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Abstract

We define the complexity of a computational problem given by a relation using the model
of computation trees together with the Ostrowski complexity measure. Natural examples from
linear algebra are:

o KER,: Compute a basis of the kernel for a given n x n—matrix,

e OGB,: Find an invertible matrix that transforms a given symmetric n x n—matrix
(quadratic form) to diagonal form,

® SPR,: Find a sparse representation of a given n x n—matrix.

To such a sequence of problems we assign an exponent similar as for matrix multiplication.
For the complexity of the above problems we prove relative lower bounds of the form aM, — b
and absolute lower bounds dn?, where M,, denotes the complexity of matrix multiplication and
a,b,d are suitably chosen constants. We show that the exponents of the problem sequences
KER, OGB, SPR are the same as the exponent w of matrix multiplication.

Key words: Problems, computation trees, straight line programs, Ostrowski complexity,
derivations, matrix multiplication.
© AMS(MOS) subject classifications: 68C20, 68C25.

1 Introduction

It is well known that matrix multiplication is crucial for many computational problems in linear alge-
bra. Problems like matrix inversion, computation of the determinant or of all coefficients of the char-
acteristic polynomial, LR-decomposition, and over the complex numbers also QR-decomposition
and unitary transformation to Hessenberg form, are all known to be as hard as matrix multiplica-
tion.(See (3, 5, 8, 9, 13, 14, 17].) In this paper we study some computational problems in linear
algebra that are specified more generally by a relation rather than by a function.
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Let F denote a field of characteristic zero or an ordered field. The reader may keep in mind the
two important examples F = C or F = R. A problem is given by a relation

LG F ™% #7

(A relational connection between inputs and outputs is the natural way computational problems
are specified; see also [4, 12].) Given an input z € F™ we are asked to find a y € F™ such that
(z,y) € II. We say that a function

f:F" — F?
solves the problem II if and only if

graph(f) C 1L

In order to investigate the complexity of a problem we use the model of a computation tree T
using the operation symbols F U {0,1,4, —, *, /} (multiplications by scalars A € F included) and
the relation symbol = (and < when we are working over an ordered field). We define the cost of
a computation tree T" as the maximum number of multiplications and divisions T performes given
an arbitrary input vector. (Compare [12, 15, 16, 18].) The complexity C(f) of a function is then
defined as the minimum cost of a tree computing f, and finally we put

C(Il) := min{C(f) : f function solving II}

for the complexity of the problem II. In this paper we focus on the Ostrowski complexity measure
which provides enough flexibility to carry through lower bound proofs. However, the upper bounds
given in this paper also hold when all operations and comparisons are counted.

One of the leading problems in computational linear algebra is matrix multiplication. In our
formal framework

MAMU (o 13 := {((4, B),C) € (F*h x F**!y x Xl ; AB = C}
Trivially :
C(MA MU[BB',hh',”")) S C(MAMU(e'h'I'})erh!F. (1)

We put
M, = C(MAMU(,;,“',‘)).

As a lower bound only the estimate M,, > 2n? — 1 is known ([2, 11]). The asymptotic behaviour of
the sequence (M,,) is measured by the so-called exponent w of matrix multiplication

w:=inf{re R: M, =0(n")}.

(It is a well known fact that counting all arithmetic operations leads to the same asymptotic
exponent.) The currently best known estimate is 2 < w < 2.376 ([6, 19]).
We will study the following sequences of problems:

(1) 3-COMPRESSION:
3-CPR,, := {((A1, A2, A3),(Bi1, By)) € (F™ ") x (F™*")? : A1 A;A3 = B, B, }.

The investigation of this problem is motivated by the phenomenon that a corresponding
problem for the addition of bitnumbers allows savings within the parallel boolean model.
The task

given bitnumbers a, b, ¢ find bitnumbers u,v such that a+ b+c=u+v
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can be solved more efficiently than by just adding up the numbers a, b, ¢ using the so called
carry save adders. (Cf. [20].) The lower bound we are going to prove shows that such a speed
up is not possible for matrix multiplication (and sequential algorithms).

