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Abstract

The EM (expectation maximization) algorithm is a maximum-likelihood parameter estimation
procedure for incomplete data problems in which part of the data is hidden, or unobservable.
In many signal processing and pattern recognition applications, the hidden data are modeled
as Markov processes and the main difficulty of using the EM algorithm for these applications
is the calculation of the conditional expectations of the hidden Markov processes. In this
paper, we show how the mean field theory from statistical mechanics can be used to efficiently
calculate the conditional expectations for these problems. The efficacy of the mean field
theory approach is demonstrated on the parameter estimation for one-dimensional mixture
data and two-dimensional unsupervised stochastic model-based image segmentation. Ex-
perimental results indicate that in the 1-D case, the mean field theory apprach provides
comparable results to those obtained by Baum’s algorithm, which is known to be optimal. In
the 2-D case, where Baum’s algorithm can no longer be used, the mean field theory provides
god parameter estimates and image segmentation for both synthetic and real-world images.
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1. Introduction:

Many problems in signal processing and pattern recognition can be formulated as in-
complete data problems. In an incomplete data problem, part of the data is not observable,
or hidden, and it is necessary to estimate the hidden data and its characteristics. Usually,
the observed and hidden data are modeled as either random variables or random processes
which are characterized by parametric probability distributions.

Recently, Markov processes have been demonstrated as effective models for the hid-
den random processes in various incomplete data problems in speech recognition, image
processing and computer vision (e.g., see [11]-[12] for surveys in these areas). In these
applications, the Markov models capture the underlying physical constraints of the prob-
lems, such as the transitions of sound units in a phoneme in speech recognition and the
continuity of object surfaces in computer vision. The solution of the incomplete data prob-
lems often amounts to estimating model parameters of the distributions of the hidden and
observed data as well as estimating the hidden data.

An example of particular interest here is that of stochastic model-based image segmen-
tation in which an observed image is separated into disjoint regions of different statistical
properties, called classes. This is done through assigning pixels of the image to different
classes. A number of Markov random field (MRF) model-based image segmentation algo-
rithms have been proposed and demonstrated successfully in segmenting various real-world
images (e.g., see [3]-[7]), such as noisy and textured images. MRF’s are multi-dimensional
Markov processes and are used here to incorporate physical constraints of the segmen-
tation problem, such as “neighboring pixels should belong to the same region except at
region boundaries”. In these techniques, the pixel gray levels are modeled as an observable
random field, and the class assignments of the pixels (the segmentation) are modeled as a
hidden random field, image segmentation is achieved by finding the optimal estimates (in
some sense, e.g., maximum a posteriori) of the hidden states.

Most of the MRF based techniques are supervised in that they assume that the pa-
rameters can be estimated from training data. However, in practice, training data is often
not available and one needs unsupervised techniques which estimate the model parameters

during segmentation. Even when training data is available, training processes often re- .
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quire operator intervention where an automated system is more desirable. Hence, recent
research have be directed towards unsupervised techniques [7]-[10].

The EM (expectation-maximization) algorithm [1]-[2] is an iterative maximum-
likelihood (ML) procedure for parameter estimation in incomplete data problems. It can
also be used to estimate the hidden random variables or processes.® Each iteration of the
EM procedure consists of two steps, the E-step (expectation) and the M-step (maximiza-
tion). In the E-step, the conditional expectation of the likelihood of the hidden data (given
the observed data and current estimates of parameters) is calculated. In the M-step, the
parameter estimates are updated by maximizing the conditional expectation obtained in
the E-step.

A main difficulty in using the EM algorithm when hidden data are modeled as Markov
processes is in the conditional expectation calculation of the E-step. For one-dimensional
(1-D) hidden Markov processes, Baum et al. [13] proposed a forward-backward proce-
dure which requires intensive computation. For two-dimensional (2-D) or N-dimensional
(N > 2) hidden Markov processes, i.e., Markov random fields, Baum’s algorithm can not
be used due to the lack of causality in spaces with more than one dimension. Therefore,
while the EM procedures are desirable for two-dimensional applications, such as unsuper-
vised segmentation of images, only approximated versions have been studied, where the
approximations are made based on more or less heuristic arguments [7]-[10].

Recently, several researchers [14]-[16] have used the mean field theory [17] from statis-
tical mechanics to calculate the mean (expectation) of MRF’s in various computer vision
applications. The mean field theory provides a mathematically sound (in some sense opti-
mal [17]) approximation to the mean of an MRF. In this paper, we will show how it can be
used in EM procedures for MRF’s. After a brief review of the mean field theory in Section
2, we will describe its application in EM procedures and show how these EM procedures
can be used in unsupervised image segmentation in Section 3. In Sections 4 and 5, the
efficacy of the mean field theory approach is demonstrated on 1-D and 2-D signal/image
segmentation and parameter estimation, respectively. In the 1-D case, the results are also

compared with those obtained by Baum’s algorithm. Finally, a summary is provided in

3In this case, the estimates are, in general, not ML but optimal in a different sense.
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Section 6.

2. The Mean Field Theory:

A clear and comprehensive treatment of the mean field theory can be found in a text
on statistical mechanics by Chandler [17]. In this section, we will briefly review the mean
field theory based on the materials in [17]. To make it convenient to address our application
problems, we will use the notations established in a previous report [18] rather than those
of [17].

