Protocols for Providing
Performance Guarantees
in a Packet Switching Internet

Carlyn M. Lowery’
TR-91-002
January, 1991

As advances in technology enable us to implement very high speed computer networks,
we expect to use our networks for more diverse applications. While the Internet was designed
with textual data processing in mind, future networks will carry information such as voice,
music, images, and video, along with textual data. Many new applications will have real-time
performance requirements, where the timing of data arrival is crucial to its usefulness.

This paper describes a methodology developed at the University of California at
Berkeley to support such applications, reviews related research work, and proposes a real-time
delivery system, composed of a new protocol for administration of real-time connections,
combined with modifications to the Internet Protocol (IP) to support such connections.
Transport protocol requirements are also discussed. This work is intended to facilitate experi-
ments with real-time communication over the Experimental University Network (XUNET).

Computer Science Division, Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley.

1. Introduction

As advances in technology enable us to implement véry high speed computer networks, we
expect to use our networks for more diverse applications. While the Internet was designed with
textual data processing in mind, future networks will carry information such as voice, music,
images, and video, along with texmal data. Many new applications will have real-time perfor-
mance requirements, where the timing of data arrival is crucial to its usefulness.

This paper describes a methodology developed at the University of California at Berkeley
to support such applications, reviews related research work, and proposes a real-time delivery
system, composed of a new protocol for administration of real-time connections, combined with
modifications to the Internet Protocol (IP) to support such connections. Transport protocol
requirements are also discussed. This work is intended to facilitate experiments with real-time
communication over the Experimental University Network (XUNET).

1.1. Background

The performance requirements of new real-time applications are still being explored, and
they have been discussed in the literature ([ChMe88] (Fe90] [WrTo90]). The requirements
include (but may not be limited to): delay bounds - limits on the maximum delay experienced by
a packet; loss bounds - limits on the likelihood of packet loss; and jizer bounds - limits on the
variability of the delay. Applications differ regarding the relative importance of these factors.
For example, for video-conferencing, delay and jitter bounds are stringent, but some packet loss
may be tolerated. For one-way transmission of CD-quality music, the delay bound may be long,
while the jitter and loss bounds are small. For video browsing of still images or for shared docu-

ment editing, the delay bound may be short and the loss bound stringent, but the jitter bound
unnecessary.

Such requirements are not met by the current packet-switching Intemnet, which employs the
Internet protocols IP [Po81a], TCP [Po81b], UDP [Po80]. The network protocol, IP, provides no
guarantees about timely, reliable, or ordered packet delivery. Packets sent onto the Internet may
traverse different routes, and they may or may not armive at their destinations. The most com-
monly used transport protocol, TCP, adds reliability by employing end-to-end acknowledgment
and retransmission. Such reliability is inappropriate for many real-time applications; if a video
frame for interactive display does not arrive on time (or nearly so), it may as well never arrive. In
this case, retransmission is a waste of resources. The connectionless transport protocol, UDP,
provides unreliable delivery using IP.

Circuit switching can be used to provide the necessary guarantees, but it does not provide
an optimal solution. Circuit-switching is the standard method for providing real-time perfor-
mance guarantees in the current commercial environment. In a circuit-switching network, an
application must reserve the maximum bandwidth which it intends to use. Bandwidth which is
not used is wasted. This works adequately when traffic is fairly constant, but when traffic is
bursty, it results in severe under-utilization of resources. Additonally, circuit-switching is inap-
propriate for short transmissions, where the connection setup time creates excessive overhead.

A modified packet-switching network could serve both real-time traffic, with its associated
temporal guarantees, and best-effort traffic, which does not require such guarantess, and in many

This material is based upon work supported under a National Science Foundation Graduate Fellowship. Any opinions,

findings, conclusions or recommendations expressed in this publication are those of the author and do not necessarily
reflect the views of the National Science Foundation.

Page 1

cases does not even require connections. Such a network is discussed herein.

1.2. Methodology

The methodology for providing real-time performance -guarantees is based upan connection
establishment with resource reservation, as described in [FeVe89] and [FeVe90]. A brief review
follows. End-to-end performance guarantees for a conversation are provided by creating a con-
nection with fixed routing and performance bounds for each node along the path from source to
destination. Such a connection may be called a real-time charmel. _

To establish a real-time channel, a client specifies its performance requirements and
describes its traffic characteristics. An establishment message is sent from the client’s host (the
source) to the destination. At each node along the path, the best performance (e.g. delay and loss
bounds) which can be guaranteed is computed, and tentative resource reservations are made. The
offered guarantees are based upon the node’s processing power, buffer capacity, and line
bandwidth, as well as the already existing real-time channels and their performance requirements.
Information about the new channel is retained, such as the local performance requirements, local
resource reservations, and the next node on the path.

The destination host determines whether the accumulated guarantees meet requirements,
and if so, finalizes the channel establishment. It does this by determining the amount by which
performance requirements have been exceeded, and deciding which nodes may reduce their
guarantees, and by how much. A confirmation message is sent back along the same path, nodes
reduce their resource reservations to match the reduced requirements, and the client is notified of
successful channel establishment.

Failure of channel establishment may occur at any node. If a node is unable to provide
guarantees which meet the minimum requirements, a failure message is sent back immediately.

Upon notification of channel establishment, the client begins sending packets along the
real-ime connection. All nodes are responsible for meeting their guarantees, giving priority to
real-time packets and serving best-effort packets as time permits. Distributed rate control is used
to prohibit clients from exceeding their specified loads and interfering with other channels; each
node monitors traffic and appropriately penalizes offending channels.

