Towards Optimal Simulations

of Formulas by
Bounded-Width Programs1

Richard Che:ve2
TR-90-013
March 9, 1990

Abstract

We show that, over an arbitrary ring, for any fixed ¢ > 0, all balanced algebraic
formulas of size s are computed by algebraic straight-line programs that employ a constant
number of registers and have length O(s il ®). Inparticular, in the special case where the ring
is GF(2), we obtain a technique for simulating balanced Boolean formulas of size s by
bounded-width branching programs of length O(s'™ ®), for any fixed ¢ > 0. This is an
asymptotic improvement in efficiency over previous simulations in both the Boolean and
algebraic setting.

1T appear in Proc. 22nd Ann. ACM Symp. on Theory of Computing, 1990,
2 International Computer Science Institute, 1947 Center Street, Berkeley, CA 94704,

1 Introduction

The first investigation of the computational power of programs whose storage capacity is
limited to a constant number of items was made by Borodin et al. (1983), and Chandra,
et al. (1983). These authors considered the polynomial-length bounded-width branching
program as a model of computation for functions from {0,1}" to {0,1}. These programs
are equivalent to polynomial-length straight-line programs that employ a constant number
of {0, 1}-valued read/write registers and have read-only access to their inputs.

It had been conjectured that the polynomial-length bounded-width branching program
was a weaker model of computation than the polynomial-size formula (and this conjecture
was partially supported by the results of Borodin et al. (1983), Chandra et al. (1983), Yao
(1983), Pudlak (1984), and Ajtai et al. (1986)). Then Barrington (1986), using a beautiful
construction, proved that in fact the two models of computation are equivalent. Ben-Or
and Cleve (1988) extended Barrington’s result to an algebraic setting by showing that, over
an arbitrary ring, the functions computed by polynomial-size algebraic formulas are also
computed by polynomial-length algebraic straight-line programs that use only a constant
number of registers. This result generalizes Barrington’s since, in the special case where the
ring is GF(2), it implies the former result.

A feature of the constructions of Barrington (1986) as well as those of Ben-Or and
Cleve (1988) is that, in general, they incur a polynomial increase in the total amount of
work required to perform the computation: if the original formulas have size s and are
balanced (i.e. have depth bounded by [log s|) then the resulting straight-line programs may
have length up to Q(s?). (And when the formulas are not balanced, the resulting straight-
line programs may have length even more than quadratic in s.) Cai and Lipton (1989)
showed an alternative construction for the Boolean case that is subquadratic for balanced
formulas. Their construction translates balanced Boolean formulas of size s into bounded-
width branching programs of length O(s!-811-).

We show that (in the algebraic as well as the Boolean setting) the exponent in the
simulation can be made arbitrarily close to one. That is, given any fixed € > 0, we show that
all (algebraic or Boolean) balanced formulas of size s are computed by straight-line programs
that use a constant number of registers and have length O(s'*¢). This affirms a conjecture
of Cai and Lipton (1989), whose O(s!®!1) construction is the most efficient previously
known one for the Boolean case. In the algebraic case, the most efficient previously known
construction is that of Ben-Or and Cleve (1988), which is O(s?). Also, for our O(s'*)
construction, the formulas only need to be “approximately balanced” in the sense that their
depth is bounded by [(1 + §) log s] for some & < e.

In our constructions, the number of registers required to attain a particular bound on the
exponent increases as the exponent approaches 1. More specifically, to achieve an exponent
of 14 ¢, the number of registers in our construction must be 4(t*1) — 1. For this reason, it is
important to regard the value of € as fixed. In practical terms, ¢ cannot be made too small

-without a huge number of registers.