(2) KERNEL:
n
KER, := {(A,B) € F™*" x | | F™: B € F**(n=r8A) 1k(A) + rk(B) = n, AB = 0}.
i=0
This is of course the problem of computing a basis of the kernel for a given matrix.
(3) ORTHOGONAL BASIS:
OGBy :={(A,S) € F™" x Gl : A symmetric, SAST diagonal}.

(4) SPARSE REPRESENTATION:
SPR, := {(A,(S,T,B)) € F™*" x (GI2 x F™*™): B = SAT, |supp(B)| < cn}
(c 2 1 a fixed constant).
(5) SPARSENESS TRANSFORMATION MATRICES:
SPTM, := {(A,(S,T)) € F*™* x G2 : |supp(SAT)| € en}

(c 2 1 a fixed constant).
In contrast to the SPARSE REPRESENTATION problem only the transformation matrices,
but not the sparse representation matrix needs to be computed.

The main goal of this paper is to prove lower bounds on the complexity of the problems cited
above in terms of the complexity of matrix multiplication. The proofs rest on differential methods
from [17] and [3]. Section 2 contains the definitions of the formal framework and the model of
computation.

Let us summarize our results: We can assign to any sequence II = (II,,) of problems an exponent
wn := inf{r € R: C(Il,) = O(n")}.
For any of the problem sequences II listed under (1)-(5) we have
win S w

(section 4) which follows easily from the recursive techniques given in [5, 13, 14]. In section 5 we
prove for the sequences II listed under (1)—(4) the lower bound

Vo C(Il,) > aM, — bn?
for suitably chosen constants a,b > 0. This implies immediately
Wi 2 w,

provided that w > 2. For the sequence SPTM this estimate is also shown to be true.
The aim of section 6 is to remove this assumption “ w > 2 ” by showing absolute lower bounds

Vo C(I,) 2 dn?

(d a positive constant). The proof employs the notion of dimension for an affine variety. So for any
of the sequences listed under (1)—(5) we have

wn = w.



2 Some terminology

We treat two cases in parallel. In the first case F' denotes a field of characteristic zero, in the second
F stands for an ordered field. (Think of the two examples F = C and F = R..)
A problem Il is defined as being a subset

ITc F™ x F".
We call def(IT) := proj pm (II) its domain of definition. We say that a partial function
fiF™ D def(f) — F®
solves the problem II if and only if

graph(f) C II and def(f) = def(I).

In order to investigate these objects from the point of view of computations, we use the model of a
computation tree. Let us shortly describe this notion; for a detailed discussion see [12, 15, 16, 18].

As the set ) of operational symbols and the set P of relational symbols (together with arity
functions) we take

Q=Fu{0,1,4,—,*,/}
and
(or P = {=,<} in case of an ordered field (F, <)).

Let sy,582,... be variables denoting storage locations in a computer. A computation tree T of type
(2, P) with output length n is a binary tree together with a function that assigns

e to any simple vertex an operational instruction of the form
8i = W(S5500585,)
where k > 0, %, j1,...,5x > 0 and w € Q k-ary,

¢ to any branching vertex a test instruction of the form

p(sjli""‘g.?.k)
where k£ > 0, ji,...,7k > 0 and p € P k-ary,

e to any leaf an output instruction of the form

(3.511 "'13.fn)
where j1,...,5, > 0.

The assumption that all output lists have the same length n is made in order to simplify notation
and is not essential. When fixing additionally an input length m such a computation tree T
computes a partial function

[ F™ Ddef(f)— F"



in the following way: given £ € F™ we assign to the variables at the root of the tree the values
(€15+++y€m,00,00,...) and execute the instructions of T'. This determines a directed path T from
the root of T' to a leaf or to a vertex with unexecutable instruction. We say £ € def(f) if T¢ ends
up with a leaf. If this is the case the value of the output is (f1(£), ..., fu(£)). It is easy to see that
for a directed path 7 from the root to the leaf the set

Dii={f€e F" :Tg=x}Cc F™

is a locally closed subset and that the restriction of f to D, is restriction of some rational function.

