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Abstract

This paper is concerned with recurrence relations that arise frequently in the analysis
of divide-and-conquer algorithms. In order to solve a problem instance of size x, such an
algorithm invests an amount of work a(x) to break the problem into subproblems of sizes
hi(x), h2(x),...,hk(x) and then proceeds to solve the subproblems. Our particular interest
is in the case where the sizes hi(x) are random variables; this may occur either because of
randomization within the algorithm or because the instances to be solved are assumed to be
drawn from a probability distribution. When the h; are random variables the running time of
the algorithm on instances of size x is also arandom variable T{(x). We give several easy-to-apply
methods for obtaining fairly tight bounds on the upper tails of the probability distribution of
T(x) and present a number of typical applications of these bounds to the analysis of algorithms.
The proofs of the bounds are based on an interesting analysis of optimal strategies in certain
gambling games.
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1 Introduction

This paper is concerned with a class of stochastic pro-
cesses that arise frequently in the analysis of algorithms.
Such a process can be described succinctly by a recur-
rence relation of the form T(z) = a(z)+T(h(z)), where
z is a nonnegative real variable, a(z) is a nonnegative
real-valued function of z and h(z) is a random variable
ranging over [0, z] and having expectation less than or
equal to m(z), where m is a nonnegative real-valued
function.

Stochastic processes of this kind typically arise in con-
nection with recursive algorithms that obey the follow-
ing description: “To process an input of size z, invest
an amount of computational effort a(xz) and then re-
cursively solve a derived instance of the same problem,
having size h(z).” Here a(z) is a fixed quantity but
h(z), the size of the derived problem instance, is a ran-
dom variable whose expectation is known to be less than
or equal to m(z). Such processes also arise in other set-
tings; for example, in studying the number of cycles in a
random permutation. We also consider a more general
stochastic process corresponding to the probabilistic re-
currence relation T'(z) = a(z) + Z?=1 T(h;(z)), where
a(r) is a given function and the h; are (not necessar-
ily independent) random variables. Our analysis of this
more general recurrence relation is based on an interest-
ing gambling game related to games studied in [DuSa]
and [Fr].

The purpose of this paper is to provide a simple
“cookbook method” for obtaining fairly tight bounds on
the upper tail of the distribution of T(z). These bounds
can be used to replace the bounds that are derived by
ad hoc (and often imprecise) arguments throughout the
computer science literature.

In the case of the probabilistic recurrence relation
T(z) = a(z) + T(h(z)) these bounds are expressed
in terms of the functions a(z) and m(z), and do not
depend on any information about the distribution of
h(z). Throughout, we assume that 0 < m(z) < =
for all z, and a(z), m(zr) and=) are nondecreasing
functions. The equation 7(z) = a(z) + 7(m(z)) can
be viewed as a deterministic counterpart of the given
probabilistic recurrence relation, corresponding to the
case where, for all z, the random variable hA(z) is de-
terministically equal to its expectation, Whenever this
equation has a nonnegative solution it has a unique
least nonnegative solution u(z) (i.e., a nonnegative so-
lution such that, for every nonnegative solution v(z),
u(z) < v(z) for all £). The function u(z) is given ex-
plicitly by the formula u(z) = 372, a(mlfl(z)), where
m["](.ﬂ:} is defined inductively by: ml%(z) = z; for
t = 1% ‘m["](z) = m(mi’.‘ll(x)). Throughout the
paper, u(z) denotes the least nonnegative solution of
m(z) = a(z) + (m(z)).

Theorem 1 Suppose there is a constanl d such thal
a(z) = 0, z < dand a(z) = 1,z > d. Let c; =
min{z|u(z) > t}. Then, for every posilive real z and
every positive integer w, Prob[T(z) > u(z) + w] <
(i) yw-1mlz)

r Cuix)

We illustrate Theorem 1 in the following specific case,
which comes up frequently in applications: m(z) = pz,
where p is a positive constant less than 1, a(z) = 0,
x < 1,a(z) = 1, > 1. Let b denote 1/p. Then
u(z) =0, z < 0, u(z) = |logy(z)] +1, £ > 1 and
¢t = b'~1, Theorem 1 yields the following: for z > 1 and
w a positive integer, Prob[T(z) > [logy,y] + w+1] <
P St
Theorem 2 Suppose that a(x) is @ nondecreasing,
continuous funclion which is strictly increasing on
{z|a(z) > 0}, and m(z) is a continuous function. Then,
for every positive real x and every positive infeger w,
Prob[T(z) > u(z) + wa(x)] < (ZE)".