We will start the discussion with the concept of an MRF'. Let S be a set of sites with a
neighborhood system defined on it. Typical examples of S are given in Fig. 1. In Fig. la,
S is a one-dimensional (1-D) lattice with a “first-order” neighborhood system, where the
neighbors of a site i are the two sites that immediately proceed and follow it; in Fig. 1b, S
is a two-dimensional (2-D) lattice with a “second-order” neighborhood system, where the
neighbors of site i are the eight sites that immediately surround it. Let ¢ be a set of sites
in S, then c is called a clique of S if it either contains a single site or several sites that are
all neighbors to each other. Examples of various types of cliques are shown in Fig. 1 for
the lattices there.*

Let u = {u;}, 1 € S, be a collection of random variables defined on S. Then u is
called a MRF if: 1) all of its realizations have non-zero probabilities and 2) its conditional

distribution satisfies the following Markov property:

pluilus—;) = plui|uj,7 € N;), (1)

where ug_; denotes the field restricted on S — i, and N; denotes the set of neighbors of 2.
Let ube a MRF. then it is well known (e.g., see [19]) that the joint probability distribution

of u is a Gibbs distribution, given by

p(u) = Z~" exp[-BU(u)], (22)

4For the 2-D lattice, we have only shown the singleton and doubleton cliques which we are

going to use in this paper. For more complex clique types, see, e.g., Geman and Geman
[22].



where U(u) is the energy function with

U(l.l) = Zvc(u)a (Qb)

where V.(u)’s are the clique potentials (for a given clique ¢, the clique potential only
depends on the random variables defined on sites in that clique) and Z is the normalization

factor, also called the partition function or free energy, with

&= Z exp[—AU(u)]. (2¢)

The MRF model was first studied in statistical mechanics (e.g., see [17]). Comprehensive
treatments of the MRF model and its applications in signal/image processing and computer
vision can be found in [12], [19]-[22].

The mean field theory concerns the following problem: How does one find the mean
of the field above? More specifically, how does one find < u; > for an arbitrary : € S?

where < - > represents expectation, or ensemble average. By definition,

<u;p>= Z uip(u)
=Z1 Zugexp[—ﬁU(u)].

However, it is well known that due to the interaction between the u;’s, the calculation of Z
and the sum above involve all the possible realizations of the MRF'. Therefore, in general,
precise calculation of < u; > is exponentially complex and is not computationally feasible
[17].

The mean field theory suggests an approximation to (3) based on the following as-
sumption: the influence of uj, 7 # ¢, in the calculation of < u; > can be approximated
by the influence of < u; >. For the sake of simplicity, we assume that the interactions
between sites are pairwise, that is, a clique potential may be non-zero only when it contains

one or two sites. In this case, the energy function can be written as
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U(u) = Z [Vc(z;) +- %— Z V:’:(ziazj)]a (3)

1 JEN;

where V,(+) and V,(-, -) represent clique potentials for a single site and a pair of neighboring
sites, respectively. To use mean field approximation, define a new energy function for site

1 as

U () = U(Wajmcnss iis

= U,-"‘f'(u,-) + R:-"’ﬂ(< us—; >), (4)

where the first term contains all the clique potentials related to site < and is called the

mean field local energy at 1, given by

Ur = Vi(u) + Y Velui, < uj >), (52)
JEN;

and the second term, which does not depend on u;, is given by

RPY (< us—i >) = U(W)lu;=cu; > i = UM (). (ob)

Similarly, define

71 =Y exp[-BU (wi)] = 2] exp|-BR] (< us—i >)], (5¢)

Uy

where Z:nf is called the mean field local free energy, given by

Then, by the mean field approximation

LU > Z;nfrl Zuiexp[—ﬁU?f(ug)]

= 277 Y s expl AU (u), ©

ug



where terms that do not depend on u; cancel each other.

In terms of physics, the mean field theory of (4)-(6) suggests that when estimating
the mean field at 7, the influence of the field at other sites can be approximated by that
of their mean; therefore, the fluctuations on these sites are neglected. This is a reasonable
assumption when the field is in equilibrium where fluctuations at different sites cancel each
other. In terms of mathematics, the mean field theory of (4)-(6) suggests that the marginal

distribution of the field at i,

p(ui) = Z71 ) exp[-BU(u)],

us—i

be approximated by

In terms of computation, notice that in order to find the mean field at i, one needs the
mean field at the neighbors of i.Therefore, the mean field is usually computed by iterative
procedures. Since the calculation of the mean field can be decomposed into local compu-
tations, as can be seen from (5)-(6), it can be implemented in parallel. Finally, Geiger and
Girosi [14] have proposed an approximation of the partition function Z by neglecting the

fluctuations when the interaction of the sites are concerned, that 1s

U(u) =) Ve(u)
e Z(Vc(u,—) +% > Veluiyuy))

JEN;
> > (Velus) + % > Velui, < uj >))
i JEN;
= U™ (u) (Ta)

and



Z~Z™ = Zexp[—ﬁUmf(u)]

1
=[] >_ expl-B(Vel(wi) + 5 > Ve(ui, < uj >))). (7b)
i€S ui JEN;
This leads to slightly different results in calculating < z; > from those of [17] which are

described in expressions (5)-(6).

3. Application to EM Procedures:

In this section, we describe how the mean field theory can be used to compute the
conditional expectations in EM procedures which may otherwise be difficult to compute
when the hidden variables are Markov processes. First, we briefly review the EM algorithm,
starting with the following notations:

y = {yi},7 € S - observations;

2z = {z;},1 € S — hidden states, not observable;

p(z|®;) = Z7! exp[—pBU(2z|®,)] - prior for z;

p(¥|®y,2) — likelihood of y;

® = (B, d,) - the set of parameters for the distribution of y and z. Here, we assume

that the parameters are separable. That is, @, N @, = ¢, where ¢ is the empty set.

A. The EM Algorithm:
The problem that the EM algorithm attempts to solve is the following maximum-
likelihood estimation (MLE) problem:

@y = argmaxlog p(y|®). (8)

Notice (8) is more general than the classical MLE problem in that part of the data is not
observable.

The EM algorithm is an iterative procedure for solving (8). At each iteration, it
consists of two steps:

E-Step: Find the function Q((I)I@(p)) =% log’p(y]z’ (I)) + loginj(zl(ﬁ)iyj {p(?’) -
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M-Step: Find ®#+1) = arg maxe Q(®|®(P)).
Here, p represents the pth iteration. It has been shown that under some moderate regularity
conditions, the estimates converge to ML estimates, at least locally [2].