Now we are going to define the complexity of problems and functions. Let a cost function
¢:QUP — N be given and T be a computation tree. By adding the costs along each path from
the root to a leaf of the tree T and maximizing over all path we get the cost cost.(T) of T with
respect to the cost function c¢. As the complezity C.(f) of a partial function

f:F™Ddef(f) — F"

we then define
Cc(f) := min{cost(T) : T computation tree computing f},

and finally we call
Ce(11) := min{C.(f) : f a function solving I}

the complerity of the problem II C F™ x F™ with respect to ¢. In the following we will assume
that the cost function ¢ is arithmelic, i.e. ¢ |p= 0. (Notationally we will not distinguish between ¢
and its restriction to §.)

Let A be a F—algebra, f1,...,fn € A, I € A™. The complezity

LA,c(fl:-' °-sfn | I)

of fi,...,fn with respect to the input I and cost function ¢ : @ — N is the minimum cost of
a {—straight line program computing fi,.., f, from the input I. Usually A is a localization of a
quotient of the polynomial algebra F[zy,...,%], and I will be chosen as the image of (z1,...,2Zm).
In this case the input I will be notationally suppressed.

We mention that for a morphism % : A — A’ of F—algebras we have

LA',C(,'lb(fl)B" 5irb(fﬂ) | ¢(I)) S LA.C(fI'!' -'?.fn I I)‘ (2)

We outline our method for giving lower bounds on the complexity of problems. We say that a
problem II C F™ x F" is irreducibly defined if def(II) is irreducible in the Zariski topology. II is
called fotal if def(Il) = F™. A total problem is obviously irreducibly defined. The problems we
will consider later on are all total. Now let an irreducibly defined problem II C F™ x F™ be given
and let K := F(def(II)) denote the quotient field of the ring F[def(II)] of polynomials on def(II).
Let f: F™ D def(f) — F™ be an optimal function solving IT and T be an optimal computation
tree computing f, so

Ce(Il) = Ce(f) = cost(T).

We have a finite disjoint union
def (IT) = U{.D,r : 7 directed path from the root to a leaf}.

There must be a path mg such that D, is Zariski dense in def(II) because def(II) is irreducible
in the Zariski topology. Let us call such a path 7y a typical one. If we are considering a field
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F without ordering, there is exactly one typical path, because in this case a Zariski dense locally
closed subset is open in def(Il) and two of them must intersect. However, if we are working over
an ordered field (F, <) there might be many typical paths. Let 7y be a typical one. Then we can
consider the g; := f; ]D"'D as elements of the function field K and we easily see that

cost(T') > coste(mg) > Lk c(g15---19n)

and

VE € D‘ﬂ‘o (6:(9’1(6): L -agn(E)) € IL.

So we have proved the following “arithmetic lemma”(compare [15, 16]):

Lemmal Letc: QUP — N be an arithmetic cost function, Il C F™ x F™ be a an irreducibly
defined problem and K = F(def(Il)). Then there are elements g1, ...,g, € K such that

(&, (g1(8),.--,90(8))) € I for all € in some Zariski dense subset of def (11)

and
CC(H) > L.F\'.c(gls .. 'agn)'

This lemma gives a lower bound for the complexity of a total (irreducibly defined) problem in terms
of the complexity of rational functions (algebraic functions) from which we only know that they
satisfy certain relations. The clue will be to exploit this information in concrete cases.

In the following we will work exclusively with the Ostrowski cost function ¢ : QUP — N which
is defined by ¢(*) = ¢(/) = 1, ¢(w) = 0 for all w € (2 \ {#,/})UP. The index c will therefore be
omitted.

3 Ostrowski complexity and differential methods

Let us recall some results from [17] and [3] on Ostrowski complexity of rational functions. Let
A € F™ and consider the local ring '

Ox:={f € F(z1,...,2p) : [ defined at A }.
Lemma 2 For given rational functions fi,..., fn € F(z1,...,2,) the equality
Lpe)(f1y-- s fo) = Loy (frs- -5 fn)
holds for Zariski-almost all A € F™,

We omit the trivial proof.
It is well known that the image of an element f € Oy under the canonical imbedding

= F[[yla“‘aym]; Ti— A=y

is the Taylor expansion Y 72, f““)(g) in the point A. (Here f(*) denotes the homogenous part of
degree k of a polynomial f € Flyi,...,ym].)
The next theorem will be used throughout in the paper.



Theorem 1 ( [17]) Let A€ F™, fi,...,fn € Oy, d € N. Then

Loty U@ 08 k<t 1< <)) < D2 V00 (11,0, 1),

where 372, ft-{k}(y) denotes the Taylor ezpansion of f; in the point .