In formulating Theorems 1 and 2 we assumed that,
in processing an instance of size x, the distribution
of h(z), the size of the derived problem instance, de-
pended only on z. We can also consider the more gen-
eral situation in which the distribution of the size of
the derived problem instance may depend not just on
the size of the original instance, but on the instance
itself. To describe this more general situation, we as-
sume that the function T has an arbitrary domain I
(the set of instances), and that a function size from T
into the nonnegative reals is given. We continue to as-
sume that the size of the derived instance is nonnegative
and bounded above by the size of the original instance,
that the immediate work in processing an instance of
size z is a(xz), and that, if z is the size of the original
instance, then the expected size of the derived instance
is less than or equal to m(z); however, the distribu-
tion of the derived instance h(z) may depend on the
original instance z, not merely on its size. This more
general situation can be represented by the probabilistic
recurrence relation T'(z) = a(size(z)) + T(h(z)), where
z ranges over instances, 0 < size(h(z)) < size(z) and
E[size(h(z))] € m(size(z)). Theorems 1 and 2 are cas-
ily extended to the more general setting, as [ollows.

Theorem 3 Suppose there is a constani d such thal
a(lr) = 0, z < d and a(z) = 1,z > d.
min{z|u(z) > t}. Then, for every positive real z, ev-
ery instance z of size x, and every positive inleger w,

Prob[T(z) > u(z) + w] < (el yw-1mz)

Cuiz)
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Theorem 4 Suppose thal a(x) is a nondecrcasing,
conlinuous function which is striclly increasing on
{zla(x) > 0}, and m(z) is a conlinuous funclion. Then,



for every positive real z, every instance z of size x and
every posilive integer w, Prob[T(z) > u(z) + wa(z)] <
(=

Theorems 3 and 4 are proved in Section 3.

Our final main theorem concerns the probabilistic re-
currence relation T(z) = a(z) + ZLIT(h;(Z)). Here
z ranges over an arbitrary set I of instances, and, for
each z, the h;(z) are random variables ranging over I
and having a joint distribution determined by z.

Theorem 5 Suppose that, for all z, and for all
possible joint wvalues (y1,y2,...,yx) of the k-tuple
(h1(2),ha(2), -+, he(2)), E[T(2)] 2 i, E[T(w))-
Then, for all z and all positive a, Prob[T(z) > (a +
1)E[T(z)] < exp(—a)].

Theorem 5 is proved in Section 4.

Note that this theorem is of a different character than
the preceding ones, since it assumes that, for each in-
stance z, the joint distribution of the derived instances
h;(z) is given precisely, and thus the distribution of the
execution time T'(z) is completely determined. The pre-
vious theorems did not assume a precise specification of
the size of the derived instance, but merely required
information about its expectation and range of possible
values. The theorem requires the strong hypothesis that
the total expected cost of processing the k instances de-
rived from z can never exceed the expected cost of pro-
cessing z; i.e., that the expected value of the amount of
work remaining can never increase.

Although the proofs of the theorems differ in detail,
there is a common point of view that underlies them.
We illustrate this point of view with respect to the recur-
rence T(z) = a(z) + T(h(z)). This recurrence specifies
a sequence {X;} of random variables, where Xy is the
size of the original problem and, X; is the size of the
ith derived problem. Thus Xy = =, 0 < X;;; < X|,
and E[X;41|Xo, X1,-..,X;] < m(X;). The value of the
random variable T(z) is 3 ;o a(X;); call this quantity
the payoff. Now consider an adversary whose goal is to
maximize the probability of achieving a payoff greater
than or equal to some specific value V. Suppose the
adversary has the freedom to specify the distributions
of X, Xo,... sequentially, and gets to observe the val-
ues of Xg, X1,...,X; before specifying the distribution
of X;4+1; However, this distribution must be restricted
to the interval [0, X;] and must have expectation less
than or equal to m(X;). In gambling terms, the adver-
sary can choose the lottery he wishes to play at each
step, knowing the outcomes of all his previous plays.
Consider the step in which the adversary chooses the
distribution of X;4;. Let V! = V — E;;i a(X;); this
represents the payoff so far. The adversary’s goal is
to maximize the probability that the remaining pay-
off, Z;i‘ a(X;), is greater than or equal to V'. If

