Parallel Combinatorial Computing

Richard M. Karp
TR-91-006
January, 1991

Computer Science Divisicm,l’z’3

University of California,
Berkeley, CA 94720
and
International Computer Science Institute,
Berkeley, CA

Abstract

In this article we suggest that the application of highly parallel computers to applications with a
combinatorial or logical flavor will grow in importance. We briefly survey the work of theoretical computer scientists
on the construction of efficient parallel algorithms for basic combinatorial problems. We then discuss a two-stage
algorithm design methodology, in which an algorithm is first designed to run on a PRAM and then implemented
for a distributed-memory machine. Finally, we propose the class of node expansion algorithms as a fruitful domain
for the application of highly parallel computers.

IResearch supported by NSF Grant No. CCR-9005448, karp@kazoo.Berkeley.EDU,

2To be published in the proceedings of the Conference on Very Large Scale Computations in the
21st Century, sponsored by Thinking Machines Corporation.

31 would like to thank Ottavia Bassetti of Thinking Machines Corporation for her invaluable help
in the preparation of this paper.






1 Introduction

Over the past fifteen years theoretical computer scientists have been at work
developing the foundations for the systematic study of parallel computers and
parallel algorithms. In this article I would like to convey some of the insights
of lasting value that have come out of this investigation of abstract models
of parallel computation, to relate these studies to the practice of parallel
computation, and, in particular, to draw attention to combinatorial search
problems as a promising domain for the application of massively parallel
computers.

To set the stage, let me briefly sketch some of the recent history of par-
allel computation. The earliest successes have come in the field of scientific
computing. The reasons for this are fairly obvious. First of all, there are
many urgent numerical problems in science and engineering that require vast
computing resources. Secondly, it is often very easy to see that these prob-
lems can benefit from parallel execution: the quantities to be computed have
a natural spatial or temporal relationship that immediately suggests a way
of decomposing the problem into relatively independent parts that can be
solved concurrently. Putting it another way, these problems are ripe for the
“data parallel” approach that the Connection Machine is designed to exploit.

The problems in scientific computing that have yielded most easily to par-
allel computation often have computational kernels with a very simple and
regular structure. Examples of such kernels are the Fast Fourier Transform,
dense matrix multiplication, the solution of tridiagonal systems of linear
equations and relaxation processes over fairly simple geometries. Algorithms
for the solution of these kernel problems are very compactly expressible us-
ing the standard notation of algebra and can be implemented using simple
data structures such as arrays. The computations tend to be oblivious rather
than adaptive: i.e., the sequence of computation steps and data accesses to
be performed is highly regular and predictable in advance, rather than being
determined at run time according to the outcomes of conditional branches.
The regularity and predictability of these computations simplifies the assign-
ment of tasks to processors and data to memory modules, permits the steps
in the computation to be scheduled at compile time rather than execute time,
and makes it a relatively easy matter to rescale these algorithms as the num-
ber of processors and memory modules grow. Finally, the fact that a few
basic kernels are useful in a wide range of applications makes 1t possible to



build up a library of careful parallel implementations of kernel problems, and
then to deal with more complex applications by composing library routines
together.

The above description of parallel scientific computation is admittedly
rather simplistic. It applies best to the earliest parallel numerical applica-
tions, in which the most evident opportunities for parallelism were being
exploited. As the field has progressed the geometries being dealt with have
become more complex, and the algorithms, more intricate and adaptive. Still,
it is fair to say that, on the whole, parallel computation has been easier to
exploit in the realm of scientific computing than in other application areas.

My main message in this article is that, in the coming decades, the appli-
cations of massively parallel computation will grow in diversity, and scientific
computation will no longer be so dominant. Instead, a wide range of other
applications having a combinatorial or logical flavor will come into promi-
nence. I have in mind such areas as combinatorial optimization, theorem-
proving, symbolic algebraic manipulation, query processing and inference
in database systems and knowledge-based systems, DNA sequence analy-
sis, image understanding, and natural language processing. The attributes
of these combinatorial/logical problems are quite different from the simple
regular properties of many numerical algorithms. They tend to involve the
manipulation of discrete structures such as graphs, strings and symbolic ex-
pressions. In general, the array data structure is not adequate for these
applications; instead, complex, pointer-based data structures are required.
In these applications the “shape” of a computation - i.e., the pattern of steps
to be executed and data to be accessed- tends to evolve dynamically and
unpredictably. This means that decisions about the allocation of tasks to
processors and data to memory modules have to be made at run time rather
than compile time. The parallel architectures appropriate for this class of
applications may well be very different from the parallel architectures that
are suitable for numerical applications. For example, vector machines and
systolic arrays, which are so well suited to many highly regular numerical
tasks, may prove to be rather ineffective at solving combinatorial or logi-
cal problems. The data-parallel paradigm for decomposing a problem into
loosely interacting, concurrently executable parts may be less appropriate in
the combinatorial realm than it is in the numerical realm. And, because of
the diversity of combinatorial applications, it is no easy matter to identify a
small set of basic computational kernels out of which a wide range of useful

2



parallel combinatorial algorithms can be constructed. It is also worth noting
that, as the problems attacked in scientific computing become more complex
and the algorithms more adaptive, numerical computations cease to follow
simple, regular and predictable patterns, and take on some of the attributes
associated with combinatorial applications.