It 1s of interest that the straight-line programs that arise in our constructions have a
special form: they consist of statements that apply (special) invertible linear operations to
the registers. More precisely, if the number of registers is w, and one regards each possible

configuration of values of the registers as a vector in R* then the effect of executing a
statement of these programs is equivalent to multiplying this vector by a w x w matrix
with determinant 1 (and one entry of this matrix is an input or its negation, and the other
entries are constants). Thus, the statements that constitute these programs can be viewed as
elements of SL,,(R), the special linear group, consisting of w x w matrices with determinant
1. (In Barrington’s (1986), and Cai and Lipton’s (1989) constructions, the statements of the
programs can be viewed as elements of the group Ss, of permutations on a five-element set.
To further compare our results, we note that, when the ring is GF(2), our programs are, in
the language of Barrington, “permutation branching programs of width 2% — 1”7 (where the
“states” are the nonzero elements of {0,1}").)

The primary motivation for this research is complexity theoretic: to determine more
precise relationships between two different characterizations of the complexity class NC?.
Also, there are a number of potential applications. Cai and Lipton (1989, p. 569) ex-
plain that computations expressed in terms of bounded-width branching programs, if they
are efficient enough, are particularly well suited for hardware implementations by certain
“reconfigurable” VLSI chips. Also, Kilian (1988, pp. 23-26) has shown how to use permuta-
tion branching programs to reduce the number of rounds of interaction required for certain
cryptographic protocols. Roughly, by expressing formulas as bounded-width permutation
branching programs, Kilian shows how to construct protocols that perform “oblivious func-
tion evaluations” of formulas in a constant number of rounds (whereas, previously proposed
constructions require {2(s) rounds, for formulas of size s). A possible drawback of Kilian’s
construction is that, in exchange for the reduction in the number of rounds of interaction,
the total number of bits that the parties need to communicate increases. This increase is
due to the cost incurred by simulating formulas by bounded-width permutation branching
programs. Thus, more efficient simulations are of value here.

2 Models of Computation

Let (R,+,-,0,1) be an arbitrary ring. In this section, we define formulas and straight-line
programs over R. Qur definition of a formula is very standard, and our definition of a “linear
bijection straight-line program” is compatible with the standard definition of a straight-line
program (with additional restrictions).

Definition 1: A formula over (R,+,+,0,1) of depth d is defined as follows. A depth 0
formula is either ¢, for some ¢ € R (a constant) or ., for some u € {1,2,...} (an input). For
d > 0, a depth d formula is either (f + g) or (f - g), where f and g are formulas of depth d;
and d, (respectively) and d = max(dy,d;) + 1. The size of a formula is defined as follows. A
depth 0 formula has size 1, and if f and g have size s; and s, (respectively) then the sizes
of (f +g) and (f - g) are both sf + s, + 1. A formula is read-once if, for each input z,, it
contains the subformula z, at most once. A formula computes a function from R™ to R is
a natural way (where n is the number of distinct inputs occurring in the formula).

Definition 2: A linear bijection straight-line program (LBS program) over (R,+,-,0,1) is
a sequence of assignment statements of the form

(

(

B & B+ (B my) o
RB; — By — (R »ay)

wherei,7 € {1,...,w},i# j,c€ R,and u € {1,...,n}. Ry,..., Ry are registers, and z1, ..., 2,
are inputs. The width of an LBS program is w, the maximum number of registers that it uses.
The length of an LBS program is the number of statements it contains. An LBS program
is read-once if, for each u € {1,...,n}, the symbol z, occurs in at most one statement of
the program. More generally, for r € {1,2,...}, we say that an LBS program is read-r if
each input symbol occurs in at most r statements of the program. LBS programs compute
functions from R™ to R in a natural way, provided that we have some fixed convention about
the initial values of registers, and about which register’s final value taken to be the output
of the computation.

For each specific value of the inputs z,, ..., z,, each statement in an LBS program induces
a transformation on the vector consisting of the values of the registers (R;,..., R,). This
transformation can be represented by the matrix whose diagonal entries are 1, whose (¢, 7)-
th entry is £c or +z, (depending on which of the four basic forms the statement takes), and
whose other entries are 0. Executing a statement is equivalent to multiplying (Ri, ..., Ry)
on the right by the corresponding matrix. For example, the statement R; — R; + (R - ;)
corresponds to the matrix

1 00
I 10
0 01

(when w = 3). In this manner, the statements in an LBS program correspond to elements
of SL,(R), the special linear group consisting of w X w matrices with determinant 1. In
particular, in the language of Valiant (1979), an LBS program that uses w registers can be
viewed as a “P-projection” of an iterated product of w X w matrices.