Observe that the complexity on the left-hand side is defined with respect to the polynomial ring
Fly1,...,ym]. Theorem 1 together with Lemma 2 for polynomials is Strassen’s result on “Vermei-
dung von Divisionen”. A well known consequence of which is

n
M, = C(MAM{U(“,“'“)) = LFE!H({ZX“YU i1€,7 <€ n})

=1
QOur second main tool is the famous “Derivation Theorem”.

Theorem 2 ([3]) Let f € F(z1,...,2) be a rational function. Then

0 0
LF(;)(f,a—:i, = "S_x{;) < 3Lp(g)(f)-

4 Relative upper bounds

We recall the definitions of the computational problems we are interested in.

e t—~-COMPRESSION:
t-CPR, := {((A1y.. ., &), (B1,..., Bi—1)) € (F™ ") x(F™*™)'"1 : AjAy---Ay = BBy - By_1}.
(t > 2 a natural number). Obviously

C((t+1)-CPR,) < C(t-CPRy), C(8-CPR,) = MAMU (5 -
¢ KERNEL:

n
KER, := {(A,B) e F**" x | | F™*: B € F™*(»=*4) 1k(A) + rk(B) = n, AB = 0}.

i=0
e ORTHOGONAL BASIS:

OGB, := {(A,S) € F*™ x Gl,, : A symmetric, SAST diagonal}.

o SPARSE REPRESENTATION:
SPRy, :={(A,(8,T,B)) € F™™ x (GI2 x F™"): B = SAT, |supp(B)| < cn}

(¢ > 1 afixed “sparseness” constant).



e SPARSENESS TRANSFORMATION MATRICES:
SPTM, = {(A,(5,T)) € F**™ x GI2 : |supp(SAT)| < cn}
(¢ 2 1 a fixed constant).
The following theorem gives an upper bound relative to the complexity of matrix multiplication.
Theorem 3 The exponent for an;u of the sequences of problems
t-CPR, KER, OGB, SPR,SPTM

is less or equal the exponent w of matriz multiplication.

The proof is based on ideas from [5, 13, 14]. See also [1, pages 233-240] and [9]. The proceeding is
to subdivide the occuring matrices into blocks, to perform a sort of Gaussian Elimination blockwise
using a fast hypothetical matrix multiplication algorithm, and then to continue recursively. We
leave the details to the reader. For the problem ¢-CPR the statement is of course trivial.

Remark: Theorem 3 remains true when we count all rational operations and tests at unit
cost.

5 Relative lower bounds

We are going to prove lower bounds in terms of M,, for the various problems defined above.
Theorem 4 The sequence 3-CPR satisfies
C(3-CPR,) > %Mn —p?.
Proof: Let A, B,C be n X n—matrices whose entries are indeterminates over F' and put
K := F(Ajj, Bij, Ci;). By Lemma 1 there are U,V € K™*" such that
UV = ABC

and
Lk(U,V) < C($-CPR,).
If we take into consideration that the trace of the product of two n X n—matrices can be computed
with n? multiplications, we get
Lg(Tr(ABC)) < C(3-CPR,,) + n’.
Furthermore OT+(ABC)
T
W = (BC);:

Theorem 2 implies now
M, = Lx(BC) < 3C(3-CPR,) + 3n?,

which completes the proof of the theorem. O

Remark: We conjecture that a similar lower bound holds for the problem sequences i-CPR
when £ > 3.



Theorem 5 The sequence KER satisfies
C(KER,) > M-

Proof: W.lo.g. we may assume that n = 4m, m € N. Let X,Y denote 2m X 2m-matrices whose
entries are indeterminates over F. We put I{ := F(X;;,Y;;) and R := F[X;,Y;;]. When we apply
Lemma 1 to the restricted problem

£\ 2mx2 i i
KER, N ({( & 1€, € FEmXIm 4 [_|F“*' :
1=0
we see that there exists a matrix B € K4™*?™ satisfying
rk(B) =2m, (X,Y)B =10

and
Lk(B) < C(KER,).