A real-time channel is viewed as a legal contract between the clierz and the network. The
client promises not to exceed its specified load, and the network promises to meet its guarantees,
except in the event of hardware failure. The network ensures that it can meet its guarantees by
exercising admission control, refusing to establish new real-time channels when it cannot provide
the necessary performance,

1.3. Environment

The environment for which our real-time delivery system has been designed is an internet-
work whose gateways implement the system, and whose subnets have performance characteristics
which can be bounded. In order to provide guarantees, it must be possible to control performance
in each gateway (by resource reservation) and across the interconnecting links. For example, if
WO gateways are connected by a point-to-point link, transmission time is determined by gateway
processing (including queueing), link bandwidth, and propagation delay. However, if two gate-
ways are connected by an Ethemet, the transmission time cannot be bounded, since the medium
access time is unbounded. Therefore, performance guarantees cannot be made.

Our experimental environment includes an FDDI ring connected to an ATM network
(XUNET II). On an FDDI ring, as long as a node does not generate more synchronous traffic
than its reserved synchronous bandwidth, delay can be bounded, because media access delay is
bounded by twice the Target Token Rotation Time (Ro86]. Such behavior allows the reservation

Page 2

of bandwidth in order to guarantee performance. The ATM network will participate as a subnet
which provides guarantees.

2. Protocol Design

2.1. Design Goals

Our real-time delivery system has been designed with multiple goals in mind. First, intero-
perability with existing Internet protocols is desirable. Many applications will not have real-time
requirements, and those applications will continue to desire the services provided by TCP/IP and
UDP/IP. Also, hosts which do not provide real-time services should be able to transmit ordinary
IP packets. Second, an iterative approach to development is desirable; for early implementations,
minimal essential features will be included, and existing Intemet services will provide valuable
support. For example, routing services, control services (ICMP), and transportation protocols
(TCP and UDP) do not all need to be replaced simultaneously.

Separate protocols are used for channel administration and data delivery. This clean separa-
tion was inspired by the design of circuit-switching systems such as CCITT Signalling System 7
and Datakit [FrMa87)]. Frazer noted that “‘experience indicates that considerable fexibility is
required in the service definition for virtual circuit administration.’’ In these systems, this princi-
ple has been taken to the extreme, and separate control computers are used for administration.
While we will not necessarily implement the control protocol on a separate processor, keeping
the protocols separate will make enhancement of the control protocol more straightforward.
Additionally, this approach minimizes the overhead processing on data packets, and it minimizes
changes to the standard IP header.

2.2. Protocol Description

22.1. Channel Administration

The Real-Time Channel Administration Protocol (RCAP) provides management services,
such as channel establishment, teardown, and modification.

Control packets are delivered by the network protocol, the Real-Time Intemet Protocol
(RTIP), and are identified by a unique protocol number in the RTIP header. For experimental
purposes, an unallocated number will be used. For general Internet usage, a unique protocol
number will have to be obtained from the Internet Assi gned Numbers Authority.

Each control packet begins with six fields, as follows:

Type | Sequence Number
Channel Source Address
Channel Destination Address
Source Channel ID | Checksum

The Type is a 16-bit field indicating the type of the control message. The Sequence
Number is a 16-bit field specified by the sending node to uniquely identify the control packet,
which supports acknowledgment and retransmission. The Channel Source and Channel Destina-
tion Addresses are the 32-bit Intemet addresses of the hosts to be connected by the channel. The
Source Channel ID is a 16-bit identifier chosen by the source, which uniquely identifies the chan-
nel on that host. The Source Channel ID combined with the Channel Source Address uniquely
identifies the channel in the Internet. (This identifier ‘s used for channel control messages which
may be sent to arbitrary nodes on the path. For data transfer, a distinct Local Ckannel Identifier is

Page 3

used at each node on the path to support efficient forwarding.) The 16-bit Checksum applies to
the entire control message and is computed similarly to the TCP checksum.* The contents of the
remainder of the message depend upon the message type.

Control functions can be divided into-three categories: basic functions, additional features,
and fault handling. These functions and the messages which support them are described in the
next three sections.

2.2.1.1. Basic Functions

The basic functions of the control protocol are channel establishment and channel teardown.
In the case of standard operation with no failures, the protocol will function as described in this
section.

Five message types support these functions: establish_request, establish_accept,
establish_denied, close_request, and close_confim.

Channel establishment is initiated by the source host by preparing an establish_request mes-
sage and forwarding it to the first node en route to the destination. The fixed path for the channel

is selected as the establishment message works its way towards the destination. The source host
provides the following global parameters:t

Parameter Notation Size Description
(in bytes)
Traffic Characteristics
MinInterarrival p I 1 minimum interarrival ime in milliseconds
Avelnterarrival Kave 1 average interarrival time over a
duration / in milliseconds
Duration ! 1 duration in seconds over which x,,,
is specified
MaxSize L 2 maximum packet size in octets
Performance Requirements
DelayMax /o - 2 maximum delay in milliseconds
DelayProb Z i 1 probability that a packet’s delay will be
lower than D ., expressed in hundredths
(100 for a deterministic requirement)
JiterMax J max 1 maximum delay jitter in milliseconds
JitterProb U min 1 probability that a packet’s jitter will be
lower than J ., expressed in hundredths
(100 for a deterministic requirement)
NoDropProb W min 1 probability that a packet is not dropped
due to insufficient buffer space, expressed
in hundredths

Each node determines the next node en route to the destination, computes the guarantees it can
offer, places tentative resource reservations, and selects a Local Channel Identifier to be used by
the previous node at the time of data transfer. (The Local Channel Identifier may be any

* The checksum field is the 16 bit one's complement of the one’s complement sum of all 16-bit words in
the message. For purposes of computing the checksum, the value of the checksum field is all ZETOS.