The main difficulty in using EM procedures in applications where z is an MRF is
that the Q-function of the E-step is hard to calculate due to the interactions between the
hidden variables at different sites. Now, this difficulty may be overcome by using the mean

field theory. We illustrate this for both 1-D and 2-D MRF’s.

B. Mean Field Approzimations: 1-D Case

This is the case considered by Baum et al. [13] and is known as the hidden Markov

model (HMM). The prior model is

p(z|®) = p(zn|2n-1, ®)P(2n-1]|2n—2, @)+ - - p(22|21, ®)p(21 |®)

= eXP[Zlog p(zi|zi—1, ®)), (9a)

where p(z1]|z0,®) = p(z1|®). Suppose for any i, 1 < i < n, z; takes one of I{ states
represented by vectors ex, k = 1,2,..., K, where ex is a binary vector with 1 at the kth

component, 0 everywhere else®. Then the Markov process is a Markov chain. One can

represent log p(z|®) as

k3

logp(z|®) =Y _ zf_, V(®)zi, (9b)
i=1
where V(®) is a I x I matrix whose (k, [)th element is log p(z; = ei|zi—1 = ex). Therefore,

V(®) is the “log” of the transition matrix of the Markov chain. Here, we assumed that
the Markov chain 1s homogeneous.

In Baum et al.’s model, the likelihood has the following decomposition

p(y|®y,2) = Hp(ysl%,zi,zs_l). (10)

5Naturally, the z;'s are K-dimensional vectors such that z; = e, for some k.
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Therefore, one can write the log likelihood as

Tt

log p(ylz, ®) = Y zl_; W(yi, ®)zi, (11)

where W(y;, ®) is a K x K matrix with the (&, !) component being log p(yi|zi—1 = ek, zi =

er, ). Now, the Q-function can be written as

Q(®|8?)) = < log p(y|z, ) + log p(z|®)|y, 3P >

=" <zl W(yi, ®)zily, 2® >

i=1
+Z<z, V(@)zly, 80 > (12)

It is not difficult to see that the calculation of (12) lies in calculating the conditional
expectation of the form < z;_; x2i |y, ®(?P) > (since the W and V matrices above contain
only constants with respect to the conditional expectation), where z; ; is the [th component
of vector z;, 1 <1 < K. This may be achieved by using the mean field theory. However, a
slight extension of the theory is needed, since in Section 2 the mean field theory provides
only < z|y,®®) >. To proceed along this direction, we first notice that conditioned on y
and &), z is a Markov random field (1-D). In other words, the posterior

p(zly, @) ~ ply,z|@")

= p(ylz, 8?)p(z|2P)

= exp[ ) _(log p(yi|z:, zi-1, 2P)) + log p(zil2i-1, ®))]
i=1

= exp[Y 2L, Wi(y:, 8 +Z V(@®)z] (138)

=1
is a Gibbs distribution. Indeed, comparing (13) with (2a)-(2c¢), the energy function can be
identified through

T T

BU(zly, @) = =) 2t W(y;, 8P)zi — ) =L, V(8P)z; (13b)

i=1 =1



and clique functions can be identified through

BVe(ziz1,zily, 8P) = =zt Wy, @)z — 2t V(2P)z;. (13¢)

Therefore, the mean field local energy at site ¢ can be obtained from

BUM (z:) = — < 2, ly, 8@ > W(y;, 8P)z; — 2fW(yit1,8P)) < ziga |y, 8 >

— <z 1y, 8P > V(@P)z; — 2EV(8W) < 2i44]y, 30 > . (14)

However, our interest here is to calculate the mean field at a pair of sites, <
Zi—1 gy, ®) > or more generally, < z;_1z{|y, ®P) >. Using the same principle that
gave us the mean field local energy for z;, we arrive at the following mean field pairwise

local energy for z;—; and z;

/BU,'T{Z;' =—-Z z§—2]Y= (1)(?) > W(y,;_1, fI’(p))z,'_.l = 31‘_1W(y1‘, ‘I’(p))z,;

- sz(yi-}-l!(p(p)) < zi-{-lly'l @(p} PR zi—Qlya @(P) > V((I)[p))zi“l

— 2 V(®P)z; — 2, V(D) < zi44]y, 8P > | (15)

Thus, the pairwise conditional expectations can be computed using the mean fleld at single
sites.

Notice that the mean field calculation is an approximation, unlike Baum’s exact so-
lution. However, results in statistical mechanics have shown that the mean field theory
provides good approximations in solving a number of problems, such as the prediction
of critical temperature in phase transition for multi-dimensional lattice gas models [17].
An advantage of the mean field approximation is its computational simplicity. The com-
putation usually takes only a few iterations to converge and can easily be implemented
in parallel. Finally, once the conditional expectations are obtained through mean field
approximations, the M-step, that is, the maximization of the @ function with respect to
the parameters, is straightforward, as is described in much of the literature [1}-[2], [11],
[13]. In Sections 4 and 5, we will describe formulas used in the M-step for some specific

observation and MRF models.
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C. Mean Field Approzimations: 2-D Case

This is the case in which z is an MRF. For simplicity, we still assume that each z; is
a binary vector of length K with one component being 1 and all others being 0. Without
loss of generality, we restrict the interaction between sites to pairwise interaction between

neighbors. Then we can write the prior of the MRF as

p(z|®) = Z" exp[-BU(2|2)]
= Z7Y(®) exp[— 52(1/ (2i]®) + Z Ve(zi, 2| ®))]. (16a)

JGN

The log of this prior is then

log p(2]®) = —ﬁz[ @19)+5 3 Viler®)| - log 2(8)

JEN

=5 % [#Vi@) + § X atva(@)| ~logz(@),  (10v)