There must be a matrix U € Gly,,(K) such that
Xy
e

Lrg(X~'U,Y~'U) < C(KER,).
From Lemma 2 we obtain that there are £,5 € Gla,,(F) such that

We therefore have

X1 ]fa Ue ijzm(O(Em}) and LO({M)(X_]U,},_IU) — LI\’(X_IU, }f—l U).

Thanks to the fact that we do not count linear operations we may replace U by UU(&,75)"! and
therefore assume that U(£,n) = E (E = identity matrix). Application of the isomorphism

?:0m = OEE),e(X) = XEe(Y):=Yp
shows that we may assume w.l.o.g. that £ = p = E. (Cf. (2).) Furthermore
Loy ((E= X)WV (E-Y) V) = Loy o, (X0, YD),
when we put V := U(E - X,E - Y). We use now Theorem 1 with d = 2 and get
Lp(X?+xv 4 vO y2 4 yvO 1 vO) < Lo (B~ X)WV, (E-Y)71V),

where V = E + V(1) + V(@) 4 ... denotes the Taylor expansion of V in the point (0,0). The
complexity on the left-hand side can be estimated from below by

Lp(X?-Y? 4 (X -Y)VD).

Xll X12 Y]I Y12
X = (le X22)=Y=(Y21 yzz)

We write



where X%, ¥ € R™*™ and make the linear substitution

0 ;Xl? 0 ;{12
d’il?-*-131¢()()=== ( jgil ){22 ) a¢(}/):=: ( 0 0 ) s
One calculates immediately that

12y 21 12 v 22
¢(X2-Y2+(X-Y)v(1>)=(x A5 A X )

p Q
for some P,Q € R™*™. Therefore

My, = Lp(X'X*") < C(KER,).

Theorem 6 The sequence OGB satisfies
C(OGB,) > %M[ﬂf"ij —4n? —n.

Proof W.l.o.g. we may assume that n = 4m, m € N. Let A denote a symmetric n X n—matrix
whose entries are indeterminates over F. Put K := F(A;; :1 < j<n)and R:= F[A;;:1 < j < n].
By Lemma 1 there is a matrix S € GI,,(X) such that

D := SAST is diagonal

and
Li(§) £ C(OGBy).
By writing
Dn 1 1
P =D | =SAST| ),
Dyn 1 1

we see that D can be computed from A and § with 2n? multiplications. We have
Tr(A™Y) = T+(ST(D19)).

Therefore
Lg(Tr(A™) < Lg(5) + 4n® + 0.

We proceed now similar as in [8]. Let V' € F™*™ be symmetric and ¢ be an indeterminate over K.
Then oTr(A-Y)
Tr(A-
-1y _ -1
Tr((A+eV)™1) = Tr(A™1) + eZT,-,-

i<j

Vi; + O(€%).
On the other hand one easily calculates
Tr((A+eV) ) = Tr(A™Y) - eTr(A7IWVA™Y) + 0(é?).
Comparing the two equations we get

OTr(A™Y) _ [ —2(A7%); ,ifi#j
04;; | —(A%); , otherwise.
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From the Derivation Theorem 2 we deduce
1
3LK(47) < L(Tr(A™)) < Lx(S) + 4n® + .

Because the matrices of the form pu” (i € F™ ™) are a Zariski dense part of the symmetric matrices
in F™*" we conclude by Lemma 2 that there exists a matrix g € GI,(F) such that

Lo, 2(A7%) = Li(47%).
Furthermore using the F—algebra isomorphism O,,r — Og, A — pAuT we see
Lo, -(47%) = Log(A™) = Loy((E - 4)7%).
By Theorem 1 with d = 2 and taking into account that |
(E-A)?=E+24+34% +...

we get
Lp(A%) < Lo ((E - A)7?).

We divide the matrix A into m x m-blocks A% € R™*™ and define the substitution

0 0 AB
0 0 A% 1)
Yv:R— R, ’P(A) F— (AIB)T (A23)T 0 0
0 0 0 0
Obviously
AlS(AIS)T AIS(AQS)T 0 0
A?S(A13)T A23(A23)T 0 0
2 _
¥(4) = 0 0 W 0
0 0 0 0

where W = (A1) A1 4 (42)T 423, Hence
My, = Lp(AB(AR)T) < Lr(A?) < 3(C(OGB,) + 4n* + n).

a

Throughout the following ¢ > 1 will denote a fixed constant. We call a n X n—matrix A sparse
(with respect to the sparseness constant c) if

|supp(4)] < en.