T The "*Notation"* column specifies the formal notation which is used in the previously referenced papers
about our methodology, [FeVe89), [Fe90], and [FeVe90).

Page 4

available number other than zero, which is used to identify express datagrams.)

The node saves appropriate state for the channel This data must be accessible by Channel
Source Address and Source Channel ID, for processing of future control messages, as well as by
Local Channel ID, for processing requests from the RTIP module. - The necessary values include:
Channel Source Address, Source Channel ID, Local Channel ID, next node address, previous
node address, local guarantees, buffer reservation, and the state of the channel (i.e., idle, connect-
ing, connected, enhancing).

The node adds appropriate information to the message, recomputes the checksum, and for-
wards the message towards the destination. The data provided by each node is:

Parameter Notation Size Description
(in bytes)
NodeAddr - - 4 Internet address of node
MaxDelayl i 2 maximum delay at this node in milliseconds
LateProbl Pt 2 probability of deadline overflow at this node
expressed in ten-thousandths
MaxJitter] - Jin 2 maximum delay jitter at this node
in seconds* 10~
JinerProbl - 2 probability of exceeding the jitter bound
at this node, expressed in ten-thousandths
NoDropProbl Wi n 2 probability that a packet is not dropped
at this node due to insufficient buffer
space, expressed in ten-thousandths
BuffAllocl bi n 4 buffer space allocated at this node,
in bytes

Inclusion of this detailed data in the channel establishment request message allows experi-
mentation with different algorithms for resource relaxation by the destination host. The format of
the establish_request message is displayed below; the source may indicate that certain perfor-
mance parameters are irrelevant by using values of all ones.

standard control packet header
MinlInterarrival | Avelnterarrival Duraion | DelayProb
MaxSize DelayMax
JitterMax | JitterProb NoDropProb | Padding
NodeAddr
MaxDelayl LateProbl
MaxlJitter] JitterProbl
NoDropProbl Padding
BuffAllocl
data about multiple additional nodes

The destination host verifies that performance requirements are met, and then prepares an
establish_accept packet. The packet includes the performance parameters to be provided (which
may surpass those requested), the required performance for each node (which may not surpass
that which was offered), and a Local Channel Identifier to be used by the previous node when
sending data packets along the channel. (Algorithms for determining required performance for

Page 5

each node in the event of excess resource reservation are specified in [FeVe89] and [FeVeS0].)
This packet is sent back along the path to the previous node.

Each node relaxes resource reservations as appropriate, and provides necessary information
to the local RTIP module. This information consists of: the Local Channel Identifier; the next
node address; the delay, jitter, and throughput requirements; and the next node’s Local Channel
Identifier. RCAP then adds its Local Channel Identifier to the message, for utilization by the pre-
vious node, and forwards the packet to the previous node.

The format of the establish_accept message is:

standard control packer header
Minlnterarrival | Avelnterarrival Duration | DelayProb
MaxSize DelayMax
JiterMax | JinerProb NoDropProb Padding
NodeAddr
MaxDelayl LateProbl
MaxJitterl JitterProbl
NoDropProbl Local Channel ID
BuffAllocl
data about multiple additional nodes

A channel establishment request may be denied by any node along the route, if it cannot
accommodate the channel Rather than forwarding the establish_request message, the node sends
an establish_denied message back towards the source. Each node releases resources which were
tentatively reserved for the channel, and transmits the message towards the source. The
establish_denied packet contains the address of the node which halted the establishment and a
code indicating the reason for failure, Its format is:

Standard control packet header
Node Address
Failure Code] Padding

The last two bytes are padded with zeros so the control message ends on a 32-bit boundary.

The close_request packet is generated by the source host in order to close the connection,
and it has no contents. It is passed to each node, so resources may be freed.

The close_confirm packet is generated by the destination host, and it is sent directly to the
source host, to advise it that the connection has been closed. It has no contents.

22.12. Additional Features
Additional features include channel modification and status requests.

A client may modify its charmel parameters during a connection, changing the definition of
its load or its performance requirements. The source host determines whether the change is an
enhancement or relaxation, and it generates an enhance_request or relax_request message as
appiopriate.

The enhance_request message is identical in format to the establish_request message, and
operations at the nedes are similar. Service offers are based upon the use of rescurces already
allocated to the channel combined with additional available resources. The destination allocates

Page 6

requirements and returns an enhance_accept message, which is identical to an establish_request
message except that the Local Channel Identifier is not necessary. As in channel establishment, a
channel enhancement request may be denied by any node along the route, if it cannot accommo-
date the new requirements. Instead of forwarding the enhance_request message, it generates an
enhance - denied message which is propagated towards the source, causing all nodes to release the
additonal resources which were tentatively reserved to support the enhancement. :

The relax_request message is identical in format to the establish_request message, but its
use is somewhat different. Since the source knows all of the nodal guarantees (having received
them in the establish_confirm message), it generates the entire request message with all the per-
node information, and then sends it directly to the destination host. The destination host relaxes
requirements as in an ordinary channel establishment and retums a relax_accept message along
the path. '

Status messages are used 1o enable the source to obtain the current status of all the nodes
participating in a connection, to facilitate debugging and perhaps for other purposes. A
Status_request message may be generated by the source and sent along the path to the destination.
Each node adds its address, current state, and performance guarantees. The destination changes

the type of the message to status_report and returns the message to the source. The format of the
Status_request and status_report messages is:

standard control packet header
NodeAddr
MaxDelayl LateProbl
MaxJitter] JirterProbl
NoDropProbl State
BuffAllocl]
data about multiple additional nodes

2.2.1.3. Fault Handling

Since RCAP cannot depend upon the data link layer for reliable packet transfer, RCAP
includes subnet enhancement feamres. Reliable delivery of control packets between two nodes is
obtained by use of a sequence number and acknowledgement for each packet, combined with
timeout and retransmission. Sending nodes assign sequence numbers in increasing order. Upon
receipt of a control packet, RCAP computes the checksum and sends an acknowledgment if it is
valid. Otherwise, the acknowledgement is not sent, so timeout and retransmission occurs. If the
packet is a duplicate (probably due 1o loss of an acknowledgement), it is discarded.