JEN;
where V(@) is a K-dimensional column vector whose kth component is V;(z; = ¢;|®) and
V,(®) is a K x K matrix whose (k,[)th component is V.(z; = ex,2j = e;). Here, again,
we have assumed that the field is homogeneous and isotropic.® For the sake of simplicity,

we assume that the likelihood has the form

p(ylz, @) = Hp(ym,,@) (17)

Then the @ function can be written as
Q(2]8") =< logp(y|z, @) + log p(2|®)|y, 2" >
= Z < 2y, 8P > Wi(y:, @) - 8 < zlly, P > Vy(@)

Z Y < 2 Va(@)zily, 8P > —log Z(3), (18)

1 JEN;

6This means the clique functions are the same for neighboring pixels in different orienta-
tions. The extension to the non-isotropic case is straightforward, as will be described in
Section b.
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where W (y;, ®) is a K-dimensional column vector whose kth component is log p(y:|z: =
ek, ). Agax:n, the calculation in (18) requires the calculation of < zly, () > and <
ziz}]y@@) >, where j € N;. To solve this prdblem with the mean field theory, we proceed
as in part B by first deriving the mean field local energy and mean field pairwise local

energy from the posterior distribution

p(zly, ) ~ p(ylz, 8P)p(z|2")

= Z27}(2P) exp [— 8. (— %logp(yilzs', Bledy4

1
+ 2i V(@) + 5 > szz(q)(p))zJ')]. (19)
JEN;

Therefore, the mean field local energy is

vl = —llogp yilzi, P +szV1((I=(P) + 2tV (8P < 2]y, 8P > (20
1 ‘8 1 H ]
JEN;

and the pairwise local mean field energy is

! ]
-3 log p(yi|zi, ) — 5 log p(y; 25, o))

+2IV(P) 4+ 2V (8P)) + 2,V (8P))z;

+ Y AVy(@P) <zly, @ >+ Y 2 V(8P) <z ly, 8P > (21)
i'e€N;,i'#] JTEN; j'#i

e =

When the conditional expectations are computed by using the local mean field energy
functions and local free energy, we can proceed to the M-step. Since we have assumed
that the model parameters for the observed data and hidden variables are separable, they
can be estimated separately. Under the conditional independent assumption of (17), the
estimation of the model parameters of the observed data, ®,, can be obtained in the
same way as that for the case where 2 is an independent random fleld, a case described in

previous work [1]-[2]. However, the estimation of the parameters of the hidden MRF, &,

12



is more involved. According to the EM algorithm, at the M-step, one wants to find the

estimates of the MRF parameters, ,, through

P+ = arg max < log p(z|®) >

=a.rg;n;1£.x{ < —BU(z|®,) > —log Z((Dz)}, (22)

where < - > is the conditional expectation conditioned on y and ®(®). The maximization
of (22) involves the calculation of the partition function, which is difficult for general MRF
models. This difficulty, however, may be avoided by using a mean field approximation of

p(z|®;). In [17], Chandler described the following mean field approximation

pur(z|®z) = 23/ p(®z) exp[—BUMF(2]22)], (23a)
where
Umr(z|®:) =) [sz1(®,)+ Y 2 Va(®2) < z; > (23b)
i JEN;
and

Zmr(2z) = Zexp[—ﬁUMF(Z'l@z)]

:H;exp[ Z( V(8,) szVg(sz)<zj>)]. (23¢)

JEN;

Using pyr(2z|®2), the MRF parameters are estimated by

~

Qo= a.rgnéa.x{ < —BUpP(z|®,) > —log ZMF((IJZ)}. (23d)

There are several points worth noting about the mean field approximation of p(z),
pmr(z). First of all, the partition function of pysr(z), with its factorization of (23c), is

easy to compute. Secondly, Chandler has shown [17] that the approximationsin (23a)-(23d)
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is optimal with respect to the Gibbs-Bogoliubov-Feynman bound. Geiger and Girosi’s ap-
proximation in expressions (7a)-(7b) is also an approximation of p(z). In our experiments,
we found that Chandler’s formula provides better estimates than those obtained by Geiger
and Girosi’s, which seems to justify its optimality. Finally, it is interesting to notice that

if < z; > is replaced by zj, pyr(z) becomes the pseudo-likelihood of Besag [12].

4. Experiments on 1-D Data:

We have performed some experiments to observe the performance of the mean field
theory approach’ to parameter estimation and (hidden) state estimation in incomplete
data problems where the hidden data is modeled by Markov models. Using notations
introduced in Section 2, in parameter estimation the model parameters, ®, are estimated
based on the observations y, and, in state estimation the hidden states, z, are estimated
based on y and the estimated ®. State estimation is often referred to as signal classification
or signal segmentation, since by estimating z, we are assigning observed samples, y;’s, to
different classes.

The results presented in this section are on the unsupervised classifica-
tion/segmentation of 1-D mixture signals, where the observations (y;’s) are generated
from different pdf’s depending on the states (z;’s). While our goal is to apply the mean
field theory to 2-D image segmentation (results presented in Section 5), there are two rea-
sons for studying 1-D signals before 2-D images. First, 1-D experiments require much less
programming, debugging, and computation, while their results still provide insights into
corresponding 2-D problems, in this case image segmentation, since the mean field theory
is the same for 1-D and 2-D. Secondly, in the 1-D case, the mean field theory results can
be compared with those obtained using Baum’s algorithm, which is known to be optimal

for 1-D signals but does not apply to multi-dimensional problems.

A. Ezperiment Description:
A typical data set used in our experiments is shown in Fig. 2, where a two-class hidden

state sequence (Fig. 2a) generates a two-class Gaussian mixture observation sequence

"Here, by the mean field theory approach, we refer to the EM procedure in which the mean
field theory is used to calculate the conditional expectations in the E-step.
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(Fig. 2b). The lengths of the sequences for all data sets are 1000 points. The hidden
state sequence, z = {z;}, is generated from a two-state Markov chain with transition
probabilities py;, where k = 1,2, I = 1,2. The observation sequence, y = {y;}, is generated

from conditional Gaussian pdf

p(yilz:i) = pyilar), if zi =ex, k= 1,2, (24)

where ax = (mg, vk ) is the parameter vector for the kth class that contains mean my and
variance vi. Notice, here we have assumed that the y;’s are conditionally independent
given z, which is a common assumption used in speech processing and simpler than the
assumption in expression (10) of Section 3.B.