Observe that an arbitrary n x n—matrix can be multiplied with a sparse matrix (from the left or
right) using only ¢n? multiplications.

Theorem 7 The sequence SPR satisfies

C(SPR,) > %MI_“J'SJ — (2 + 10¢/3)n.
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Proof W..0.g. we may assume that n = 3m, m € N. Let A denote a n X n—matrix whose entries
are indeterminates over F'. We set Il := F(4;; :4,j < n)and R:= F[A;;:¢,j £ n]. By Lemma 1
there exists 5,7 € GI,,(K') and a sparse matrix B € K®*" such that

B =8§AT
and o
Lx(5,T,B) < C(SPR,).

By Lemma 2 we may choose a matrix a € Gl,(F) such that
S,T,B € Gl,(0,) and Lo (8,T,B) = Lx(5,T, B).

By applying the isomorphism O, — Oy, 4 — a(E — A) we see that there exist S, T, B € Gl,.(Op),
satisfying
B = S5(E - A)T, B sparse

and L
Lo,(S5,T,B)= Lo,(5,T,B).

Let § =8O+ 804 .. T=T7@O47M) 4 . B=BO 4B+, . . denotethe Taylor expansions
in 0 of 5, T, B respectively. The matrices B*) are also sparse. Theorem 1 implies
Lp(5®@), 8@ 73 70)) < 3L, (8,T, B).
By comparing the third order terms in the Taylor expansion in 0 of both sides of the equation
(E-A)1=TB"1§

we get
Tr(A% = S Tr(TO(BH)DsHY),
i+j+k=3 |
We are going to show now that the products (B=1))S§®*) (j + k < 3) can be computed from
B BB 52 §G) with only 10¢n? multiplications:
A short calculation yields (put v := (B(®))=1)

(B™)M = —4BWy, | (3)
(B)® = —yB®y+yBWyB0sy, (4)
(B = —yB®y +yB0yBNy 4 yBWyBC)y 4 yB1y By B0, (5)

Observe furthermore that a product

YLy Xs -y T,

where
T 'E an:ri., I1 E Rl’lxn

and
¥; € R™" sparse (i = 1,...,1),

can be computed from the matrices T;, ' with only etn? nonscalar multiplications. (Compute from
the righthand side to the left.) Taking this into account the upper bound 10¢n? follows now easily.
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The result of this intermediate reasoning gives the upper bound
Lp(Tr(A%)) < 3C(SPR,) + 6n® + 10cn?.

We subdivide A into m x m~blocks AY € R™*™ and make the substitution

0 A% 0
$:R—-Rp(A):=| 0 0 4B
A® 0 0
One easily verifies
A12A23A31 0 0
’I,ZJ(A)S L 0 A23 431 412 0
0 0 A31 A12A23

and hence
H(Tr(A%) = Tr(y(A)?) = 3Tr(AVZABA3),
So we showed that
Lr(AAZ A% < LR(Tr(A%)).

When we apply the Derivation Theorem 2 we finally get

1

EMm < Lp(A2A4%431)
which implies the desired bound

%Mm — (24 10¢/3)n? < C(SPR.,).

As an immediate consequence of Theorem 3 and Theorems 4 - 7 we get the following

Corollary 1 Any of the sequences of problems
3-CPR, KER, OGB, SPR

has as exponent the exponent w of matriz multiplication, provided that w > 2 in case of 3-CPR,
0GB, SPR .

For the sequence SPTM we will only make a statement about the exponent. We need the following

Lemma 3 The sequence of problems MAMU (, » | /m)) has an exponent strictly smaller than the
ezponent w of matriz multiplication, provided that w > 2.

Proof: We assume w > 2 and choose € satisfying 0 < € < w/2 — 1. For a suitable constant d > 0
and all squares n we have by inequality (1)

C(MAMU(ﬂ.n,\/ﬁ)) < C(MAMU(\/HN/E,\/;{))R < d(\/ﬁ)w-{-‘z\sn.