3 Results

The main result of this paper is Theorem 2. Lemma 3 plays an important role in the proof
of Theorem 2 and may be of independent interest.

Definition 3: For distinct ¢,j € {1,...,w}, we say that an LBS program offsets R; by
+R;- f(21,..., Tn) if it transforms the values of the registers as follows. R; is incremented by
the value of R; times f(zy,...,z,) and (importantly) all other registers incur no net change
(i.e. for all k # j, Ry has the same final value as its initial value). For example, the single
statement B, «— R;+(R;-z,) offsets Ry by + R -z;. Similarly, we say that an LBS program
offsets R; by —R; - f(z1, ..., z,) if it decrements R; by the value of R; times f(z1,...,z,) and
causes no net change in the values of all other registers. For example, the single statement
R, — Ry — (R - z,) offsets Ry by —Ry - z;.

Note that to compute f(z1,...,z,) it is sufficient to construct an LBS program that offsets
R; by +R; - f(@1,...,%,) if one adopts an initialization convention where R; is initially 1 and
R; is initially 0, and one adopts the convention that the value of R; is the output of the
computation.

For convenience, we say that we have LBS programs that offset R; by +R; - f(z1,...,2,)
whenever we have an LBS program that offsets R; by +R; - f(z1,...,Z») as well as an LBS
program that offsets R; by —R; - f(z1,...,Zx).

We express the construction of Ben-Or and Cleve (1988) in our current formalism as
follows. :

Theorem 1 (Ben-Or and Cleve, 1988): Over any ring (R,+,-,0,1), any formula
f(z1,...,z,) of depth d is computed by an LBS program of width three and length at most

(29)%.

Proof: Recursively on d, the depth of f(zy,...,2,), we construct LBS programs that offset
R; by £R; - f(z1, ..., z.) (for distinct 7,5 € {1,2,3}).

The construction is trivial when d = 0: the appropriate single statement offsets R; by
+R; ¢, or by £R; - z.

Suppose that we have LBS programs that offset R; by £R; - f(21,..., Z»), and that offset
R; by £R; - g(z1,...,2a). Then we can offset R; by +R; - (f + g)(z1,...,2,) by the LBS
program

offset R; by +R; - f(z1,...,Zn)
offset R; by +R; - g(z1, 1xn))

and we can construct a similar program that offsets R; by —R; - (f + g)(z1,...,%,). Less
obviously, we can offset Ry by +R; - (f - g)(z1,...,z,) by the LBS program

offset Ry by —R; - g(z1,...,Zn)
offset R; by +R; - f(z1,...,%n)
offset Rk by +R 9“(371, 5 85)
offset R; by —R; - f(] -

) PRTTPROTH
One can verify that this program has the required properties by the identities
ri t e S =l =1

and
rk_rj.g-i-(f‘j—]-?‘,;-f)'g=7'k+ri'(f'g)‘

Also, there is a similar construction that offsets Rx by —R; - (f - g)(z1,..., Zp).
Since the maximum recursive factor per level of depth in this construction is four, if the
depth of f(zy,...,Z,) is d, the resulting LBS program has length at most 4¢ = (2¢)%. O

Cai and Lipton (1989) were the first to observe that more efficient simulations of formulas
by bounded-width programs—where the exponent of 2¢ is less than 2—are possible. Their
idea is to construct the simulations recursively, but rather than with respect to single gates,

4

with respect to clusters consisting of several gates. Our construction in Theorem 2 extends
this idea. Informally, for any fixed k, we present a construction that is recursive with respect
to clusters of gates corresponding to intermediate subformulas of depth & and size 2. We
shall show that the recursive factor of our construction is 4 - 2 (whereas, the total recursive
factor that results from a repeated application of the construction in Theorem 1 is, in general,

(22).

