above for a constraint network, and the solution set of a network, we
may make use of cylindric algebra as a tool for investigating the algebraic
structure of general constraint networks in the same way in which relation
algebra was used in [LadMad88.2] for investigating the structure of binary
constraint networks. Relation algebra and cylindric algebra are closely re-
lated, via interpretations of various sorts, and are both examples of Boolean
Algebras with Operators [Mad?78, JonTar51].

6 K-Consistency Algorithm

In this section, we introduce a k-consistency algorithm schema and show ifs
soundness and completeness, i.e. the algorithm really computes a k-consistent
network and the solutions for this network are identical with the solutions ol
the original network. The algorithm schema can be implemented in various
ways, in parallel as well as in serial. We repeat the definition of k-consistency
from above.

Definition 4 A is k-consistent if and only if Cy = w;(Cy) for all 1,0 such
thet Il =(k—=1), |J| =k, L€ J.

9



Algorithm 1 1. Let A= (D, Py,...,Pr,) be a constraint network. In:-
tialize Py «— Py forall I € {Ih,...,I,}.

2. Do until each P is stable:

(a) Select K such that K O I and |K| =k, and let Ck be the current

derived constraint on K.
(b) Pr '?TI(EK)

3. Assign sz_ — Py, foreachj € {1,...,m} and return A7 = (D, P,{ —
as the resulting network.

It should be obvious that although the algorithm is expressed in a pro-
cedural form, it is nevertheless functional in that all variables do not change
content. The pseudo-procedural presentation is just a notational conve-
nience. We note also that the join operation in the above scheme always
ranges over the same set of indices [, since every constraint in the join is
projected onto this set (recall also the condition K D I, ensuring that the
projection is onto all of I). In this case, the join operation is just set inter-
section, so another way of expressing the assigment to P is

P — (mi(Ck).
R_.

We show that the algorithm does not remove solutions [rom the constraint
network, i.e. the solutions of the original network are solutions for the k-
consistent one, and vice versa, by using properties of the join operator that
we have noted previously.

Lemma 11 The constraint network resulling from algorithm 1 is cquivalen!
to the original network, t.e. A and A have the same sel of solutions.

Proof: We need to show

U P= |l B

1 £=20 A A re{l,olm}
We show

L: Lltetts, . B € Uty B

10



ad 1: Let P} be the value of P; after the assignment P; «— 7;(Cx) and P;
be the values before this assignment; then:

P; = 7m1(Ck) by assignment
71(PruCgk) by Lemma 7
PrUn(Cg) by Lemma 4
P,

Nl

So at each step, ?} C Py, and thus Pff C Py by transitivity of C. So
Urets,..tny Pr € Ureqn,..1.y P by Lemma 5.

ad 2: Suppose [ € |reqn,...1,3 F1- This is equivalent to 7;(f) € Py for all
I. We show that

VI:n(f) € Pr=VI:7i(f) € P,

At step (b), suppose 7;(f) € Py forall I,s0 7x(f) € Cr,so mrmr(f) €
71(Cx), so 71(f) € 71(Ck) by Lemma 8, so 7;(f) € Py. So 7;(f) € Py
is an invariant and 7;(f) € P by assignment. So 7;(f) € P{, and since
this is true for all I, it is equivalent to f € [reqr,...1) P;f.

.....

End of Proof.

An essential property of the algorithm is that it really computes k-consistency.
This can be verified in a straightlorward way:

Lemma 12 The constraint nelwork resulting from algorithm 1 is k-consistent.

Proof: Suppose |J| = k—1,|K| = k,J C K. We have to show CJ = 7/(C-).
From the termination condition of the algorithm, we know for each [ C .J

that P{ = = (CL).
Ci= P =]m(C)
icJ IcJ

= u ?r;(:rrJ(C}i»]) by Lemma 8§ = TrJ(C';{—) by Lemma 9
IcJ

[t is easy to verify that the following condition holds after execution of
the algorithm.

P =7/(Cy)

11



for any I such that |[I| <k —1and J=1U{j} for some j. Now

S |_] Py = |_| mp(Cy) = mi(Cy)

I'CI IcI

The first equality follows by definition of the derived constraint, the second
by the property mentioned above, and the final by an earlier lemma. The

equality of the first and last expressions is the definition of k-consistency.
End of Proof.

7 Backtrack-Free Search

When looking for solutions of a constraint network, the question often arises
whether there is a backtrack-free search, i.e. is there an order on the variables
which guarantees a search without backtracking regardless of the order on
the values. This question was first discussed in [Fre82]. We will reformulate
the definition of backtrack-freeness in our framework and show that it is
equivalent to Freuder’s definition.

First, we will denote an order on the variables of a constraint network
by a sequence of domains. Let Di,..., D, be the domains of the variables
T1y...,Ty. Suppose the order z;,...,;, is given with 7; € 1..n and i; # i
for j # k. Then, this order can be denoted as sequence of domains, Iy,.../,.
such that

L= {u}

I, = Li1U{y} forke2.n

A necessary and sufficient condition for backtrack-free search is that the
derived constraint on each Iy is equal to the projection of the derived con-
straint C'y, on [;. The following lemma formalizes this condition:

Lemma 13 An order on the variables, given by I, ..., I, is backtrack-free,
if and only if:
Ve l.n:Cp =71 (Cr,)

Proof: Assume that there is some & such that C'y, # 7, (C},), then:

f € Cy, such that Vg € Cy, : fU g is undefined



Thus, the assignment of values to variables given by f cannot be extended
to a complete value assignment, contradicting backtrack-freeness.

For the other direction, it is sufficient to observe that if C;, = =1, (C1,),
then every element of Cj, may be extended to an element of C,, and this is
just the condition for backtrack-freeness.

End of Proof.

13
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