V! < u(X;) then the adversary’s task is trivial; he sim-
ply chooses the remaining random variables determin-
istically as follows: X;i; = m(Xj), for j =4,i4+1,....
We call this timid play. However, if V' > u(X;) then
timid play will not work. It can be proven that in this
case the adversary should resort to bold play, as follows.

e Casel: u(z) < V'—a(z). The adversary chooses the
following distribution: X;;; = = with probability
™) and 0 with probability 1 — 22},

e Case II: u(z) > V' —a(z). The adversary chooses
the following distribution: X;11 = cyi_qaz) with

probability %33—} and 0 with probability 1 —
m!::!

Evi_a(z)’
The probability that T(z) > V is bounded above by
the probability that the adversary can gain a payoff of
at least V by employing timid play when he has a “sure
win,” and bold play otherwise. Theorems 1 and 2 follow
from the observation that this mixture of timid play and
bold play is optimal for the adversary.

2 Applications

In this section we give a number of typical applications
of our theorems. In all these applications the size of a
problem instance is restricted to integer values, rather
than general real values. Accordingly, we adopt the no-
tational convention of using variables such as n or m to
denote instance sizes, rather than using the symbol z
(connoting a real quantity) as we do in developing the
general theory.

2.1 Randomized List Ranking

In the analysis of a randomized parallel list ranking al-
gorithm, the following iterative process occurs. At each
step, one has a circular list of elements. If the list is of
length 1 then the sole element in the list is deleted and
the process terminates. If the list contains more than
one element then each element independently chooses a
sex uniformly at random from the set {Male, Female},
and each Female list element whose predecessor in the
list is Male, is deleted. The process is iterated until the
list becomes empty. At each iteration, the computa-
tional work can be taken to be the number of elements in
the circular list. Let T(n) denote the number of steps re-
quired to reduce an n-element list to an empty list, and
let T'(n) denote the total work in reducing an n-element.
list to the empty list, where the work at each iteration
is taken to be the number of elements in the list at that
iteration. Then T'(n) = 1+T(h(n)), with the initial con-
dition T(1) = 1 and T'(n) = n+ T'(h(n)), with the ini-
tial condition T"(1) = 1, where m(n) = E[h(n)] = 17”



The following bounds on the upper tails of the distri-
butions of T'(n) and T"(n) follow from Theorems 1 and
2

e For every positive integer w, Prob[T(n) > w4+ 1+

llogyyzn|] < (%)w_lm.
e For every positive integer w, Prob[T'(n) > (4 +
win] < ()*.

2.2 Randomized Tree Contraction

The paper[MiRe] presents an algorithm called Random-
ized Tree Coniraction that starts with an n-node tree
representing an arithmetic expression and repeatedly
applies a randomized operation called contraction which
produces a new tree, representing a modified arithmetic
expression. The process eventually reaches a tree with
one node, and it terminates one step later. The work
performed in a contraction step can be taken to be the
number of nodes in the tree. Miller and Reif show that,
when randomized tree contraction is applied to a tree
with n nodes, the expected number of nodes in the re-
sulting tree is at most 4n/5; the distribution of the num-
ber of nodes in the resulting tree may depend on the
particular n-node tree being considered. Define the size
of a tree to be the number of nodes it contains. Since
the distribution of the size of the derived problem de-
pends on the particular original instance as well as its
size, we need to apply Theorems 3 and 4, rather than
Theorems 1 and 2. Let the random variables T(z) and
T'(z) respectively denote the number of iterations and
the total work when the process is applied to a tree z.
We obtain:

For every positive integer n, every tree z of size n and
every positive integer w

e Prob[T(z) >
4 n

()™ ymrre

w + 1 + [logsn]] <

o Prob[T'(z) > (5 + w)n] < ().