The mean field theory approach is used to estimate the model parameters from the
observation sequence and to estimate the hidden state sequence. Its results are compared
with those obtained by Baum’s algorithm. In parameter estimation, the mean field the-
ory is used to provide the conditional expectations for the E-step. Then the parameter

estimates are updated in the M-step by [11]

ﬁlip) — Z < Zi, > Yi /Z < Zi, 75 (258.)
2
Bt 3 ( < zip >yi— ﬁzﬁj’)) /Z <z, > (25b)
i

F'jf;) = Z < ZikZig1,l > ZZ L2 RELL N 2 (250)

where p represents the pth iteration in the EM procedure and < - > represents the condi-
tional expectation conditioned on y and ®(»~1), In hidden state estimation (used for both

the mean field theory and Baum’s algorithm), the state at time : is estimated as k, if
k=arg max < zily,®> 26
gke{l,'Z} 3|k|y2‘ ( )
where @ is the final estimate of the parameters.
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In addition to Baum’s algorithm, we have also compared the results of the mean field
theory approach with those obtained by 1-D versions of several 2-D unsupervised statistical
model-based image segmentation algorithms which are listed below:

¢ Ideal MAP: MAP (maximum a posteriori) classification with ideal, or true parameters;

e KMS MAP: A generalized K-means algorithm in which the hidden states in each
iteration are estimated by a MAP procedure and then used to estimate the parameters
for the next iteration; this idea is used in [8]. Compared with the EM algorithm, this
approach is a “hard decision” scheme in which the estimates of the hidden states,
rather than their probabilities, are used in each iteration for parameter estimation as
if they are correct;

e EM MAP1: Parameters are estimated using the EM algorithm based on the assump-
tion that the states at different sites are independent even if they are not; in this case,
the conditional expectation can be calculated easily; estimated parameters are then
used in a MAP classification procedure [10];

e EM MAP2: The same as EM-MAP1 except that during parameter estimation, the
marginal probability distribution of the state at a site, p(z,-|y,<§(zp _”), is approxi-
mated by the conditional probability distribution p(z;|y,z;,5 € Nj, ) [10]; this
approach becomes the mean field theory approach if we replace z; by < z; >.

We would like to make two remarks concerning the above 1-D segmentation algo-
rithms. First, the MAP procedures used in the original 2-D algorithms are deterministic
approximations to the simulated annealing procedure (see, e.g., [21]). In their 1-D versions,
we kept this feature rather than using the Viterbi algorithm [11] which is optimal for 1-D
signal segmentation in the MAP sense. The reason is that the Viterbi algorithm, which is
a dynamic programming procedure, does not have a 2-D version. If it is used in the above
1-D algorithms, these algorithms will not be the I-D wersions of the corresponding 2-D
algorithms. Secondly, the MAP procedures need the transition probabilities of the Markov
chain, yet none of them can estimate the transition probabilities. Therefore, a common
practice is to select the parameters heuristically in a way which reflects the continuity of

the states over time. In our case, we have chosen p;; = pa2 = 0.7 and py2 = pa; = 0.3.8

8In fact, if p1; = poo = 0.95, which are the true parameters, are chosen, they often result
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Now, we briefly describe the initialization of the segmentation algorithms. All but
the ideal MAP need initial values for the model parameters. While other algorithms only
need the initial values for the means and variances of the two Gaussian pdf’s, the Baum
algorithm and the mean field approach also need initial values for the transitional prob-
abilities. In our experiments, the initial values for the means and variances are obtained
by a few (usually three) iterations of a K-means clustering procedure [24]. For Baum'’s
algorithm and the mean field approach, the initial value for all the transition probabilities
is set to 0.5. Finally, the mean field approach also needs initial values for the mean field
at all sites, i.e., < z;|y, ®® >, for i = 1,2,...,1000. We have simply chosen (0.5,0.5) for
all < z;|y, @(© >.

B. Ezperimental Results:

The experiments are performed on four data sets which have the same 2-class hidden
state sequences, generated with transition probabilities pj; = pae = 0.95, p12 = p21 = 0.05.
The observation sequence for each data set is generated based on the hidden state sequence
and two Gaussian pdf’s whose means, m;, m2, and variances, v, vq, are shown in Table 1
(under “true parameters”) and whose plots are shown in Fig. 3. One can see from Fig.
3 that the separation between the two conditional pdf’s that generate the observations
degraded consistently from data set 1 to data set 4. This suggests that the degree of
difficulty in segmenting the observation sequences increases from data set 1 to data set 4.

The results of parameter estimation and state classification/segmentation are shown in
Tables 1 and 2, respectively. Here, the results obtained by the mean field theory approach
is indicated by MFT. While the quality of the parameter estimation can be readily seen
by comparing estimates with true parameters in Table 1, the quality of segmentation is
characterized by the probability of classification error, pe, and the quality of match (QOM).
The probability of classification error is estimated as the percentage of the number of

correctly classified data points while the QOM indicates how well the “regions” of points