Multiple errors can also occur due to hardware or software failures, so the protocol includes
fearures to handle these situations.

If a node crashes, real-time communication cannot continue over the same path, and correc-
tive action must be taken. Routing software is responsible for monitoring the availability of
nearby nodes and links, and upon discovery of a failure, it notifies the local RCAP module. Upon
notification of a failure, RCAP terminates all real-time channels using that path, including those
that are under establishment. (Future versions of RCAP may artempt to reroute the channels; for
an inital implementation, an ungraceful close is a straightforward solution.)

A node initiates termination of a broken channel by sending a reset_request message to the
source of the channel. The source immediately notifies RTIP to stop scnding data across the
channel, and RTIP retums an appropriate error code to the client at the time of the client’s next
“‘send’’ call. If the channel was fully established, the source is aware of all of the nodes along

Page 7

the path, due to the information in the establish_accept message. The source sends kill_request
messages to all nodes along the path (since it can no longer rely on sending messages over the
path). The nodes which are alive release resources allocated to the channel and respond with
kill confirm messages. If a node receives a kill_request. message for an inactive channel, it also
responds with a kill: confirm. ' -

If a source receives a reset_request for a channel which has not been fully established, the
situation is more complex, since the source does not know the entire path. The source attempts to
notify as many nodes as possible, by sending a message along the path and asking the destination
to send a message in the reverse direction. The source sends a close_request message along the
path, causing nodes before the failure to release resources. The source also sends a
dest_close_request to the destination, which propagates the request along the channel’s reverse
path, causing nodes after the failure to release resources. If establish_request has already reached
the destinaton, this is sufficient. Otherwise, the destination is not able to send the message back,
and some nodes are never reached. In this event, per-node timers will evenmually notice a prob-
lem, as described at the end of this section. The four message types which support channel reset
(reset_request, kill_request, kill_confirm, and dest_close_request) have no contents.

If a node has a lesser failure which results in loss of channel states, it will be unable to
respond properly to either real-time data packets or control messages. Similarly, protocol failure
can result in a node receiving a request which is inappropriate for the state of a channel. If 2 node
receives a data packet with an inactive Local Channel Identifier, it returns an error message to the
previous node, with an appropriate failure code. The previous node then initiates a channel ter-
mination. Upon receipt of an inappropriate control message, a node returns an error message to
the node which sent the message, and appropriate action is taken. In an initial implementation,
this action will be channel termination, since a failure has apparently occurred somewhere along
the path.

The channel source maintains timers for all of its requests, and it is responsible for taking
appropriate action if responses are not received. Appropriate lengths for these timeouts will need
to be experimentally determined. In the case of idempotent requests such as relax_request and
kill_request; the requests are retransmitted; after a limited number of retransmissions, RCAP
gives up. In the case of an outstanding establish_request or enhance_request, lack of a response
may be interpreted as a channel failure, and the channel closed. In the case of a close_request,
kill_requests are disseminated as described above.

Timers are also maintained at the nodes, so that resources are not held indefinitely in the
event of failure. For example, if the source crashes during channel establishment or during a
conversation, the channel should be closed and resources released. If a node times out during
channel establishment or observes a lack of traffic over an established channel for an extended
period of time, it sends a source_status_request to the channel source. Upon receipt of such a
request, the source checks on the state of the channel and responds with a source_status_report.
An appropriate status is provided, indicating that the channel is idle, the channel is under estab-
lishment, or it is established. If the source indicates that the channel is idle, or if no response is
received after a few attempts, the resources are released.

22.2. Data Transfer

Once a channel has been established, data is transmitted via the nerwork-layer protocol,
RTIP, which is based upon IP. RTIP has the additional features of fixed routng, deadline-based
scheduling, and rate control.

RTIP packets are nearly identical to standard IP packets. Two acditional header options are
defined, the Local Channel Identifier and Jirter Correction Factor.

Page 8

All real-time packets include a Local Channel Identifier. The inclusion of a non-zero Local
Channel Identifier in a packet header alerts a node that the packet belongs to a real-time channel,
and the identifier is used as an index into a data swucture containing information about the
Channel’s performance requirements and the next node. ‘The packet is then processed in accor-
dance with those requirements. A Local Channel Identifier of zero indicates that the packet is an
express datagram, and it is prioritized behind packets belonging to real-time channels, but ahead
of ordinary datagrams.

Real-time packets belonging to channels with jitter bounds also include a Jitter Correction
Factor, an option which is used to convey information between intermediate nodes in order to
limit delay jitter.

The option formats are:

11100001 | 00000100 | Local Channel ID |
Type=225 Length=4
| 11100010 [00000100 | Jitter Correction Factor |
Type=226 Length=4

In the event that RTIP fragments a datagram, these options must be copied into the headers

of the fragments. Each option appears at most once in a datagram. The options are class 3
(which is reserved for future use in the IP specification), numbers 1 and 2.

Non-real time packets are identical to IP packets; the additional header options are not used.