2.3 Maximal Independent Set

The paper [Lu] gives a randomized parallel algorithm
for constructing a maximal independent set of vertices
in a graph. The algorithm is iterative. Each itcration
deletes some of the edges of the current graph, and the
iterative process is completed when all of the edges have
been deleted. The work at each iteration can be taken
to be the number of edges in the current graph. Luby
showed that, at each iteration step, the expected num-
ber of edges deleted is at least one-eighth of the number
of edges in the current graph. Let T(G) be the number

of iterations, and T"(G), the amount of work, in execut-
ing Luby’s algorithm on a graph G. Theorems 3 and 4,
respectively, yield:

e For every n-edge graph G and every positive in-
teger w, Prob[T(G) > w + 1+ [loggyrn]] <

(TJw——l n
8 (%)U‘*!a;? e

e For every n-edge graph G and every positive integer
w, Prob{T'(G) > (8 + wn] < (Z)".

2.4 Random Permutations

By a random permutation of the elements 1,2,...,n we
mean a permutation drawn from the uniform distribu-
tion over S,, the set of all permutations of {1,2,...,n}.
A cycle of length t in the permutation ¢ is a sequence
t0,11,...,%;—1 of distinct elements such that, for j =
1,2,...,t, i(j+1)mod + = @(%;). Any permutation of a fi-
nite set partitions the elements into disjoint cycles. Let
the random variable T'(n) denote the number of cycles
in a random permutation of n elements. It is known
that T(n) satisfies the probabilistic recurrence relation
T(n) = 1+ T(h(n)), T(0) = 0, where h(n) is uniformly
distributed over {0,1,...,n — 1}. We apply Theorem 1
with m(z) = ”—;1,.1: > 1,m(z) =0, z < 1. In this case
u(z) = |lg(z +1)] and ¢; = 2* — 1. Hence, Prob[T(n) >
lg(n + 1)] +w] < (334" Greor—y) S 270,
In particular, the probability that 7'(n) > (a+1)lg(n+
1) is bounded above by (n+1)~2. As might be expected,
a sharper bound can be obtained by taking into account
the precise distribution of k(n), rather than merely its
expectation and the fact that it lies between 0 and n.
It can be shown that Prob[T(n) > (a + 1)lg(n+1)] is
bounded above by a function of the form n—%¢ma),

2.5 A Selection Algorithm

Hoare has given the following algorithm for finding the
kth-smallest element of an n-element set S:

Choose a random element r € S;
by comparing each element of § — {r} with r, partition
S —{r} into two sets, L and U, where L={y € S:y<
rlandU={yeS:y>rk
if |L] > k then, recursively, find the kth-smallest ele-
ment of L;
if |[L| = k — 1 then return r;
if |[L| < k — 1 then, recursively, find the k — 1 — |L|th-
smallest element of U.

The partitioning step requires n — 1 comparisons. It
can be shown that, for all n and &, the expected size of
the problem that remains after applying the partitioning
step to an n-element set is at most %_i Thus we can
apply Theorem 4 with m(z) = 5—',}!—, giving u(z) = 2(z—
1). Let the random variable T'(n, &) denote the number



of comparisons required for the algorithm to determine
the kth-smallest element of an n-element set. Theorem
4 gives: for any positive integer w, Prob[T(n,k) > 2n+
w(n —1)] < (BEHY.