Theorem 2: Over any ring (R,+,-,0,1), for any fixed k, every formula f(z1,...,x,) of
depth d is simulated by an LBS program of width 2¥*2 — 1 and length O((2%)(1+%)),

The proof of Theorem 2 (which appears at the end of this section) is an application of
Lemma 3 and Lemma 4 (both are stated and proven below).

A formula f(zy, ..., z,) of depth d+k can be represented in terms of a balanced read-once
formula g(y1, ..., yox) of depth k, and 2% subformulas Ay(z1, ..., z,) (u € {1,...,2%}) of depth
bounded by d such that

F(®1550085) = g(R1(@15 000 Tn)yores Ron(Brseey Ei))s

In order to simulate f(zy, ..., z,) efficiently in terms of h,(z1, ..., z.) (v € {1,...,2F}), we show
(in Lemma 3) that g(y, ..., Y.#) has an alternate representation as a special kind of straight-
line program, called a restricted multiplication straight-line program (defined below). Then,
using this alternate representation, we show (in Lemma 4) how to carry out the efficient
k-level simulation, and, finally, we apply this to prove Theorem 2.

Basically, restricted multiplication straight-line programs (defined formally below) differ
from conventional straight-line programs in that they do not allow the product of the contents
of two registers to be computed explicitly. More precisely, statements of the form @; «
Q@;-Qr, where Q;, Q;, @k are registers are disallowed. Only products of registers and constants
(Qi « Qj - ¢) or registers and inputs (Q; — @, - y,) may be computed explicitly.

Definition 4: Define a resiricted multiplication straight-line program (RMS program) as a
sequence of assignment statements of the form

Q;+—1 ;or
Qi — Q; ;or
Qi—Q;+Qx ;or
Qi—Qj-c ;or
Qi"_Qj'yu 3

where ¢,7,k € {1,...,w}, ¢c € R, and u € {1,...,m}. Here, in order make the distinction
between RMS programs and LBS programs clear, we denote the registers as @1, ..., @w, and
the inputs as yy,...,ym. Naturally, the width of an RMS program is w, and its length is the
number of statements it contains. An RMS program is read-once if, for each v € {1,...,m},
the symbol y, occurs in at most one statement of the program.

We do not use an initialization convention in order to unambiguously associate functions
with RMS programs; rather, we restrict ourselves to RMS programs that are unambiguous
with respect to all of their registers in the following sense. A RMS program is unambiguous

5

with respect to register @); if all assignments of values to registers made in the program do
not depend on the initial value of register @;. (For example the RMS program consisting
of Q; — @ -y, followed by @Q; « 1 is ambiguous with respect to ¢, but, if the order
of the two statements is reversed, the RMS program is unambiguous with respect to both
of its registers.) We say that an RMS program computes a function from R™ to R if it is
unambiguous with respect to all of its registers, and some fixed register’s final value is the
value of the function.

It is well known that formulas of size s and depth d are computed by (unrestricted)
straight-line programs of length s that use d + 1 registers. The straight-line programs sim-
ply evaluate all the nodes of the formulas in a “depth-first traversal” order. In general,
such an evaluation requires assignment statements of the form @; « @; - Qx (to evalu-
ate multiplication nodes whose subformulas are not constants or inputs). Also, in general,
disallowing assignment statements of the form @; «— @; - @& from straight-line programs
results in a strictly weaker model of computation (since all RMS programs of polynomial-
length compute only functions of polynomial degree, whereas polynomial-length unrestricted
straight-line programs compute some functions of exponential degree (e.g. by repeated squar-
ing)). Nevertheless, Lemma 3 implies that disallowing these multiplication statements from
straight-line programs does not significantly reduce their efficiency in evaluating formulas.
It should be noted that, although it may be of independent interest, the fact that the RMS
program in Lemma 3 has width bounded by d + 1 is not used for the proof of Theorem 2.