in segmentations where all the observations are classified into the same class due to error
propagation in these iterative MAP procedures. This is especially true for data sets where
the separation between the observations from different classes is small, e.g., in data sets
3-4.
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(consecutive points from the same class) obtained in segmentation match regions in the
true hidden state sequence. The first number in a QOM indicates the number of “good”
regions in a segmentation, where a good region, as shown in Fig. 4, is one that agrees
(has the same class) with a region in the true state sequence (perfect segmentation) by
more than M points (in our case M = §). The second number indicates the total number
of correctly classified points that are in good regions. The smaller the classification error
probability and the larger the second number in the QOM, the better the segmentation.
The experimental results are summarized as follows. For parameter estimation, all
the techniques provide reasonably good estimations of the means and variances of the
Gaussian distributions except for KMS-MAP which often underestimates the variances.
For the parameters of the Markov chain, only Baum’s algorithm and the mean field theory
can provide estimates. Their results are quite close to each other. In fact, as shown in Table
1, the mean field theory seems to provide better estimates of the transition probabilities
in data sets 2-4, This is due to the similar stopping criteria for the mean field approach
and Baum’s algorithm. For both algorithms, the computation will stop if the Euclidean
distance between parameters obtained in consecutive iterations is less than a small number
¢ ( € = 0.1 in our experiments). Indeed, in the experiments we have observed that if we
decrease the ¢ for Baum’s algorithm, that is, increase the number of iterations, its results
did “catch up” with those of the mean field. Therefore, our observations suggest that the
mean field theory provides estimates that are comparable to those from Baum’s algorithm.
For sample classification or segmentation, Baum’s algorithm and the mean field theory
perform best among all techniques for data sets 1-3. In the case of data set 4, where the
observations from the two classes are heavily overlapped, the EM MAP1 seems to be the
most robust. Again, the performance of the mean field theory is comparable to that of

Baum’s algorithm. Finally, we notice that the IXMS MAP is the worst.

5. Experiments on Image Segmentation:

As a natural extension of the 1-D experiments described in Section 4, we applied the
mean field theory approach to MRF model-based image segmentation. As described in

Section 1, an image is segmented by assigning its pixels to a finite number of classes which
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have different statistical properties. The images are modeled on two-levels. On the first
level, the observed pixel intensities are modeled as random fields conditioned on their class
status, or states. On the second level, the spatial distribution of the classes are modeled by
a MRF which reflects the physical constraints on the segmented regions (e.g., continuity of
states for interior points). The mean field theory approach (i.e., the EM algorithm which
uses the mean field theory to compute conditional expectations) is used to estimate the
model parameters and perform the segmentation. This is straightforward by using the
results of Section 3.C and letting the observed image be y, the segmentation be z, and the

model parameters be @.

A. Ezperiment Description:

Image segmentation experiments are performed on both synthetic and real-world im-
ages using the mean field theory approach. The synthetic images are used to study its
performance in the ideal case, where the hidden states are MRF’s and the pdf’s of the
observed image data satisfy the conditional independence assumption made in Section 3,
while the real-world images are used to study its practical applicability.

The synthetic images are generated as follows. First, a realization of a prespecified
MRF (specifications include the number of classes, model type, and model parameters) is
generated. This realization, also referred to as a region map, contains disjoint regions of
different classes. The regions are then “colored” by realizations of different independent
Gaussian random fields according to their classes. The MRF model used here is the model
used by Geman and Geman [22] and Lakshmanan and Derin [23]. More specifically, the

clique functions are defined as follows:

Sinpleton: Vu(z) = e, H gi =l k=120 (K, (27a)

Doubleton: V{™(z;, z;) = vm(26(z:, 2;) — 1), (27b)

where

19



0(zi,25) = 0, if z; = 2;,

5(3,‘,2‘1‘) = 1, if Zq .7"; Zj,

and m indicates the type of doubleton clique, with m = 1,2, 3,4 for horizontal, vertical,
37 /4 diagonal and 7 /4 diagonal cliques, respectively. While the mean field theory approach
described in Section 3.C was for the isotropic MRF model, which is a special case (7, = 7,
m = 1,2,3,4) of this model, it can be extended to this model straightforwardly. Two
typical synthetic images (labeled as syntﬂetic image 1 and synthetic image 2) of size 128 x
128 generated this way with two and three classes are shown in Figs. 5 and 6 along with
their region maps. The real-world images are digitized aerial photographs of size 256 and
a typical image used in our experiments is shown in Fig. 8.

The (conditionally) independent Gaussian model and the second-order non-isotropic
MRF are used to model both synthetic and real-world images. The EM algorithm is used
to perform both parameter estimation and segmentation. In each iteration, the conditional
expectations of the hidden MRF is computed by the mean field theory approach in the E-
step and the parameters are updated in the M-step. The update formulas for the Gaussian
parameters are the same as those for the 1-D experiments, i.e., expressions (25a)-(25¢c),
where the summation now is over all the pixels. The MRF parameters are estimated
by using expression (23d). In the experiments, we have performed the maximization by
using a conjugate gradient subroutine in the IMSL Math Library [25]. Lastly, the final

segmentation is obtained by assigning a pixel at site ¢ to the kth class if

k = arp < ziply, ® 2
arg WA, iky, @ >, (28)

where ® is the final estimate of ® from the EM procedure.

A problem of practical interest is whether one really needs to estimate &, the pa-
rameters of the MRF. The estimation, which is performed in each iteration of the EM
algorithm, requires a lot of computation time (usually 30-50 iterations of the conjugate

gradient procedure where each iteration requires the gradient be updated at all the pixels
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in the images). Previously, it has been shown that these parameters can be set heuristi-
cally to provide good segmentation results [22]. In fact, when the parameters are chosen
in such a way that they encourage/discourage certain types of interactions of the hidden
variables, the segmentation results are relatively insensitive to moderate variations of the
numerical values in these parameters. Perhaps these two approaches (to estimate or not
to estimate) reflect the difference between Bayesian and ML approaches (which we will
call the total ML). In the Bayesian approach, the parameters for the MRF are considered
as prior constraints which are set rather than estimated, while in the total ML approach,
the parameters are considered a characteristic of the data and therefore are estimated.
We have performed segmentation experiments using both approaches, in the hope that if
the Bayesian approach provides comparable results to those of the total ML approach, we
can use only the Bayesian approach in the future, since it requires much less computation.
The maximum number of iterations for the EM algorithm is set to be 20 for the Bayesian
approach and 40 for the total ML approach, since the latter needs more time to arrive at
a reasonable set of MRF parameters.