RTIP also includes mechanisms for rate control, both at the host and at the nodes. At the
host, RTIP ensures that the transmitted traffic does not exceed the load specified by the client. A
leaky bucket approach is appropriate for applications which are not concerned about preserving
the temporal patterns of their data generation. The leaky bucket serves to smooth out variations
in packet arrivals. For clients who wish to preserve temporal patterns, an approach which tracks
transmissions and only intervenes when load specifications are exceeded is more appropriate.
Such an approach is described in [Fe89], and this approach is also appropriate for rate control at
the nodes. Rate control requires RTIP to retain additional state information for each channel.

2.3. Client Interface

A client interface to RCAP could be implemented in the 4.3 BSD UNIXT environment as
described below. The client interface 1o RCAP is not strictly part of the protocol definition, but it

is an essential part of a complete system design. A client interface is provided here to facilitate
understanding of the operation of the protocol.

The proposed client interface is very similar to the ordinary Unix communications interface.
An application creates a normal socket using the “‘socket’’ call. In then makes a “‘connect”’ call,
specifying the destination of the communication. If the transport layer protocol supports connec-

tions, a transport layer connection is created. Otherwise, the address provided is used as the des-
tination for all data packets.

The client then makes an EstablishRTChannel call, specifying its traffic characteristics and
performance requirements. At this time, RCAP attempts to establish a network-layer connection

with ihe desired parameters. It provides the obtained parameters, or it returns an error code if the
requirements cannot be met.

T UNIX is a rademark of Bell Laboratories.

Page 9

The client transmits data over the socket using normal system calls. If the client wants to
change the parameters of the conversation at some point, the client makes a ModifyRTChannel
call, specifying the new traffic characteristics and performance requirements. RCAP attermnpts to
make the change, and it provides. the obtained parameters or.returns an error code if the new
requirements cannot be met. When communication is complete, the client closes the real-time
channel with the CloseRTChannel call, and then closes the socket.

A destination waiting to accept a real time connection creates a socket of the appropriate
type and waits for input, just as in ordinary socket communication. If a connection-oriented tran-
sport protocol is being used, the destination uses the ‘‘listen’’ and “‘accept’” system calls; if a
datagram transport protocol is being used, the destination uses the normal system calls for read-
ing from datagram sockets.

As an altemnative o establishing a real-time channel with guaranteed performance and
reserved resources, the client may use the EstablishExpress call to request that packets sent over
the socket be prioritized ahead of ordinary datagrams, but behind real-time packets.

The call parameters and their types are summarized below:*

struct realTimeParameters |
short MinInterarrival;
short Avelnterarrival;
short Duration;
short MaxSize;
short DelayMax;
short DelayProb;
short JitterMax;
short JitterProb;
short NoDropProb;

k

error = EstablishRTChannel(socketNumber, desiredParameters, obtainedParameters);
int error, socketNumber; realTimeParameters *desiredParameters, *obtainedParameters:

error = ModifyRTChannel(socketNumber, desiredParameters, obtainedParameters);
int error, socketNumber; realTimeParameters *desiredParameters, *obtainedParameters;

error = CloseRT Channel(socketNumber);
int error, socketNumber;

error = EstablishExpress(socketNumber);
int error, socketNumber;

3. Transport Protocol Issues

Many of the standard transport layer functions are provided by real-time channels. Tran-
Sport protocols normally provide error recovery, sequencing, and end-to-end flow control. When
RCAP is used to set up a real-time channel at the network layer, 2 bound is placed on loss due to

* The notation is consistent with that used in the 43BSD Unix documentation; calls are displayed as they
would be made by a us=r, and the types of the variables are documented below.

Pace 10

congestion, sequencing is achieved by use of a fixed-route channel, and the maximum transmis-
sion rate is agreed upon at the time of channel establishment. New transport protocols will be
required to effectively support real-time communication in this environment.

Clients who require real-time performance guarantees.can be grouped into three categories.
Some real-time clients will also desire end-to-end flow control, acknowledgments, and
retransmission, such as clients transferring bulk data within a time limit. Most real-time clients
will not require these features, but desire a real-time connection close to that provided by RCAP.

Some clients will wish to transfer express datagrams. Three types of transport protocols to
address these needs are discussed in this section.

3.1. Real-time Connections with End-to-End Flow Control and Retransmission

Clients requiring absolutely complete and correct data delivery will continue to desire pro-
tocols which support acknowledgement and retransmission, since real-time channels cannot elim-
inate bit errors or packet loss due to failure. Some data receivers may not be able to guarantee
processing of incoming data at any particular rate, and may wish to be able to continue to use
end-to-end flow control.

Much of the research on transport protocols for high-speed networking has focussed upon
designing protocols which provide reliable delivery and do not fail at high data rates. These pro-
tocols can be used with RCAP if real-time services are desired. The interaction of end-to-end
flow control with network rate control is an area requiring further exploration.

Protocols which have reverse traffic for acknowledgment and control will require real-time
channels in both the forward and reverse directions. Different bandwidths will be required for
data and acknowledgments, but the delay bounds are likely to be the same.

3.2. Real-time Connections

Real-time connections may be supported with little functionality at the transport level. A
protocol which provides end-to-end transport-layer connections (for the purpose of fixing the end
points for conversations) and provides options for error-handling would be desirable. For initial
experimentation, real-time communication may be accomplished by using UDP with RCAP on
top of RTTP.

Flexible error-handling options are desirable since real-time requirements typically do not
allow time for retransmission. RCAP allows the user to specify a maximum packet loss rate due
to buffer overflow, but the possibility of transmission errors cannot be reduced to zero, due to line
noise. A transport protocol should detect missing or damaged information (probably by using
checksums and sequence numbers) and respond appropriately. When a loss occurs, some clients
may want to know how much information was lost, and at what position in the transmission.
Others may wish to receive data which contains errors; they may be able to make some use of it.
Still others may want the transport protocol to provide error correction services. Such services
could be implemented by transmission of duplicate information or by Forward Error Correction.
Software implementations of Forward Error Correction do not meet real-time requirements, but
hardware solutions are being explored [Mc90].