As the range of applications for very large scale parallel computing widens
it becomes necessary to reexamine continually the choice of machine archi-
tectures, programming languages and programming environments, as well as
the question of how parallel algorithms should be represented and evaluated.
The research of the last fifteen years in theoretical computer science can pro-
vide some insight into these questions, particularly the ones related to the
choice of parallel architectures and the representation and evaluation of algo-
rithms. Because theoreticians work with abstract machines rather than real
ones they have the advantage of being completely free to cast aside existing
technology and define whatever abstract machines best capture the essential
features of parallel computation; on the other hand, the freedom that the-
oreticians enjoy may tempt them to ignore crucial technological constraints
and thus work with models of limited relevance. I believe that, on the whole,
the theoretical work has been done with good taste, and that the abstract
models we have created provide a great deal of insight into the kinds of par-
allel architectures and algorithms that will prevail by the beginning of the
next century.

2 Abstract Distributed-Memory Machines

The theoretical work has converged on two classes of abstract machines:
- distributed-memory machines and shared-memory machines. A distributed-
memory machine consists of a large, sparsely interconnected network of pro-
cessors and memory modules; for simplicity, we will consider the case where
the links in the network run between processors, and each memory module is
the “local memory” of some processor. Each link in the network is a commu-
nication channel between two processors; it is capable of transmitting packets
that typically represent data, requests for data access, or information about
the status of a processor. In order for the processors to work in unison they
must exchange data and status information via communication links. Since
a processor may require status information from a remote processor or data



from a remote memory module, the entire system must operate as a kind of
post office, with each processor capable of forwarding packets addressed to
other processors.

Each processor can be thought of as a simple sequential computer capa-
ble of executing arithmetic and logical instructions, issuing fetch and store
instructions involving either its local memory or more remote memory mod-
ules, and forwarding packets addressed to other processors. In theoretical
studies it is often assumed for convenience that each processor has its own
program, which may be completely different from the programs of the other
processors. In practice the creation of a completely separate program for
each processor would be impractical, and instead it is necessary to resort to
one of two approaches. In the MIMD (Multiple-Instruction Multiple-Data)
approach each processor has its own program and program control unit, but
all the programs are identical except for a few parameters, such as the proces-
sor’s ID number. These parameters give each processor enough information
to determine its individual role in the overall computation. In the SIMD
(Single-Instruction Multiple-Data) approach there is a single program con-
trol unit which, at each instruction cycle, broadcasts the same instruction
to all the processors; however, the instruction contains a number of fields
which instruct each processor how to individuate its behavior according to
the contents of its own registers. The distinction between the MIMD and
SIMD approaches appears not to be crucially important, except that a SIMD
machine is inherently synchronous, while a MIMD machine may be either
synchronous or asynchronous.

An important factor in determining the performance of a distributed-
memory machine is latency—the delay between the issuance of a request for
data stored in a remote memory module and the actual receipt of that data.
Latency occurs because of the time to route a read or write request from
the requesting processor to the appropriate memory module, the time that
the request waits in a queue while other requests to the same module are
being processed and, in the case of a read request, the time to route data
back to the requesting processor. In order to minimize the effects of latency,
great care must be exercised in the assignment of computational tasks to
processors and data to memory modules, so that no memory module is too
heavily loaded and, as often as possible, processors can access needed data
from their own local memories or from the memories of nearby processors.

The topology, or interconnection pattern, of a sparsely interconnected

4



network of processors is of crucial importance in determining the delays that
access requests will experience. When the number of processors is very small
it is convenient to arrange them in a ring or along a linear bus. For certain
special applications such as image processing, the natural geometry of the
problem suggests an arrangement of the processors in a two-dimensional or
three-dimensional mesh. For general-purpose applications involving a large
number of processors, it seems best to choose an interconnection structure in
which each processor has a small number of neighbors, and yet the diameter
of the network is logarithmic in the number of processors. A typical example
of such a structure is the Butterfly network. The number of processors in the
Butterfly 1s of the form n x 2", where n is a positive integer. Each processor
is identified by a pair (¢, z), where 7 is an integer between 0 and n—1 and z is
an n-bit string. From each processor (7, z) there are links to (¢ 4+ 1 mod n, z)
and (¢ + 1 mod n,z’), where z’ is obtained by toggling the ith bit of z. It
is easy to see that, for any two processors (i1,z1) and (i9,22), there is a
path of length at most 2n — 1 from (¢1,21) to (¢2,z2). Further examples
of low-diameter interconnection networks are discussed in the survey article

[V90].