Another problem of practical concern is how the quality of segmentation can be as-
sessed. For real-world images, the probability of error and QOM used in Section 4 can
not be calculated directly since the ideal segmentation is not available. Even for a syn-
thetic image, the QOM requires much more computation to “single out” the segmented
regions since they are irregularly shaped and there may be many of them. Therefore, the
approach we have taken is mainly qualitative rather than quantitative. More specifically,
for a real-world image, we will see if the segmentation successfully separates major objects
in an image (e.g., objects that are large in size). For a synthetic image, we will see if the

segmented regions resemble those in the true region map.

B. Typical Results: Synthetic Images

First, we describe results obtained by the total ML approach which estimates the MRF
parameters during segmentation. The results of parameter estimation and segmentation
for the two synthetic images are shown in Table 3 and Figs. 5 and 6, respectively. For com-

parison purposes, in Table 3, we have listed the model parameters used to generate these
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synthetic images as well as the MRF parameters estimated from their region maps.® As can
be seen from these results, the EM algorithm provides good estimates for both Gaussian
parameters and the MRF parameters. One practical problem that we have encountered
in using the IMSL routine for estimating the MRF parameters is that trial-and-error is
needed to set the stopping parameters for the routine. This is done by experimenting on
one image and then using the same setting for all other images. It seems that the results
are relatively insensitive to the settings when they are within a certain range.

To compare the Bayesian approach with the total ML approach, we have also seg-
mented the synthetic images by setting the MRF parameters to be a; = 0 for all £ and
v = 0.5. The results, shown in Figs. 5d and 6d, respectively, are good and comparable to
those obtained with estimated MRF parameters. These, and our other results, indicates
that it may not be necessary to estimate the MRF parameters.

Finally, we have applied the mean field approach to a synthetic image (labeled as syn-
thetic image 3), shown in Fig. 7, studied by Shen [10] who has used algorithms EM MAP1
and EM MAP2 described in Section 4 to estimate the Gaussian and MRF parameters. The
results of parameter estimation in comparison with those of Shen’s are shown in Table 3.
One can see that the mean field theory produces, overall, better variance estimates than

those by EM-MAP1 and EM-MAP2.

C. Typical Results: A Real-World Image

Typical results of the segmentation of real-world images are shown in Fig. 8 for a
digitized aerial photograph of size 256 x 256. From the results on synthetic images, we
are reasonably confident about the Bayesian approach which presets MRF parameters.
Therefore, the image is segmented by the mean field theory approach with the MRF
parameters preset as ax = 0.0 for all & (classes are equally likely), ym = v for m = 1,2,3,4
(classes continue equally likely in all directions inside a region).

The number of image classes are estimated to be four by using a cluster validation

scheme [26]. In Fig. 4b-d, we have shown segmentation results of the original image of

9This will provide a fairer comparison between the estimated and the “true” MRF
parameters.

22



Fig. 8a. The segmentations are obtained with different choices of MRF parameters and
f, as summarized in the captions of Figs. 8b-8d. In Figs. 8b and 8c, f is fixed to be 1.0
while v is varied from 0.2 to 0.5. As a result, Fig. 8b preserves more detail but is more
noisy; Fig. 8c is a much smoother segmentation but some of the details of the image are

lost. Finally, in Fig. 8d, v is fixed to be 0.2, and § varies with the number of iterations by

ﬁ(P) — [)g(OJ]p, (29)

where p is the current number of iterations and 5(®) = 1.12. The role of 8 here is similar
to that of the temperature in simulated annealing. As can be seen from Fig. 8d, the result
is a nice compromise of those of Fig. 8b and 8c. In all segmentations, major regions that
correspond to road, vegetation areas, and lawn are well separated.

As a comparison, in Fig. 9, we have shown a segmentation of the image by the total
ML approach where the MRF parameters are estimated during segmentation. In this case,
the segmentation produces similar regions to those of Fig. 8. However, the segmentation
without estimating MRF parameters produces smoother region boundaries. The rough
region boundaries produced by the total ML approach seem to be caused by the negative
values of some of the MRF parameters, shown in Table 4, indicating that the total ML
approach may not be very robust (since the distribution of the regions in real images,
unlike those in the synthetic images, may not be close to a non-isotropic second-order

MRF). Therefore, for real images, preset MRF parameters may be preferable.

6. Summary:

In this paper, we have described how the mean field theory can be used to efficiently
calculate the conditional expectations in EM procedures where the hidden random vari-
ables are modeled as Markov processes. The key idea of the mean field theory is: When
calculating the mean field (in our applications, the‘ conditional expectation) at a given
pixel position, the influence of the variables at other pixel positions can be approximated
by that of the mean field at those positions. This results in a simple iterative procedure for
computing the conditional expectations in the E-step for MRF models. In this paper, the

efficacy of the mean field theory approach is demonstrated on 1-D and 2-D signal/image
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segmentation and parameter estimation experiments. In 1-D experiments, the performance
of the mean field theory approach is observed to be comparable to that of Baum’s algo-
rithm, which is known to be optimal. Furthermore, compared to the performance of the
1-D versions of some previously proposed unsupervised image segmentation algorithms,
the mean field theory approach seems consistently better. This gives us reason to be-
lieve that a 2-D mean field theory approach will do better than these algorithms in image
segmentation. In 2-D experiments, the mean field theory approach is observed to provide
good parameter estimates on synthetic test data and good segmentations for synthetic and

real-world images.
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Table 1. Results of Parameter Estimation