2.6 A Greedy Clique Algorithm

The following algorithm can be used to construct a max-
imal clique in a graph with vertex set V.

begin Q — ¢; S — V;
while S # ¢ do
begin
choose a random element v from S;
Q@ — QU {v}
delete from S the vertex v and all vertices in S
that are not adjacent to v
end
return @
end

Consider the behavior of this algorithm when applied
to a random graph, in which each edge independently
is present with probability p. At a step in which the
cardinality of S is m, the expected number of ver-
tices that do not get deleted is p(m — 1). Let T(n)
denote the size of the clique obtained when the algo-
rithm is applied to a n-vertex random graph. Then
T(n) = 1+ T(h(n)),T(1) = 1, where 0 < h(n) <
n — 1 and m(n) = E[h(n)] = p(n — 1). Let T'(n)
denote the number of steps in the algorithm, where
each step consists of testing whether two given ver-
tices are adjacent. Then T'(n) = n — 1 + T'(h(n)),
where m(n) = E[h(n)] = p(n - 1). Let b = 1/p.
Theorems 1 and 2 give: Prob[T(n) > |log,(n(b —

- v
1) + 1)) + w] < (Bl 1b(bl(*vgb((bl(lr;"+3n]_.1) and

Prob[T'(n) > ';T-; +w(n —1)] < (an_n—ll}uj. The first
of these results i1s not tight; using more information

about the structure of the problem, one can show that
Prob[T(n) > [logy(z(b — 1) + 1)] + w] < p**O(logsn).

2.7 Abstract Independence Systems

The paper [KaUpWi| gives two parallel randomized al-
gorithms for finding a maximal independent set in an
abstract independence system. The first algorithm uses
an oracle for testing whether a given set is independent,
and the second algorithm uses a more powerful oracle
called a rank oracle. Let Ty(n) denote the number of
iterations required by the first algorithm when applied
to an n-element independence system, and let T3(n) be
the number of iterations required by the second algo-
rithm when applied to such a system. It follows from
results in [KaUpWi] that Ty(n) = 1 + T1(h1(n)), where
0 < hi(n) < nand my(n) = E[h(n)] < n—cy/n, where

¢ is an absolute constant, and T3(n) = 1 + T3(ha(n))
where ma(n) = Efhe(n)] £ n — 4f; here H, is
the nth harmonic number. Let ul(nj be the mini-
mal nonnegative solution of u3(n) = 14 ui(n — cy/n).
It is easily checked that u;(n) < 5‘:@, and it fol-
lows from Theorem 2 that Prob[Ti(n) > QJL,E +w] <
(-r%‘/—"_—)‘"_l < exp(—c(w — 1)n~Y2), Let uy(n) sat-
isfy uz(n) = 1+ us(n — g=). Then, for any value
d > 1/2, uz(n) < dln*(n), when n is sufficiently large.
It follows from Theorem 1 that, for n sufficiently large,
Prob[Tp(n) > dIn*n +w] < (1 - HL“)“’ < exp(—3-)-

2.8 Quicksort

To sort an n-element set S, where n > 1, Quicksort
selects a random element # and compares each of the
other elements with %, thereby partitioning S into L,
the set of elements less than #, U, the set of elements
greater than #, and the singleton set {Z#}. Then, re-
cursively, Quicksort completes the sorting process by
sorting L and U. Let the random variable T'(n) de-
note the number of comparisons required by Quicksort
to sort a set of n elements; we may use this nota-
tion, which does not mention the particular n-element
set, because the distribution of the number of com-
parisons depends only on the cardinality of the set.
Then T'(n) satisfies the probabilistic recurrence relation
T(n) = n — 14+ T(hy(n)) + T(ha(n)), where hy(n) de-
notes the cardinality of L and ho(n) denotes the cardi-
nality of U. Here h;(n) and hz(n) each have the uni-
form distribution over {0,1,...,n — 1}, and they sat-
isfy the equation hj(n) + ha(n) = n — 1. It is known
that E[T(n)] = 2((n + 1)(H, — 1) — (n — 1)), where
H, is the nth harmonic number. The conditions of
Theorem 5 are satisfied, and thus we conclude that
Prob[T(n) > (a+ 1)E[T(n)]] < exp(—a).