3 Abstract Shared-Memory Machines

A second abstract model, considerably more remote from reality, is the
PRAM (Parallel Random Access Machine). The PRAM consists of a set
of processors communicating through a single, monolithic shared memory. It
is assumed that the time required to access a memory location is a constant,
independent of the cell being accessed and the processor doing the access-
ing. A PRAM repeatedly executes a cycle in which the processors, operating
synchronously, go through a Read step, an Execute step, and a Write step.
In the Read step each processor reads into a register the contents of a cell
in the shared memory. In the Execute step each processor executes a single
arithmetic or logical instruction. In the Write step, each processor writes
the contents of one of its registers into a cell in the shared memory. PRAM
models differ according to how they handle read conflicts, in which two or
more processors try to read the contents of the same cell at the same time,
and write conflicts, in which two or more processors try to write into the
same cell at the same time. An Exclusive-Read Model disallows concurrent



reads, while a Concurrent-Read model permits them. An Exclusive-Write
Model disallows concurrent writes, while a Concurrent-Write model permits
concurrent writes and has some definite convention determining the value
that gets stored when two or more processors try to write concurrently into
the same cell. A program running in time T' and using p processors on any
one of these models can be simulated on the weakest model (Exclusive-Read
Exclusive-Write) in time T logp using p processors. Thus the differences
among the PRAM models are of limited importance and will be ignored in
the present discussion. .

We shall also gloss over the distinction between deterministic PRAMs
and randomized ones. A randomized PRAM has access to a supply of inde-
pendent, unbiased random bits, and thus may be viewed as “tossing coins”
in the course of its execution. A randomized algorithm is not required to
produce a correct result with certainty, but only with extremely high prob-
ability. There is a further distinction between Las Vegas algorithms, which
never produce incorrect results but may on rare occasions fail to produce a
result at all, and Monte Carlo algorithms, which may occasionally produce
an incorrect result.

Theoreticians often assume for the sake of generality that each proces-
sor in a PRAM has its own completely distinct program, but, in practice,
a shared-memory machine would be programmed using either the MIMD
approach or the SIMD approach described above.

Because of its unrealistic assumption that the time required for a memory
access is constant, the PRAM model cannot distinguish between accesses to
a processor’s local memory and remote accesses, and thus loses all ability
to model issues related to the distribution of data among memory modules
to minimize latency. Furthermore, the PRAM model assumes that, in every
cycle, each processor accesses the shared memory both to read and to write.
This encourages the construction of algorithms that are too fine-grained;
i.e., algorithms in which communication between processors via the shared
memory occurs too frequently. In practice, one would prefer coarser-grained
algorithms, in which the great majority of a processor’s memory accesses
are to its own local memory, and interprocessor communication is relatively
infrequent. Several attempts have been made to refine the PRAM model
by making an explicit distinction between local and global memory, and by
assuming that there is no global clock, so that processors are obliged to
engage in a synchronization protocol before exchanging data via the global

6



memory.

Despite its excessive simplicity the PRAM model has proved to be a
very useful formalism for representing parallel algorithms and studying their
computational complexity. It permits the algorithm designer to focus on the
logical structure of a problem, leaving for later consideration the issues of
communication, latency and synchronization. It is often useful to design an
algorithm initially for a PRAM, and then to convert the algorithm to one
that works efficiently on a particular distributed-memory machine.

4 Efficient PRAM Algorithms

In designing algorithms for the PRAM it is convenient to assume initially
that the number of processors is unlimited. A parameter n represents the
size of the input (often measured by the number of bits of input data), and
the complexity of an algorithm is measured by its worst-case consumption of
two resources: time and work. The computation time T'(n) gives the worst-
case number of machine cycles as a function of the input size n. The work
W (n) gives the worst-case number of operations as a function of input size,
taking into account not only the number of cycles but also the number of
active processors in each cycle. The reason that it is attractive to design algo-
rithms without worrying about how many processors are actually available,
is that there is a general principle, attributed to Brent, which says that one
can slow down a computation appropriately for the number of processors.
Brent’s principle states that, under certain weak hypotheses, if an algorithm
consumes time T'(n) and work W(n) when the number of processors is un-
limited, then it can be executed on a p-processor PRAM in time T'(n)+ Mpﬁ
The idea is to simulate the original algorithm cycle by cycle; a cycle in which,
P processors are active is simulated using p processors in time [%] by having
each of the p simulating processors do the work of at most [%1 simulated
Processors.