Therefore
C(MAAIU(ﬂ,nW/H)) = O(RW/'Z +€+1)-

But w/2 + €+ 1 < w and the statement follows. o
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Theorem 8 The ezponent for the sequence SPTM equals the exponent w of matriz multiplication,
provided that w > 2.

Proof: Suppose w > 2. Since we already proved Theorem 7 it is sufficient to show the following:
Given (4, 5,T) € F™*™ x GI2 and the information that SAT is sparse, then we can compute
SAT with cost O(n™), where 7 < w.
Put B := §AT and assume B being sparse. For i € {1,...,n} we define

Li:={j€{l,...,n}: B #0}.

In order to simplify notation we may assume w.l.o.g. that (|[;|);=1,.. is an increasing sequence.
We set

M :=max{i: |L| < |Vn]}.
Then
n—M < evn.

We now choose a matrix a € F™IV% with the property that all its subdeterminants are different
from zero. According to the preceeding lemma we can compute the product C

C := Ba = S(A(Te))

with cost O(n"), where 7 < w. However, the first M rows of B can be computed from C without
any nonlinear operations: for a fixed 1 < M we have

V k< |vn] ) Bijejr = Ci.
jel

As for all i < M (ajr)jer k<) € Glir(F) we get all By; (i < M) from C with linear operations
only.

In order to get the remaining n — M rows of B we do simply the following. We choose a matrix
B € Gl,_pm(F) and put

7 :=(0,8) € Fn=Mhxm,
The product
1B = ((v$)A)T

can be computed with only O(n") nonlinear operations as well. But from vB we can obtain
(Bij)i=M+1,...n, j=1,..,n With linear operations only. D

6 Absolute lower bounds

The aim of this section is to show that the assumption “w > 2” in Corollary 1 and Theorem 8 is
unnecessary. We will do so by proving lower bounds of the type

constant - n?

for the various computational problems we considered before. There is no harm in assuming that
F is algebraically closed.
We need the subsequent proposition
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Proposition 1 Letbe A € F™, f1,...,fn € Oy, fi = 1020 fi(k) its Taylor ezpansion. Then there
is a linear subspace S C F™ contained in the closed cone

Z:={neFm: fOn)=0forallie{l,...,n},k>2)

such that
dimS > m— Lo, (f1,-..,fn)-
In particular,

dimZ > m — Lo}(fh. ..,fn).

Proof: W.lo.g. we may assume A = 0. We make induction on r := Lo,(fi,-..-, fa)- The start
“r =07 is trivial. Assume now that r > 0. It is easy to see that there is a hyperplane H C F™
such that the complexity of the restricted functions f; := f; |7 (considered as elements of the local
ring of H in 0 ) is strictly less than r. The induction hypothesis implies the existence of a linear
subspace § C H satisfying

Sci{neH:fBm)=0forallie{1,...,n}, k> 2}

and
dim§=(m-1)-(r—-1)=m-r,

as asserted. ]

Theorem 9 The problems t-CPR,,, OGB,, SPR,, and SPTM, have the following lower bounds:

C(t-CPR,) > 3n*(1+ 1/min{t,n}),

C(OGB,) > n?/18—17n/6,

C(SPR,) > n?/3 - 3cn (c=sparseness constant),
C(SPTM,) > n?/3- 3cn.

Proof: We give a detailed proof for the sequence SPTM, for the other problems we only sketch
the way of argumentation.

SPTM: Let A denote a n X n—matrix whose entries are indeterminates over F. The same
reasoning as in the proof of Theorem 7 shows that there are §,T, B € Gl,(0p) such that

B = S(E - A)T sparse,

and
Lo,(5,T) < C(SPTM,).

By Proposition 1 the cone
Z := {a e F*" : §®)(a) = TW(a) = 0 for all k > 2}

has codimension
codim(Z) < Lo, (S,T).

From (E — A)"' =TB"1§ we get

A3 = z T(i)(B—l)U)SUf)_ (6)
i+j+k=3
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By the Dimension Theorem (7, page 48]
Z'=Zn{ce F*" : B (a)=0for k =1,2,3).
is a closed cone of codimension
codimpnxn(Z') < Lo,(S,T) + 3cn,
since the matrices B*) are sparse. From the equations (3)- (5) of section 5 it follows
Z' C{ae FP* . (B"HY®)(a) = 0 for k = 1,2,3}.