33. Express Datagrams

Express datagrams may be sent by using a dedicated Local Channel Identifier (zero) which
results in prioritization ahead of ordinary datagrams, but behind packets belonging to real-time
channels. Such datagrams will receive better service than ordinary datagrams, but specific perfor-
mance guarantees will not be provided. This service may be provided by using UDP combined
with the EstablishExpress call to RCAP, which specifies that a socker is an express socket.

Page 11

RCAP sets the RTIP option for the socket so that a Local Channel Identifier of zero is automati-
cally sent with each data packet.

While guaraniced-performance datagram service could be provided by multiplexing
datagrams across a pre-established channel, such an approach would. be likely to resuit in
significant resource waste. The traffic patterns of real-time datagrams would be difficult 1o esti-
mate, and maintenance of such a channel would reserve resources and thereby prevent establish-
ment of other real-time channels. Further research is necessary to determine whether
guaranteed-performance datagrams are required.

4. Related Work

A number of other research efforts are aimed at providing performance guarantees through
the use of connections with fixed routing and resource reservation. These efforts are described
below.*

4.1. Flow Protocol (FP)

Zhang [Zh89, ZhS0] has proposed a rate-based network control system which provides
guarantees for average throughput in a packet switched network. A *‘VirtualClock’’ mechanism
is used at each node to monitor and regulate the average transmission rate over each connection.
This approach far exceeds TCP/IP in terms of meeting diverse throughput requirements; simula-

tions have demonstrated that competing traffic is properly regulated such that throughput guaran-
tees are met.

Zhang’s research has focussed upon the design and simulation of the VirtualClock algo-
rithm to be used by each node for scheduling data packet transmission and monitoring transmis-
sion rates. An overview of the essential features of the algorithm follows. During connection
establishment, a client requests a desired average transmission rate, a minimum average transmis-
sion rate, and the interval over which that average will be maintained (the Average Interval). The
Detwork reserves resources at all nodes along the path and guaramtees a throughput within the
acceptable range, or, if it cannot provide the service, it rejects the request. (Clients also specify
user expected delay, and the network provides the estimated delay. However, no guarantees
about delay are made.) To monitor transmission rates, the node associates a variable called the
ViralClock with each connection. Upon arrival of the first data packet on a connection, the Vir-
tualClock is set 10 the actual time. Throughout the duration of an Average Interval, upon each
packet arrival, the VirualClock is increased by the amount of time it would have taken for that
amount of data to arive, if the source were ransmitting at its average rate. Thus, if a source
transmits faster than its specified throughput, its VirtualClock value exceeds the actual tme. Ifa
source transmits slowly, the VirtualClock falls behind the actual time. At the end of an Average
Interval, the VirtualClock is compared with the actual time. If it exceeds the real time by too
much, control actions are taken. (The source is advised to slow down, and if the misbehavior
continues, further traffic over that connection receives lowest priority in handling.) Otherwise,
the VirtualClock is replaced with the current time, and a new Average Interval begins. An auxili-
ary VirmalClock (auxVC) is used to assign timestamps to packets to order transmission. Upon
packet arrival, the auxVC is set to the larger of the real time and the current auxVC, the auxVCis
increased in the same fashion as the VirtualClock, and the packet is stamped with the auxVC.

* A reader of original papers on these efforts will note differences in terminology. This area of research is
new enough that terms have not been standardized. The terms *‘channel”, “flow”, “congram™, and
“'stream’” all refer to connections with fixed routing, guaranteed performance, and reserved resources. Use
of the term *‘stream’” has the appealing attribute that one can refer to “upstream’” and *‘downstrexr ' nodes.
For consistency in discussion herein, the terms *‘charmel’* and “‘connection” are used,

Page 12

Packets are ordered for ransmission by the timestamps. The rationale for replacing the auxVC
with the real time if the real time is larger is to prevent bursty flows from interfering with others.
Without this mechanism, a sender could increase the priority of its packets by maintaining a
period of silence and then sending a burst.

This work is distinguished from ours in that it does not provide delay or jitter bounds, or
limits on packet loss due to buffer overflow. Under load, the VirmalClock mechanism schedules
packets in order to regularize the data flows according to average throughput, rather than schedul-
ing them to meet end-to-end deadlines. As a result, bursty flows experience higher variance in
queueing delay, and lower throughput flows experience both higher queueing delay and higher
variance in queueing delay. In contrast, our deadline-based scheduling approach decouples aver-
age throughput requirements from delay bounds; deadlines are based upon the desired end-to-end
delay, rather than average throughput. Another distinction is that the Flow Protocol is intended to
replace IP, rather than to be compatible with it.

A prototype of FP has been implemented by modification of IP under SunOS [KhSQ]. A
significant implementation issue was scheduling of data packet processing. This required
medification of the network interface code, as well as the IP code. The standard mode of opera-
tion under Unix is for IP to process packets in a FIFO fashion. When a packet for IP arrives from
a network device, a hardware interrupt causes it to be placed on a queue for IP, a software inter-
rupt is raised, and IP is subsequently run to service the queue. IP processes all packets on the
queue, in FIFO order, and places each packet at the tail of the appropriate outgoing queue. Simi-
larly, when a process has a packet to send via IP, it makes a system call, and IP is run to service
the packet. In the prototype implementation, Khale modified the network interface to support
addition of packets at any point in the outgoing queue, rather than at the head or tail only. This
enhancement also required modification of other modules which access the network queue
directly, such as ARP.