3 Proofs of Theorems 3 and 4

Lemma 1 Lel X be a random variable ranging over
some interval [0,z]. Let f be a nonnegative real-valued
function over the nonnegative reals such that there is a
real number b with the property that

e On the interval [0,5], L(rﬂ is @ nondecreasing func-
tion;

o Forally>b, f(y)=1;
e F[X] < min(b, z).
Then E[f(X)] < E[X]/(min(z,b))

min{z,b)

Proof: Let X have the cumulative distribution func-
tion F. Then E[f(X)] = [ f(y)dF(y). But, for all y,



the hypotheses imply that f(y) < % Hence
B[f(X)] < LGP i vdF(y) = 2=l o

We shall now prove Theorem 3 and a slight gen-
eralization of Theorem 4. Theorems 1 and 2 will
follow as corollaries. Theorems 3 and 4 are con-
cerned with the probabilistic recurrence relation T'(z) =
a(size(z))+T(h(z)), where z denotes a generic instance,
size(z) denotes its size, 0 < size(h(z)) < size(z) and
E[size(h(z)] < m(size(z)). We assume that a(z) and

m(z)

are nonnegative nondecreasing functions.
The following theorem is a restatement of Theorem
3.

Theorem 6 Suppose there is a constant d such that
a(z) = 0, z < band a(z) = L,z > b. Let ¢; =
min{z|u(z) > t}. Then, for every positive integer r
and every instance z, Prob[T(z) > r] < D,(size(z)),
where: Di(z) =1 ifz > d and Dy(z) = 0 if z < d;
forr =2,3,..., D(z) = 1 if u(z) > r and D.(z) =
(mfi))r—l u(z)_f__)_ 1fu(z} < 7.

Cul=)

Proof:
D.(z)
I

We shall verify that, over the interval [0,c¢.],
is a nondecreasing function. Note that D.(z)
is a nondecreasing function and that D,(z) < 1 if
and only if ¢ < ¢,. Consider z; and z; such that

r—uizy)
0 < z; < z2 € ¢r. We need to show that %)—l <

Cu(xy)
r—u(ra)
i) 7 We shall use the facts that 0 < m(z) < «
T Cufzy)

and ¢, = m(c¢r41). Since ﬂ”—‘l < ﬂi—j—’l it suffices to

prove that (ﬂr—‘l](“(”’)‘“("‘) < # This clearly

holds when u(z;) = u(z2). When u(zl) < u(mg),
cy(z1) < m(cy(z2)) and we have (-"li%)—)(“(”’)‘“{”‘) <

(m[l‘l}) m(clf='z] < C!(Z‘ﬂ‘
= Cu(zz) = Cul=a))

completing the verifica-
tion.

Let S.(z) = Prob[T(z) > r]. We shall prove by in-
duction on r that, for all instances z and all positive
integers r, Sr(z) < Dr(size(z)). This will complete the
proof of the theorem. The case r = 1 is immediate.
Assuming the result holds for r, we prove it for r + 1.
If u(size(z)) > r+ 1 then D,;1(size(z)) = 1 and the
result is immediate Assume that u(size(z)) < r+ 1.
Then S,41(z) = E[S-(h(z))]. By the induction hypoth-
esis, S-(y) 5 D, (size(y)) for all instances y. It follows
that Sr41(z) < E[D,(size(h(z)))]. By Lemma 1, to-
gether with the facts that 0 < size(h(z)) < size(z) and
E[size(h(z))] < m(size(z)) we obtain

L If ¢ < size(z) then Spyq(z) < 22,

2. If size(z) < Cr then
Se41(2) < BEEI D, (size(2)).

In each of the two cases, the right-hand-side of the ex-
pression is equal to D,y q(size(z)). O.

The following theorem concerns the case where a(z)
is a nondecreasing, continuous function which is strictly
increasing on {z|a(z) > 0}, and m(z) is a continu-
ous function. Then u(z) is a nondecreasing, continuous
function which is strictly increasing on {z|a(z) > 0},
and thus the inverse function u=!(t) is well defined for
all positive ¢ in the range of u. The theorem is a slight
extension of Theorem 4.