Lemma 3: Let g(y1,...,ym) be a read-once formula of size s and depth d. Then there is
a read-once RMS program of length at most 2s and width at most d + 1 that computes
(Y1, -+, Ym). (Moreover, as a technical convenience for Lemma 4, the first statement in the
RMS program is @, « 1 and this is the only statement of the form Q; «— 1 in the program.)

Proof: For a formula ¢(y1,...,Ym), we say that an RMS program g(yi, ..., ym)-scales Q;
if it assigns to register @); the value of its initial contents multiplied by g(y1,...,¥m) and is
unambiguous with respect to every register except Q;. (Note that here we are not concerned
about the effect of the program on its other registers besides @); as long as this effect is
unambiguous.) For example, the single statement program Q; «— @1 - y1, y1-scales Q.

To compute g(yi, ..., ym), it is sufficient to construct a program that g(yi,...,ym)-scales
()1 because then, by preceding this program by the statement ¢); «— 1, the required program
is obtained.

Inductively on d, the depth of g(y1, ..., ym), we construct RMS programs that g(y1,..., ym)-
scale Q1.

When d = 0, the single statements Q; « @1 - c and @1 «— @5 - yu trivially c-scale); and
yu-scale @; (respectively) in width 1.

Suppose that we have RMS programs of width w that f(y1,...,ym)-scale @ and g(y1, ..., Ym)-
scale ();.

Then we can (f -+ g)(y1, ..., Yym)-scale ; in width w by the program

f(y1y ...y ym)-scale @,
9(¥1, -, Ym)-scale Q.

Also, in width w41, we can (f +g)(y1, ..., ym)-scale @ as follows. First, modify the program
that f(y1,...,ym)-scales @, so that every reference to register @ is replaced by a reference
to register Q41. The resulting program f(y1,...,ym)-scales Q41 and makes no reference to
register (J;. Then the program

Qw+1 LR Q]

f(yla sy ym)'scale Qw+1
g(yls "'1ym)'sca‘le Ql
Ql = Ql + Qw—l»l

(f + 9)(y1,---, Ym)-scales Q.
It is straightforward to verify that if f(yi,...,ym) is read-once, and has size and depth

bounded by s and d (respectively) then this construction results in a read-once RMS program
of length at most 2s and width at most d + 1. O

Lemma 4: If g(y1,...,ym) is computed by a read-once RMS program of length [whose first
statement Is (J; «— 1 and such that this Is the only statement of the form Q; «— 1 in the
program then there are read-4 (explained in Definition 2) LBS programs whose length and
width are bounded by 8] and I + 1 (respectively) that offset R; by £R; - g(y1, ..., Ym)-

Proof: We can modify the RMS program to be “time-stamped”, so that, for each i €
{1,...,1}, its ¢-th statement performs an assignment on the register Q;, and so that the
output of the program is the final contents of @); (the modified program has width 1). Let
S; denote the :-th statement of this modified program, and let fi(y1,...,ym) be the unique
value that is assigned to register @;.

We construct two sequences of LBS programs, P, P (¢ € {1,...,{}). Informally, for
i € {1,...,1}, the effect of P is to “simultaneously offset” the registers Ry, ..., R;y1 by the
values +R; - fi(¥1,.-,¥m)y -y +R1 - fi(y1, .-, Ym) (respectively). More precisely, the effect of
executing P;" is equivalent to that of executing an LBS program of the form

offset By by +Ri - fi(y1y ooy Ym)
offset Rz by +Ri - fa(y1,) Ym)
offset R;y1 by + R, 'fi(yla) ym) .

(And Py are defined similarly to simultaneously offset the registers Ry, ..., R+ by the values
—Ry - filyr, ooy Ym)y ooy —Ra - fily1,y -, ym), Tespectively.) Note that then

P
Py

offsets Ri41 by +R1 - f(v1,.-..,¥m) and, thus, is the required program.

Now, we construct P (¢ € {1,...,1}) inductively on 7 as follows. Since the first statement
in the RMS program is @ « 1, it follows that fi(y1,...,ym) = 1, so Pf is constructed by
the single statement

Rz (—R2+(R1'].) F

Now, assume that ¢ > 1 and P}, has been constructed. &; is of four possible forms, which
we treat as separate cases.