In view of Brent’s principle we shall evaluate PRAM algorithms according
to two measures of difficulty: the time T'(n) and the work W(n). We are
particularly interested in parallel algorithms in which W(n), the number of
operations performed, is not much greater than S(n), the number of steps
executed by the most practical sequential algorithm known for the same
problem. A convenient way to put this condition is to require that there



exists a constant k, such that W(n) < S(n)(log(S(n))*. A parallel algorithm
fulfilling this condition will be called efficient. We are interested in efficient
algorithms that minimize the time T'(n). The number of processors that can
be effectively exploited is then (up to logarithmic factors) %%l

Somewhat surprisingly, efficient parallel algorithms for which T'(n) is at
most log n have been devised for many of the key combinatorial problems that
may be expected to find frequent use as subroutines. We describe a number
of these problems, in each case giving S(n), W(n) and T'(n); in stating these
bounds we omit constant multiplicative factors, which in general depend on
fine details of the model of computation. Some of the parallel time bounds
we cite can only be achieved if a CRCW PRAM is used, and some of them
require randomized algorithms. Further details about these points can be
found in the survey articles [EG88] and [KR90], and in the papers cited in
those references.

o Merging
Input Two increasing sequences of n integers.
Output A single ordered sequence containing the elements of the two
given sequences.

S(n) =n, W(n) =n, T'(n) = loglogn

o Mazimum
Input An array of n integers.
Output The largest element of the array.
S(n) =n, W(n) =n, T(n) = loglogn.

o Siring Maiching
Input Two strings: z, the pattern and y, the tezt, where the length of
x is less than or equal to the length of y, and the sum of the lengths of
the two strings is n.
Output An indication of all places where = occurs as a consecutive
block within y.
S(n) =n, W(n) = n, T'(n) = loglogn.

e Sorting
Input An array of n integers.
Output An array in which the elements of the input array are arranged



in nondecreasing order.
S(n) =nlogn, W(n) = nlogn, T'(n) = log n.

Prefizx Sums

Input An array (z;, 2,...,%,) of elements drawn from a set on which
an associative binary operation o is defined; for example, o might de-
note +, max or min.

Output The array (z;,z; 0%2,...,210Z20...0z,) of “partial sums.”

S(n) =n, W(n) =n, T(n) = logn.

List Ranking This is a variant of the prefix sums problem in which the
elements are stored in a linked list rather than an array.

Input A linked list containing the successive elements z1,z2,..., z,.
Output The same linked list, but with element z; replaced by z; o
Ip...0Ty.

S(n) =n, W(n) =n, T(n) = logn.

The following is a typical application of list ranking: given a linked list
in which each element is marked “dead” or “live,” construct an array
consisting of the live elements, in the same order as they occur in the

linked list.

Formula Fvaluation

Input An arithmetic formula presented as a rooted binary tree in which
the n leaves represent constants and the n—1 internal nodes are labeled
with binary operators from the set {+, —, x,=}.

Output The value of the formula.

S(n) =n, W(n) =n, T(n) =logn.

Note: The result is not valid for arithmetic expressions represented as
directed acyclic graphs rather than trees (the difference being that, in
the case of directed acyclic graphs, common subexpressions may occur).

Mazimal Independent Set A set S of vertices in a graph is called a
mazimal independent set if no two vertices in S are adjacent and every
vertex not in S is adjacent to a vertexin S.

Input A graph with n edges.

Output A maximal independent set.

S(n) =n, W(n) =n, T(n) = logn.



The maximal independent set problem typically arises in connection
with the scheduling of concurrent activities. In such an application
the vertices of the graph represent activities to be performed, and an
edge between two vertices indicates that the corresponding activities
interfere in some way, and thus cannot be performed concurrently. A
maximal independent set then gives a maximal set of concurrently ex-
ecutable activities.

o Connected Components
Input A graph with n edges.
Output The connected components of the graph.
S(n) =n, W(n) =n, T(n) = logn.

o Biconnected Components A connected graph G is called biconnected if
it cannot be disconnected by the removal of a single vertex. A maximal
biconnected subgraph of G is called a biconnected component.

Input A connected graph G with n edges.
Output The biconnected components of G.
S(n) =n, W(n) =n, T(n) =logn.

The standard sequential method of computing connected or bicon-
nected components uses a technique called depth-first search. Inter-
estingly, it is not known how to perform depth-first search efficiently in
parallel, and an entirely different technique known as ear decomposition
is used instead for the construction of efficient parallel algorithms to
find connected and biconnected components.

o Transitive Closure

Input A directed graph G with n vertices.

Output A directed graph G* with the same vertex set as G, such that,
for any two vertices u and v, G* has an edge from u to v if and only if
G has a path from u to v.

S(n) = n®, W(n) = n®logn, T(n) = logn. (Sequential algorithms
are known with asymptotic time bounds below n3, but they are not
suitable for practical use).

Certain important problems seem less amenable to parallelization than
the ones listed above. The problem of solving n linear equations in n un-
knowns does not seem to be solvable efficiently in parallel unless T'(n) is

10



allowed to grow at least linearly with n. Gaussian elimination requires se-
quential time n® (other algorithms with better asymptotic running times are
known, but they are seldom used in practice). Since Gaussian elimination
consists of n successive pivots, each requiring about n? arithmetic operations,
we can easily achieve W(n) = n3, T'(n) = n. However, all the known parallel
algorithms with T'(n) much smaller than n entail a blowup in the amount of
work. For example, if we require that T'(n) be polylog in n (i.e., bounded by a
fixed power of log n), we seem to require n®° processors. The basic processes
of breadth-first search and depth-first search in directed graphs also pose
difficulties; no methods are known for carrying out these processes efficiently
in polylog parallel time. For the problem of computing a maximum flow in
an n-node network, the best asymptotic sequential time bound known is n3;
in order to achieve a parallel algorithm whose work is within a polylog factor
of this bound we seem to require T'(n) > n?logn.