By equation 6 above
Z' c {a € F™" :a® = 0}.

The subsequent Lemma 4 and a comparison of dimensions lead to the inequality
Lo,(5,T) > n?/3 - 3cn

which proves the statement.
t-CPR: There are a € (F™"*")!, By,...,B;_1 € O, such that

Al . 'At = B] e 'B;_l and LQQ(BI,.. .,Bg_l) S C(i-CPRn)

We set
Z:={fe(F>*):BM@B)=0forall i <t—1,k>2)

Obviously
Zc{Be(F> ) :py--fy=0}=:2Zp,.

But by Proposition 1 we have
codim(Z) < Lo, (B1,...,Bi—1) £ C(t-CPR,),

hence

codim(Zy ) < C(t-CPR,,).

The subsequent Lemma 4 implies now the desired statement.
OGB: We proceed as for the problems SPTM, but instead of Lemma 4 we use

dim({a € F™*™ : @ symmetric, o® = 0}) < 4r%/9 4 n/3,
which can be derived from the formula
dim({a € F™*" : a symmetric, rk(a) < r})=rn—r(r-1)/2
if we take into account that
Va € F**" (o® = 0 = rk(a) < 2n/3).

SPR: The statement follows trivially from C(SPR,) > C(SPTM,).
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Lemma 4 The closed subvarieties
Npti={a e F**" :af = 0} c F™",

Zngi={(on,. . ) € (FP™) tag ey = 0} C (F™7)F

have the codimensions
codim(Np 1) = oy,

codim(Zn4) = (n? + 0ny)/2

where
i
b= mz’n{z mf : (m1,...,my) partition of n}.
i=1
The sequence o, satisfies

Unlt =n Ilf""’ Z n}
Onp 202t ift < n (with equality if t|n).

This lemma is classical and can be proved by standard techniques. For the reader’s convenience
we include a proof.

Proof:
For N, ;: Let B be a matrix in Jordan normal form, i.e.

ﬁ = diag(J(nl,Al),. . .,J(ns,}\s)),

where (n4,...,n,) is a partition of n and J(n;, );) is defined as
A1 0 0
Jgd=] € = D | e qpnn
0 0 X 1
0 0 0 X

We denote the dimension of the conjugacy class of 8 by dx(ny,...,n,). It is easy to see that
Bl=0 < ViX=0,n; <1
This implies at once
dim(Ny ) = maz{dg(n1,...,n;): (n,...,n,) partition of n with n; < ¢ for all 7}.

The value of dg(ny,...,n;5) can be exactly determined, namely

H

do(ny,...,ny) = n? — Zm_f,
=1

where (my,...,m,) denotes the partition dual to (ny,...,n,). (See [10, page 192].) Using this fact
we conclude immediately

!
codim (N, ;) = min{z mf : (my,...,my) partition of n} = o, ;.
i=1 -
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For Z,;: We assign to an element a € (F™*")* a sequence (V, V4,...,V;) of linear subspaces
of F™ by putting
ii=F", Vi i=04(Wj) fori=1t,...1.

We set
d; := dim(V;), m;:=d; —d;;

and call (my,...,m;) the pattern of @. Obviously

t
creZn,t<=>Zm,-=n.

i=1
Let now a pattern m = (mg,...,m,;) satisfying the condition Y_f_; m; = n be fixed. The subvariety
{a € (F™*™)": a has pattern m} C (F"*")!
is isomorphic to the subvariety
®:= {(Vh,...,Vi),a): Vo = F*, V;_; = ai(V}), dim(V;) = d; for all 3}

of [Ticy Grag; X (F™*™). (Grp,q, denote the Grassmann varieties.) It is well known that
dim(Grop4) = d(n — d).

All fibres of the projection @ — []i_; Gry 4, have dimension tn? — "¢, di(n — d;_;). We get
now easily

t
codim(®) = Zdi(di —djq) = Z mim;,
i=1

i<
hence

¢
codim(®) = (n? + Z m?)/2.

1=1
Therefore
codim(Zp 1) = (n® + 0nt)/2.

Putting all our information together we get the final result

Corollary 2 Any of the sequences of problems
8-CPR,KER,OGB,SPR,SPTM

has as ezponent the ezponent w of matriz multiplication.
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