Case 1: &; is of the form Q; «— Q; (where j <). In this case, P;" is

Ripn — Ripq — (R:'+1 . 1)

Pttl

Rip1 « Ripn + (Rja - 1)
Here, the identity

Popt — Ty Lb (P 010 fi) e L =wpgg b1y fy

verifies that the resulting program P;" has the desired properties.
Case 2: §; is of the form Q; « Q; + Qx (where j,k < 7). In this case, P} is

Rit1 — Riy1 — (Rjpr - 1)
Riy1 — By — (Rgga - 1)
P,

Riy1 — Rip1 + (Rjy1 - 1)
Risi & Rigr + (Bgy1 - 1) .

In this case, the identity
ript =i L= L+ (i +r- fi) - L+ (repr - fo) - L=riga + - (5 + fr)
verifies that the resulting program P;" has the required properties.
Case 3: &; is of the form Q; — @; - c (where j < i and ¢ € R). In this case, P is
Ry « Riys — (Bjpa -)
pitl
Riyn — R+ (Rja - c)
Onme can verify that the resulting program P;" has the required properties from the identity
Tier = Tjp1 €+ (T +ri- fi)e=ripa+m-(fi- o) .

Case 4: §; is of the form Q; « @, - y, (where j < ¢ and u € {1,...,m}). In this case, P}

15

Riyy — Ripq — (Rj+1 : yu)
P,
Ry — R + (Rj+1 sl

In this case, the verification that the resulting program P;" has the required properties follows
from the identity

Tipl —Tipr YuF+ (Tjpr +7r1- fi) e =riga +71- (fi - %) -

This completes the construction of P;* (i € {1, ...,1}). The construction of P (i € {1,...,1})
is similar.

Note that each symbol y, occurs in at most 2 statements of P;" and of P;". Therefore,
the final program

P
Pl

is read-4. Also, the length and width of the final program are bounded by 8! and [+ 1
(respectively). O

Proof of Theorem 2: Fix k arbitrarily. Given 25+2 —1 registers, we show how to construct
LBS programs that offset R; by £R; + f(z1, ..., ,) and have length O((2¢)(+%)), where d is
the depth of f(z1,...,2z,). Our construction is k-level recursive with respect to the depth of
the formula.

Each depth d + k formula f(z1,...,z,) can be expressed as

F&y; «2%) S Gthe(@ 0 Bi)scosboslBros Ba));

where g(y1,...,y2+) 1s a balanced read-once formula of depth k, and h,(zy,...,2,) (v €
{1,...,2%}) are formulas of depth bounded by d.

Suppose that, for all distinct 7,7 € {1,...,25%2 — 1}, and all v € {1,...,2¥} we have
LBS programs that offset R; by +R; - hu(z1,...,2,). We construct LBS programs that
offset R; by +R; + f(z1,...,2,) as follows. By Lemma 3, there exists a read-once RMS
program of length bounded by 2 - (2! — 1) = 2¥2% — 2 that computes g(y1,...,y:). By
Lemma 4, there exist width-(2¥*2 — 1) read-4 LBS programs whose lengths are bounded by
8 (252 — 2) = 2%+5 — 16 that offset R; by £R; - g(v1, ..., ¥2¢). By replacing each statement
of the form R; — R; = (R; - v) (3,5 € {1,...,2F%? — 1}, 4 # 7, and u € {1,...,2*}) in these
programs by an LBS program that offsets R; by £ R;-hy(z1,...,Zs), we obtain LBS programs
that offset R; by £R; - g(h1(z1,...,%5), ..., hor(21, ..., 7)), o1, equivalently, that offset R; by
+R; - f(z1,...,25), as required.