5 P-Complete Problems

The theory of parallel algorithms involves not only the design and analysis
of algorithms but also the development of results indicating that certain
problems are hard to parallelize. The theory of P-completeness is a powerful
tool for developing such evidence; it plays a role analogous to the theory
of NP-completeness in sequential computation. We shall give an informal
sketch of the definitions underlying this theory. A computational problem
will be specified as an input-output map. Since the inputs and outputs
can be taken to be binary strings, a problem is formally a function from
{0,1}* to {0,1}*, where {0,1}" denotes the set of all finite strings of zeros
and ones. The complexity class F'P consists of all those problems solvable
sequentially in polynomial time. The complexity class NC consists of all
those functions computable on a PRAM in polylog time with polynomial-
bounded work. Thus F'P can be viewed as the collection of all problems
solvable rapidly by sequential algorithms, and NC is a subset of F'P which
contains all those problems in F' P which admit of efficient parallel algorithms
that run in polylog time.

Problem A : {0,1}* — {0,1}" is said to be NC-reducible to problem
B :{0,1}* — {0,1}* if there is a function f: {0,1}* — {0,1}* in NC such
that, for every input z, A(z) = B(f(z)) It follows that, if A is NC-reducible

11



to B and B lies in NC, then A also lies in NC. Problem A is called P-
complete if it lies in F P and every problem in F'P is logspace-reducible to
it. Thus the P-complete problems can be viewed as the problems in FP
least likely to lie in NC; more precisely, a P-complete problem lies in NC
only in the unlikely event that FP = NC; i.e., in the event that every
problem solvable by a fast sequential algorithm is also solvable by a fast
parallel algorithm whose work is polynomial-bounded. In practice, the P-
completeness of a problem is taken as evidence that the problem is unlikely
to lie in NC, and thus certainly unlikely to be solvable by an efficient parallel
algorithm that runs in polylog time. Examples of P-complete problems are
the max-flow problem, the linear programming problem and the problem of
evaluating the outputs of an acyclic circuit composed of Boolean gates, given
the values of the inputs.

6 A Two-Stage Method of Parallel Algorithm
Design

Theoreticians tend to favor a two-stage method of parallel algorithm design.
The first stage is to develop a PRAM algorithm for which the work W(n)
and the parallel time T'(n) are acceptably small, assuming that an unlimited
number of processors is available. The second stage is then to implement this
algorithm on a particular distributed-memory system. The primary goals
in the implementation stage are to reduce the frequency of interprocessor
communication and, when latency is unavoidable, to minimize its effects.
Each processor used in the PRAM algorithm can be viewed as a virtual
processor whose work has to be done by one of the limited number of physical
processors of the distributed-memory machine. In addition to the mapping
of virtual processors onto physical ones, each piece of data occurring in the
problem must be assigned to the local memory of some processor. Finally,
the routing of packets through the processor network must be managed.
Interesting theoretical work has been done showing that messages can be
routed efficiently using randomization. Several authors (see the survey arti-
cle [V90]) have considered permutation routing as a model problem. In this
problem it is assumed that each processor in the network has exactly one
packet to send and each processor will be the recipient of exactly one packet.

12



Thus the map from sources to destinations is a permutation. It is assumed
that each link of the network can transmit one packet per unit time. The goal
is to have all the packets reach their destinations in time proportional to the
diameter of the fetwork; and the basic difficulty is congestion, which occurs
when many messages queue up, waiting to be transmitted along the same
link. For several logarithmic-diameter networks, including the Hypercube
and the Butterfly, it has been shown that a simple randomized scheme will
succeed, with high probability, in routing any permutation in time bounded
by a small constant times the diameter of the network. Roughly, the ap-
proach is as follows. Each processor chooses a random node in the network
as the intermediate destination for its packet. Each message is routed along a
shortest path from its source to its intermediate destination, and then along
a shortest path from its intermediate destination to its final destination.

Another fundamental problem is sorting on distributed-memory networks.
A randomized algorithm called Flashsort [RV87] is capable of sorting p items
on a p-processor Butterfly network in time O(log p), assuming that each
processor initially has one of the p items in its local memory.

Considerable effort has been devoted to the emulation of 2 PRAM on a
distributed-memory machine. A major breakthrough is due to Ranade [R87],
who gave a randomized algorithm for emulating a p-processor PRAM on a p-
processor Butterfly, in such a way that, with high probability, the emulation
of each cycle of the PRAM will be completed within time O(log p); i.e., in
time proportional to the diameter of the Butterfly. In order to avoid memory
contention, which occurs when read and write requests destined for the same
memory module collide, Ranade’s emulation randomizes the allocation of
data to memory modules. Ranade’s method also uses a novel method of
combining access requests to the same memory cell whenever such requests
collide in the process of being routed to their common destination.