4.2. Session Reservation Protocol (SRP)

The Session Reservation Protocol (SRP) has been proposed in combination with the DASH
resource model (AnHeSc90]. SRP is a resource management protocol which was designed to be
independent of transport protocols, to be compatible with IP, and to allow a host implementing
SRP to benefit from its use even when communicating with hosts not supporting SRP. The SRP
effort differs from ours primarily in terms of the load model and offered performance parameters,
the methed for allocating excess performance guarantees, the method of identifying real-time
data packets, and the mechanism for communication among control entities.

The load model employed by SRP is based upon “‘linear bounded arrival processes.” A
linear bounded arrival process is categorized by a maximum message size (M), maximum mes-
sage rate (R), and a workahead limit (W). In any time interval of length T, the number of mes-
sages arriving may not exceed W+TR. On the basis of these factors, logical arrival times for mes-
sages may be determined. The logical delay of a message between two points is defined as the
difference between the logical arrival times at the two points. Clients specify their traffic in these
terms, and SRP uses this model to provide guarantees about logical delays, rather than actual
delays. SRP but does not attempt to provide jitter bounds, but expects the destination application
1o compensate for jitter. SRP does not accept a loss bound from the client, but instead reserves
sufficient buffers to ensure no packet Ioss due to buffer overflow.

Relaxation of resources in SRP is accomplished by use of an algorithm based on econom-
ics. On the forward pass of channel establishment, each node determines its cost function for
delay bounds, and adds its portion to a cumulative function. This cost function .r.dicates the sav-
ings which would be attained by relaxing the offered delay bound. This savings is not necessarily
in terms of money; for example, it may be in terms of a metric reflecting systemt load. On the

Page 13

return pass, the excess delay is absorbed by those nodes with the steepest cost functions.

SRP was designed for compatibility with IP, in the sense that the IP header does not need to
be changed to support SRP connections. (Implementation of SRP and changes to IP are neces-
sary on gateways and hosts offering connections with real-time guarantees.) ‘Since the IP header .
is unchanged, a channel identifier cannot be included in the header, and special techniques which
are dependent upon the higher-level protocols are necessary to identify real-time packets. Upon
receipt of a data packet, SRP examines the IP header to determine what the upper level protocol
is, and then calls a procedure for that protocol to identify its connection and determine whether a
real-time connection exists. For example, a TCP connection is identified by the source and desti-
nation addresses contained in the IP header and the ports contained in the TCP header. In order
to avoid examination of all packets in this fashion, real-time packets have the low-delay bit set in
the IP header. Therefore, packets which do not have the low-delay bit set may be treated as ordi-
nary datagrams..

For communication among control entities, SRP uses the Sun Remote Procedure Call
(RPC) protocol. This means that SRP, as currently defined, may only be used in environments
supporting this protocol.

An SRP prototype has been implemented under SunOS [De90]. The implementation
focussed primarily upon the control protocol. Deadline-based scheduling of data packet
transmission was not implemented. Under low load, deadline guarantees are met. However,
admission control is not effective; SRP allows numerous real-time channels to be established,
resulting in excess delays. Additionally, interrupts resulting from actions such as moving the
host’s mouse result in disruption of packet delivery. Delgrossi identified CPU scheduling and
network access scheduling as major issues in providing performance guarantees under Unix.

43. Multipoint Congram-Oriented High Performance Internet Protocol (MCHIP)

The Multipoint Congram-Oriented High Performance Internet Protocol (MCHIP) is being
developed at Washington University as part of a very high-speed internetworking project [Pa90],
[PaTu90]. This project is aimed at providing guaranteed performance for communications across
subnets with diverse capabilities (including connectionless wide area networks), where the sub-
nets are described by a set of performance parameters. Subnets may have designated resource
servers, which keep track of the established channels and available resources. In addition to pro-
viding simplex channels between hosts, MCHIP will provide multicast capabilities. The project
also involves development of high-speed gateways with all data delivery functions implemented
in hardware (e.g. fragmentation, reassembly, rate control, resequencing), and all routing manage-
ment and channel administration functions implemented in software on separate control proces-
sors. The gateways will process packets in FIFO order (with the exception of buffering due to
resequencing). A prototype FDDI-ATM gateway is under development, but details of the metho-
dology for channel management and resource reservation are not yet available.

4.4. Stream Protocol (ST-II)

The Stream Protocol, Version II, is an experimental Internet Protocol developed by a team
from Bolt Beranek and Newman and the USC Information Sciences Institute (Top90]. The pub-
lished information consists of the protocol specification; implementation issues, such as mechan-
isms for packet transmission scheduling and resource reservation, are not discussed. ST-II is
intended to run alongside IP, having additional higher level protocols and routing facilities.

The ST-II protocol differs from ours in a number of areas, the most significant being multi-
cast support and the approach towards re.ource reservation. ST-II supports multicast, which adds
considerable complexity to the protocol. Mechanisms are provided for functions such as adding
and removing destinations from a connection, negotiating unique connecticn identifiers among

Page 14

multiple nodes, and having multiple “‘branches’’ of a connection undergoing modification simul-
taneously. While the ST-II specification does not provide details regarding models for resource
reservation, the messages exchanged during channel establishment and the parameters contained
in those messages impact the possible methodologies. . The traffic load.and performance parame-
ters differ from ours, and the algorithms for their use are not specified. For example, resource
reservations are made in a one way pass along the path to the destination. The means by which
this may be done is not clear, given that each node on the forward pass does not know how Iong
the path is, and thus what its appropriate share of the load is.

Lessons leamed from implementing a prototype of an earlier protocol, ST, contributed to
the development of the ST-II specification.