By induction, if the depth of f(zi,...,2,) is d, the above construction results in an LBS
program of length O((4 - 2F)%) = O((2¢)1+3)). O

By specializing the ring to GF(2), Theorem 2 immediately implies that, for any fixed
k, every Boolean formula of depth d over the basis {A,®,1} can be simulated by an LBS

9

program of width 2¥%2 — 1 and length O((2¢)(1+%)). By observing that in the construction
used in the proof of Theorem 2 only the size of g(y1, ..., yox) matters (not the depth), we can
also show the following.

Corollary 5: For any fixed k, every Boolean formula f(z1,...,z,) of depth d over the basis
{A,V,®, =} is simulated by an LBS program of width 2¥*2 —1 and length O((2¢)(*+%)) over
the ring GF(2).

4 Open Problems

In our constructions, (4¢) registers are required in order to obtain an exponent of 1 + €.
It would be interesting to determine whether or not such an exponent can be obtained with
fewer registers, such as (1)),

As far as we know, a polynomial increase in size is incurred when a general formula is
converted into a balanced formula. Perhaps our technique can nevertheless be extended to
simulate general formulas of size s by bounded-width programs of length O(s'*¢).

A particularly interesting consequence of Barrington’s (1986) result is that the MAJOR-
ITY function from {0,1}" to {0,1} is computed by a bounded-width program of length
polynomial in n. This can be taken to mean that one can “count” the number of 1s in a
string of length n with constant on-line storage (rather than the logn on-line storage that
one might expect). It would be interesting to construct bounded-width programs of length
O(n'*¢) that compute the MAJORITY function. Our present result does not solve this
since, as far as we know, there is no balanced formula of size O(n'*¢) (for arbitrarily small
e > 0) over the basis {A,V,®,~} that computes MAJORITY. Perhaps a more direct con-
struction is possible, and such an approach may also yield a deeper understanding of how
one can “count” with bounded on-line storage.

5 Acknowledgment

I thank Jin-yi Cai for drawing my attention to an error in an earlier version of this paper.

References

Ajtai, M., L. Babai, P. Hajnal, J. Komlés, P. Pidlak, V. Rodl, E. Szemedréi, and G. Turédn
(1986), “T'wo Lower Bounds for Branching Programs”, Proc. 18th Ann. ACM Symp. on
Theory of Computing, pp. 30-38.

Barrington, D. A. (1986), “Bounded-Width Polynomial-Size Branching Programs Recog-
nize Exactly Those Languages in NC'”, Proc. 18th Ann. ACM Symp. on Theory of
Computing, pp. 1-5. Final Version in J. Computer System Sci. 38, 1989, pp. 150-164.

Ben-Or, M., and R.. Cleve (1988), “Computing Algebraic Formulas Using a Constant Number
of Registers”, Proc. 20th Ann. ACM Symp. on Theory of Computing, pp. 254-257.

10

Borodin, A., D. Dolev, F. Fich, and W. Paul (1983), “Bounds for Width Two Branching
Programs”, Proc. 15th Ann. ACM Symp. on Theory of Computing, pp. 87-93.

Cai, J., and R. J. Lipton (1989), “Subquadratic Simulations of Circuits by Branching Pro-
grams”, Proc. 30th Ann. IEEE Symp. on Foundations of Computer Sci., pp. 568-573.

Chandra, A., M. Furst, and R. J. Lipton (1983), “Multiparty Protocols”, Proc. 15th Ann.
ACM Symp. on Theory of Computing, pp. 94-99.

Kilian, J. (1988), “Founding Cryptography on Oblivious Transfer”, Proc. 20th Ann. ACM
Symp. on Theory of Computing, pp. 20-31.

Padlak, P. (1984), “A Lower Bound on the Complexity of Branching Programs”, Proc. Conf.
on Math. Foundations of Computer Sei., pp. 480-489.

Valiant, L. G. (1979), “Completeness Classes in Algebra”, Proc. 11th Ann. ACM Symp. on
Theory of Computing, pp. 249-261.

Yao, A. C. (1983), “Lower Bounds by Probabilistic Arguments”, Proc. 24th Ann. IEEE
Symp. on Foundations of Computer Sci., pp. 420-428.

11