It 1s also known that a plog p-processor PRAM operating in time T can
be emulated (with high probability) by a p-processor Butterfly operating in
time O(T log p).The emulation is based on the principle of pipelining. Each
processor of the Butterfly is assigned the task of emulating log p processors
of the PRAM. Because each physical processor has many virtual processors
to emulate it can continue issuing read and write requests even while its
previous requests are being processed. Thus, even though each individual re-
quest may experience latency proportional to log p, the emulating processor
remains active during the latency period. The principle of covering latency

13



by having a physical processor time-share itself among many independent
processes is fundamental in practice as well as in theory. Several current ef-
forts in multiprocessor design focus on efficient implementation of the context
switching that occurs when a processor shifts its attention from one process
to another.

The emulation results we have been describing seem to support the view
that useful parallel programs can be developed by a two-stage process in
which one first obtains an algorithm for a PRAM with an unlimited num-
ber of processors and then uses a generic emulation technique to implement
the algorithm on a distributed-memory machine. In particular, the sec-
ond emulation result shows that, if a problem can be solved efficiently on
a plog p-processor PRAM , then it can be solved efficiently on a p-processor
distributed-memory machine. This approach to parallel program design via
generic PRAM simulation is viewed with great suspicion, particularly in the
numerical analysis community. Some of the objections are technical in na-
ture: the emulations require randomization, the estimation of time bounds
neglects constant factors that may be all-important in practice, and the tar-
get machine of the emulation is an abstract distributed-memory machine
rather than a real multiprocessor system. Beyond this, there is the intuition
that good parallel algorithms must be hand-crafted in order to match the
structure of a problem to the machine on which it is to be solved, and that
generic emulation methods will inevitably be too crude. Time and consider-
able experimentation will be needed to determine the practical value of these
emulation techniques.

7 Node Expansion Algorithms

In the rest of the paper I will focus on a class of combinatorial algorithms that
possess a great deal of inherent parallelism and could provide an important
new area for the application of parallel computers. I will call them node
expansion algorithms. These algorithms are often based on tree-search or
divide-and-conquer principles, and their distinguishing feature is the use of
recursive procedure calls to construct a set of interrelated computational
tasks which can be represented as the nodes of a rooted tree. Each task
A is either executed directly or generates “children” A,, A, ..., Ay whose
results may be needed for the completion of task A. The tree of tasks grows

14



dynamically during the execution of the algorithm. Initially, only the root of
the tree is given, representing the initial computational task. The primitive
step is node ezpansion, in which a node is either processed directly or spawns
a set of children. Node expansion algorithms arise in many different sorts of
applications: examples are backtrack search, game tree search, branch-and-
bound computation, theorem-proving, the execution of PROLOG programs,
ray tracing in graphics, and the solution of partial differential equations by
adaptive mesh refinement.

Backtrack search is perhaps the simplest application leading to node ex-
pansion algorithms. We illustrate backtrack search with a toy example, the
“Fight Queens” problem, in which we want to enumerate all the ways to
place eight queens on a chessboard so that no two of them attack each other.
In this case, each node in the search tree represents a partial placement of
mutually nonattacking queens on the board. The task associated with a
node is to enumerate all the complete placements (i.e., placements of eight
queens) that include the given partial placement. The root of the tree is the
empty board. A node gets expanded by observing that the node represents
a complete placement, by determining that the associated partial placement
cannot be extended to a complete placement, or by spawning children cor-
responding to all the legal ways of placing one additional queen on the first
unoccupied rank of the chessboard.

Game tree search is another well-known example, which comes up in con-
nection with algorithms to play two-person games of perfect information such
as chess or Go. Each node in the search tree represents a board position. The
root represents the initial position in which a move is to be chosen. A node
is expanded either by determining that it is a terminal node in the search
tree or by generating a child for each new position created by making a legal
move in the position represented by the node. Terminal nodes typically cor-
respond to “quiescent” positions, which lend themselves to static evaluation
without further search. The value of a nonterminal position represents its
desirability from the point of view of one of the players (say, the first player).
The value of a nonterminal position in which the first player is to move is the
maximum of the values of the children; the value of a position in which the
second player is to move is the minimum of the values of the chidren. As the
tree is generated, values can be assigned to positions, and certain nodes can
be pruned away because their values can be shown to be irrelevant to the
evaluation of the root. The search terminates when the root gets evaluated

15



and the correct move at the root is determined.

Certain backward-chaining theorem-proving methods for the propositional
calculus are formally similar to game tree search. Each node represents a
statement to be proved or disproved; a node gets expanded either by directly
determining the truth value of the statement to be proven or by express-
ing that statement as a conjunction or disjunction of new statements, which
become the children of the current node.