4.5. Connection-Oriented IP Working Group

The Internet Activities Board has recognized the need for a connection-oriented service, and
an Intemet Engineering Task Force Connection-Oriented IP (IETF-COIP) Working Group has
been created. The members of the group are engaged in a collaborative effort to design, imple-
ment, and experiment with a connection-oriented intemetworking protocol and resource manage-
ment algorithms. Current plans are to base the work upon ST-II, MCHIP, and FP. The project is

in an early stage, and considerable opportunity exists for new participants to influence the final
product.

5. Areas for Further Research

Further research areas include routing, multicast, and synchronization. A more robust chan-
nel administration mechanism would try alternate routes in the event of establishment demial.
This would require the support of a new routing system which contained information regarding
altenate paths. Support for multicast connections would facilitate such applications as con-
ferencing among several sites. Synchronization of multiple channels would support applications
requiring synchronized audio and video.

Current time-sharing operating systems may be inadequate for real-time communications,
and altemnatives should be explored. A multiprocessor combined with a real-time operating sys-
tem would provide a solid foundation for making fim guarantees. Such systems are under

development; Tokuda is developing a real-time operating system based on the Mach kernel which
will support specific scheduling guarantees [Tok90].

6. Conclusion

This paper has described the central core of a methodology for supporting real-time com-
munications, proposed a real-time delivery system with channel control and network protocols
which may be used as a basis for experimentation, and discussed related efforts.

7. Acknowledgements

I would like to thank my advisor, Domenico Ferrari, as well as the members of the Tenet
research group, for their ideas and support. Their work provided the foundation of new network-
ing concepts which made this project possible, and their advice has been invaluable.

Page 15

References

[AnHeSc90] D. Anderson, R. Herrtwich, and C. Schaefer, ‘“SRP: A Resource Reservation Pro-

[ChMe88]
[De90]
(Fe89]

[Fe90]

[FeVe89]

[FeVe90]

[FrMa87]

[KhS0]
[Mc90]

(Pa90]
[PaTu90]
(Po80]
[Po81a]
(Po81b]
[Ro86]

[Tok90]

tocol for Guaranteed-Performance Communication in the Internet,’” Rept. No.
TR-50-006, International Computer Science Institute, Berkeley, February 1990.

T. Chen and D. Messerschmitt, ‘‘Integrated Voice/Data Switching,” JEEE Com-
munications Magazine 26(6), June 1988, pp. 16-26.

L. Delgrossi, personal communication, September 1990.

D. Ferrari, “Real-Time Communication in Packet-Switching Wide Area Net-
works,” Rept. No. TR-89-022, International Computer Science Institute, Berke-
ley, May 1989.

D. Ferrari, **Client Requirements for Real-Time Communication Services,’’ Rept.
No. TR-90-007, Intemnational Computer Science Institute, Berkeley, March 1990:
also, Proc. International Conference on Information Technology, October 1-5,
Tokyo, Japan, and JEEE Communications Magazine 28(11), November 1990.

D. Ferrari and D. Verma, “‘A Scheme for Real-Time Channel Establishment in
Wide-Area Networks,”” Rept. No. TR-89-036, International Computer Science
Institute, Berkeley, May 1989; also, JEEE J. on Selected Areas in Communications
8(3), April 1990, pp. 368-379.

D. Ferrari and D. Verma, *“Buffer Space Allocation for Real-Time Channels in a

Packet-Switching Network,”” Rept. No. TR-90-022, International Computer Sci-
ence Institute, Berkeley, June 1990.

A. Fraser and W. Marshall, “‘Data Transport in a Byte Stream Network,”* Techni-
cal Memorandum, AT&T Bell Laboratories, Murray Hill, N7, April 28, 1987.
A. Khale, personal communication, October 1990.

A. McAuley, “Reliable Broadband Communication Using a Burst Erasure
Correcting Code,”* Proceedings of SIGCOMM ’90.

G. Parulkar, ‘“The Next Generation of Intemetworking,”” ACM SIGCOMM Com-
puter Commun. Rev. 20(1), January 1990.

G. Parulkar and J. Tumer, *“‘Towards 2 Framework for High-Speed Communica-
tion in a Heterogeneous Networking Environment,”” JEEE Network Magazine,
March 1990, pp. 19-27.

J. Postel, “‘User Datagram Protocol,”” RFC 768, August 1980.

J. Postel, editor, ‘‘Internet Protocol; DARPA Intermet Program Protocol
Specification,”” RFC 791, September 1981.

J. Postel, editor, ““Transmission Control Protocol; DARPA Intemet Program Pro-
tocol Specification,”” RFC 793, September 1981,

F. Ross, “‘FDDI - A Tutorial,”” /[EEE Communications Magazine 24(5), May
1586, pp. 10-17.

H. Tokuda, personal communication, November 1950: also *“The Impact of Prior-
ity Inversion on Contnuous Media Applications,”” in “‘First International
Workshop on Network and Operating System Support for Digital Audio and
Video,”" Rept. No. TR-90-062, Intemational Computer Science Instimute, Berke-
ley, November 1990.

Page 16

[Top90]
[WrTo90]
[Zh89]

(ZhS0]

C. Topolcic, editor, “*Experimental Intemet Stream Protocol, Version 2 (ST-I),”
RFC 1190, October 1990.

D. Wright and M. To, **Telecommunication Applicaitons of the 1990s and their

- Transport Requirements,”” JEEE Network Magazine, March 1990, pp. 34-40.

L. Zhang, **A New- Architecture for Packet Switching Network Protocols,” PhD
thesis, Massachusetts Institute of Technology, July 17, 1989,

L. Zhang, **Virtual Clock: A New Traffic Control Algorithm for Packet Switching
Networks,”” Proceedings of SIGCOMM '90.

Page 17