a. Data set 1 b. Data set 2

est. m, m, v, v, est. m, m, v, v,
True 10 5 2 4 True 10 8 4 1
KMS MAP 10.06 478 1.67 3.45 KMS MAP 1105 7.87 1.68 1.03
EM MAP1 10.21 5.24 1.69 4.97 EM MAP1 1002 7.96 3.91 1.18
EM MAP2 996 4.80 189 3.75 EM MAP2 10.11 7.91 3.78 1.05
Baum 10.02 4.92 194 4.06 Baum 10.21 784 3.79 1.06
MFT 10.02 4.90 193 3.98 MFT 1028 795 3.76 1.07
est. Pys P2 Py P est. Pu Pz Py Pz
True 095 005 005 0.95 True 095 0.05 0.05 0.95
Baum 094 0.06 005 095 Baum 088 0.12 0.09 090
MFT .85 0.05 0.044 0.956 MFT 095 0.05 0.04 00986
c. Dataset 3 d. Data set 4

ast. m, m, v, v, est. m, m, v, v,
True 10 8 4 3 True 10 8 8 6
KMS MAP 10.83 7.21 1.74 1.63 KMS MAP 1088 0.69 795 888
EM MAP1 10.04 796 370 3.43 EM MAP1 10.02 7.51 g.18 7.37
EM MAP2 10.08 7.77 358 3.05 EM MAP2 9.31 7.94 8.21 6.94
Baum 10.21 7.73 326 292 Baum 974 795 7.91 6.89
MFT 10.68 8.02 290 3.17 MFT 10.90 720 466 495
est. Pir P2 Py Pa est. Py P2 Py Py
True 085 005 005 0.95 True 095 0.05 005 095
Baum 076 024 020 0.80 Baum 057 043 0.42 0.58

MFT 0.91 009 004 096 MFT 071 029 025 075




a. dataset 1

Table 2. Classification Performance

Method P, QoM
Ideal MAP 50x 1072 (62,928)
KMS MAP 5.2x10%° © (66,892)
EM MAP1 48x%10° (55,900)
EM MAP2 47x1072 (61,907)
Baum 1.2x 102 (41,973)
MFT 1.3x 102 (41,973)
c. dataset 3

Method P, QOM
Ideal MAP 0.19 (58,708)
KMS MAP 0.26 (59,439)
EM MAP1 0.19 (51,709)
EM MAP2 0.29 (50,363)
Baum 0.17 (62,761)
MFT 0.16 (41,802)

b. data set 2

Method P, QOM
Ideal MAP 0.13 (53,742)
KMS MAP 0.17 (50,672)
EM MAP1 0.13 (54,754)
EM MAP2 0.14 (55,734)
Baum 7.4x 102 (43,899)
MFT 8.5x 1072 (40,891)
d. data set 4

Method P, QOM
Ideal MAP 0.26 (48,664)
KMS MAP 0.39 (44,323)
EM MAP1 0.25 (40,697)
EM MAP2 0.55 (19,463)
Baum 0.31 (49,357)
MFT 0.27 (64,562)




Table 3. Parameter Estimates for Synthetic Images 1-3

a. synthetic image 1
estimates of Gaussian parameters

with estimated with preset
true parameters MRF parameters MRF parameters
class (mean,var) (mean,var) (mean,var)
1 100, 400 99.74, 395.93 99.70, 394.15
2 150, 400 149.78, 408.40 149.80, 407.11

estimates of MRF parameters

o @ o B B B

true parameters 0.00 0.00 1.00 1.00 1.00 1.00

estimated
in EM procedure -0.03 0.03 0.88 0.80 0.69 0.56

estimated from
the region map -0.06 0.06 0.87 098 0.86 0.80

b. synthetic image 2
estimates of Gausslan parameters

with estimated with preset
true parameters MRF parameters MRF parameters

class (mean,var) (mean,var) (mean,var)
1 100, 400 100.06, 409.56 - 100.33, 417.38
2 150, 400 149.22, 415.35 149.27, 405.61
3 200, 400 199.81, 409.02 199.78, 409.15

astimates of MRF parameters

a1 u'z 03 ﬁ'[ Bz ﬁg B4

true parameters 0.00 0.00 o0.00 1.00 1.00 1.00 1.00

estimated

in EM procedure 0.06 0.09 -0.15 0.76 1.00 0.68 0.69

estimated from

the region map -0.04 -003 0.08 095 099 069 0.79

¢. synthetic image 3

estimated by estimated by estimated by
class  true parameters EM-MFT EM-ML EM-MAP
(mean, variance) (mean, variance) (mean, variance) (mean, variance)
1 (50, 400)  (49.69, 404.04) (51.66, 403.70) (49.86, 361.62)
2 (100, 400)  (99.91, 390.13) (103.50, 375.61) (100.07, 330.52)
3 (150, 400) (149.44, 390.90) (149.39, 262.00) (149.85, 320.30)
4 (200, 400)  (199.75, 395.66) (196.80, 447.76) (199.77, 382.98)




Table 4. Estimated Parameters for the Aerial Photograph

estimates of Gausslian parameters

with estimated with preset
MRF parameters MRF parameters
class (mean,var) _ (mean,var)
1 210.15, 377.54 215.54, 320.40
2 156.50, 92.78 155.89, 98.90
3 112.95, 342.78 114.25, 183.89
4 185.30, 92.60 183.89, 132.25

estimates of MRF parameters

o

% o o B B, B By

estimated -0.07 -0.07 0.09 0.05 148 185 -0.41 -0.54
preset 0.00 0.00 000 000 05 0S5 05 05
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c. segmentation by d. segmentation by
total ML approach Bayesian approach

Figure 5. Segmentation of Synthetic Image 1
with Mean Field Theory
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Figure 6. Segmentation of Synthetic Image 2
with Mean Field Theory
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original_ image b. segmentation with  =1.0, y=0.5

Figure7 Segmentation of Synthetic Image 3
with Mean Field Theory



c. segmentation with B = 1.0, @ = 0.5 d. segmentation with § = 1.12,y=0.2
T

Figure 8 Segmentation of the Aerial Photograph
with Mean Field Theory



a. original image b. segmentation

Figure 9. Segmentation of the Aerial Photograph by Total ML Approach