The branch-and-bound method of combinatorial optimization is an im-
portant source of node expansion algorithms. In general, a combinatorial
optimization problem takes the form: minimize f(z), where f is a given
function called the objective function and z is constrained to lie in some dis-
crete set called the feasible set. The elements of the feasible set are called
feasible solutions. The minimizing z is called the optimal solution to the
problem, and the corresponding function value is called the optimal value
of the problem. One standard example is zero-one integer programming, in
which the feasible solutions are the n-dimensional vectors of zeros and ones
which satisfly a given set of linear inequalities, and the objective function is a
linear function of n variables. A second standard example is the asymmetric
traveling-salesman problem, in which we are given n cities, together with an
n X n matrix (c;;), in which entry ¢;; represents the distance from city ¢ to city
7. The feasible solutions are the closed paths which visit each city exactly
once, and the cost of such a closed path is the sum of the costs of its links.
Thus the problem is to find a shortest tour through the n cities.

The branch-and-bound method generates a tree of interrelated combina-
torial optimization problems, all of which have the same objective function
but different feasible sets. The root represents the original problem to be
solved. In general, a node (problem) A is expanded either by directly solving
problem A (in which case A is a terminal node) or by creating new prob-
lems A;, As, ..., Ag (the children of A) such that the solution set of A is the
union of the solution sets of the derived problems A;, A, ..., Az. This node
expansion step is referred to as branching. It follows that, at a general step,
after several node expansions have occurred, the optimal value of the original
problem is the minimum of the optimal values of the frontier nodes, where a
frontier node is one that has no children.

Another ingredient of the branch-and-bound method 1s the use of cost
bounds. Whenever a problem is created, a lower bound on its optimal value is
calculated. These lower bounds help guide the search for an optimal selution

16



and permit any node to be pruned from the tree if its cost bound is greater
than or equal to the cost of a known feasible solution.

Branch-and-bound methods are often the most practical way to solve
N P-hard combinatorial optimization problems. As an example, we describe a
simple branch-and-bound method for the 0—1 integer programming problem.
An instance of the problem is of the form:

minimize ¢ - ¢ subject to:

Az < b,z € {0,1}"

where the data for the problem are the n-vector ¢, the m-vector b and
the m x n matrix A. The object is to find a feasible 0 — l-vector z =
(z1,T2,...,Z,) that minimizes the objective function. A subproblem created
after some branching is identical to the original problem except that certain
components of the vector ¢ have been assigned fixed values from the set
{0,1}. Thus, the generic form of a subproblem is:

minimize ¢ - ¢ subject to:

T
Ars e € {0,112 = 6585, = Cipsons It =410,

The cost bound associated with a subproblem is obtained by solving its
linear programming relazation, in which each variable that is not fixed is al-
lowed to take on any value in the interval [0, 1]. Thus, the linear programming
relaxation of the generic subproblem is the form:

minimize ¢ - ¢ subject to:

Az £ 0,02, €11 =1,2,...,0 %, =84, Ti, = Bigy- oo, Tiy = G4,

Branching is accomplished by choosing some component z; that is not fixed
and creating two children which are identical to the parent, except that one
of them has the additional constraint z; = 0 and the other has the additional
constraint z; = 1.

17



8 Parallel Backtrack Search

I will close by describing some recent research on the parallel execution of
node expansion algorithms. In this research the node expansion step is taken
to be the unit of work, and it is assumed that, if a node (more precisely,
the information needed to describe a node) is resident in the local memory
of a processor, then the processor can expand that node in unit time, and
the (descriptions of) the children will appear in the local memory of the
expanding processor. The goal is to execute the entire node expansion process
on a network of processors. In order to keep the processors busy it will be
necessary to distribute nodes around the network. We assume that each link
in the network can transmit one node per unit time.

Most node expansion algorithms exhibit the phenomenon of pruning, in
which a node is determined to be irrelevant and thus need not be expanded.
In game tree search, a node can be pruned if its value cannot affect the
value of the root; pruned nodes correspond to game positions that, with
optimal play by both sides, will never be reached. In a branch-and-bound
computation, a node can be pruned away if its cost bound exceeds the cost of
some known feasible solution. A desirable node expansion algorithm is one
that keeps the processors busy expanding nodes, avoids expanding nodes that
could have been pruned away, and does not transmit an excessive number of
nodes along the links of the network.

Yanjun Zhang’s Berkeley Ph.D. dissertation [Z90] presents original results
on parallel node expansion algorithms for branch-and-bound computation
and game-tree search and gives a survey of the literature on these topics. In
this paper we confine ourselves to backtrack search. Node expansion algo-
rithms for backtrack search are particularly simple, since pruning does not
occur; the task is simply to generate the entire search tree by performing node
expansions, starting from the root. However, the task is complicated by the
fact that the pattern of growth of the search tree is completely unpredictable.

The abstract problem, then, is to enumerate by node expansion all the
nodes of an initially unknown rooted, oriented, ordered tree; by “oriented” we
mean that each edge is directed from a parent to a child, and by “ordered”
we mean that a left-to-right ordering is defined on the set of children of
any given node. We begin by deriving lower bounds on the time required
by any parallel algorithm to generate all the nodes of such a tree by node
expansion. Let n be the number of nodes in the search tree, and let h be

18



the maximum number of nodes in a root-leaf path. Let p be the number of
processors. Then 2 is a lower bound, since a processor requires one unit of
time to expand a node. Also, h is a lower bound, since the nodes along a root-
leaf path must be expanded successively. We shall discuss randomized node
expansion algorithms which, with high probability, expand all the nodes in
time that is within a constant factor of the inherent lower bound max(%, h).

Karp and Zhang have given a parallel node expansion algorithm based on
the assumption that any processor can send a node to any other processor
in unit time. One interpretation of this assumption is that there is a direct
physical link from any processor to any other processor; this is practical only
when the number of processors is quite small. A second interpretation is
that the physical interconnection structure is sparse, but the unit of time is
chosen sufficiently large to permit any message to be routed from its source
to its destination.

The Karp-Zhang algorithm is based on randomized load balancing. We
shall describe the algorithm in the special case where the tree is binary; i.e.,
each node has either no children or two children. Central to the algorithm
is the concept of a local frontier. At a general step in the algorithm, there
will be a set of nodes that have been created but not yet expanded; this set
is called the frontier. Each node of the frontier be owned by (i.e., resides
in the local memory of) exactly one processor, and the set of frontier nodes
owned by a particular processor is called its local frontier. Each nonempty
local frontier F' has the property that its nodes hang to the right off a single
path. More precisely, there is a path P in the tree such that F' consists of the
last node in P, together with the right-siblings (if any) of the other nodes
in P. In particular, each nonempty local frontier has a unique node whose
distance from the root is least, and a unique leftmost node among those
whose distance from the root is greatest; these will be called, respectively,
the highest and lowest nodes in the local frontier.

Let us call a processor idle if its local frontier is empty, lightly loaded if its
local frontier consists of a single node, and heavily loaded if its local frontier
contains more than one node. The Karp-Zhang algorithm alternates between
node ezpansion steps, in which each processor that is not idle expands the
lowest node of its local frontier, and donation steps, in which heavily loaded
processors get paired up with idle processors and, in each pair, the heav-
ily loaded processor sends the idle processor the highest node of its local
frontier. Ideally, the algorithm should find a perfect pairing; i.e., one in

4]



which the number of pairs is exactly equal to the number of heavily loaded
processors or the number of idle processors, whichever is smaller. However,
the construction of such a pairing requires global knowledge of the status
of the processors, and thus is not suitable for a distributed implementation.
Instead, the Karp-Zhang algorithm operates as follows. First, each idle pro-
cessor proposes to a random processor. Then, each heavily loaded processor
that has received a proposal pairs itself with an arbitrary one of the idle
processors that have proposed to it. Even though this algorithm does not
achieve a perfect pairing, it tends to achieve a pairing that is not too far
from maximum whenever the number of idle processors is large. It is shown
in [KaZh] that, with high probability, the execution time of this algorithm is
within a constant factor of the inherent lower bound max(%, h).

The assumption that any processor can communicate with any other in
unit time is unrealistic. Recently, Ranade has given a more sophisticated
parallel backtrack search algorithm which runs on the Butterfly network and,
with high probability, has an execution time within a small constant factor
of the inherent lower bound.

References

[EG88] D. Eppstein and Z. Galil, Parallel Algorithmic Techniques for Com-
binatorial Computation, Columbia University Department of Com-
puter Science Technical Report, New York, 1988.

[KR90] R.M. Karp and V. Ramachandran, “Parallel Algorithms for Shared-
memory Machines”, in Chapter 17, Handbook of Theoretical Com-
puter Science, Volume A: Algorithms and Complezity, ed., J. van
Leeuwen, Elsevier, Amsterdam and MIT Press, Cambridge, 869-941,
1990.

[R87] A.G. Ranade, “How to Emulate Shared Memory”, in: Proc. 28ih
Annual IEEE Symp. Foundations of Computer Science 185-194, 1987.

[RV87] J.H. Reif and L.G. Valiant, “A Logarithmic Time Sort for Linear Size
Networks”, J. ACM Vol. 34, 60-76, 1987.

[V90] L.G. Valiant, “General Purpose Parallel Architectures”, in Chapter
18, Handbook of Theoretical Computer Science, Vol. A: Algorithms

20



and Complezity, ed., J. van Leeuwen, Elsevier, Amsterdam and MIT
Press, Cambridge, 1990, 943-971.

[Z90] Y. Zhang, Parallel Algorithms for Combinatorial Search Problems,
Ph.D. Thesis. Also, UC Berkeley Computer Science Division, Report
No. UCB/CSD 543, 1990.

21