Theorem T For all v > 0 and all instances z, let
sr(z) = Prob[T(z) > r]. Then s.(2) < d.(size(z)),
where:

o if u(z) > r thend,(z) = 1;

o if u(z) ;
() = (ZL) =]

< r then

I .
u=t(r—a(z)[~557=1)

Proof: Clearly s;(z) = E[s;_a(size(2))(2(2))]. We in-
troduce a nonnegative integer iteration 1nde:\ ¢ and de-
fine the sequence of functions {si} as follows: s%(z) = 1
if r < u(size(z)) and 0 if » > wu(size(z)); for ¢ =
0,1,.. .,S:.+1(Z) = E[sr—ﬂ(aue(z])( ( D} Then 3?( ) =
sup1 si(z) and it suffices to prove that, for all r, i and
z, st(z) < d.(size(z)). The proof will be by induction
on i.

In preparation for the inductive proof we observe
that, in the range 0 < z < u~!(r), the function @
is nondecreasing. To see this, first note that, since u(z)
and a(z) are increasing functions, H_a"é)il is a decreas-

ing function. Thus, the function fr—_'ﬂﬂ] is a nonin-
a{x)

creasing function, and the interval [0,u~!(7)] can be
decomposed into subintervals such that, within each

subinterval, |'1'.';(.E§.l‘| is constant. Consider the subin-
terval within which [r—-:z‘f-;ill is equal to the constant k.

dr(T)
3

Within this subinterval the function is equal to

x
tions ﬂ:ﬂ'
the function d—’iﬂ is nondecreasing. To complete the

proof it suffices to show that the function d'ir) is contin-
uous at, the boundary points between subintervals. Such

r—u(zr) -
az) 18 equal
to a positive integer &£. In the subinterval to the left of
k41
5 . d,_sr! B (rn{r) 1
T th(.- function E is equal to { — = e T
and in the subinterval to the right of z, the function

de(z)
T

m(z) )+ 1 d it is el since the f
u"l(r—ka(x)}"‘ an 1t 15 clear, since 1e [unc-

a(z) and u_,(z) are all nondecreasing, that

a boundary point z has the property that

mf:)) u“[r—[kl—lja(x])' But, noting
that u(z) = r — ka(z) we see that u='(r — ka(z)) = =
and u=(r — (k — 1)a(z)) = m(z). Thus the two expres-
sions are equal at z, establishing continuity.

We now carry out the inductive proof. The case
t = 0 is immediate. For the induction step, recall

is equal to (



that s;%1(2) = E[s]_,(ize(:)(R(2))]. By induction
hypothesis si_a(;)(h(z)) < dy_q(:)(size(h(z)). Hence
si"‘l(z] S E'[d,._a(,,-u(z))size(h(z)]]. B)’ Lemma 1,
Eld,_qa(size(z))(h(2))] £ d-(size(2)). This completes the
induction step. o

4 A Gambling Game

The proof of Theorem 5 hinges on the following one-
person gambling game. The player starts with a fortune
of 0 and an investment capital of 1 unit. As the game
progresses, he gradually invests his capital and his for-
tune increases. His goal is to acquire a fortune of at
least 1 + a, where a is a nonnegative real constant. At
any given step the player has an amount of capital ¢ re-
maining, and he opts to increase his fortune by r, where
0 < r < ¢. His capital at the next step is a random vari-
able ¢/, where 0 < ¢ < ¢ and E[r + ¢/] = ¢. Thus, at
each step, the expected decrease in the player’s capital
is equal to the amount by which his fortune increases.
QOur main result is as follows: the probability that the
player can achieve his goal is less than exp(—a). Related
theorems can be found in [DuSa] and [Fr].

We formalize the game in terms of a stochastic pro-
cess defined by two sequences { X} {¥,} of nonnegative
random variables. The random variable X, is called
the fortune afier step n, and Y, is called the capital re-
maining afler step n. Yp is called the initial capital We
require the following properties.

e The sequence {X,} is monotone nondecreasing.
o The sequence {Y,,} is monotone nonincreasing,.
[ ] XO = D

e X, is completely
“YOa Y;J!X].v Yl.!' --:Xn¢I’Yn~1-

determined by

e For
all n, E[Yﬂ+1IX0: Yo, Xl, }’1, .
Yn + Xn = Xﬂ-!—l-

':Xﬂ!YnsXﬂ+1] S

Let X, the eventual fortune, be defined as

SUD;, oo X n-

Theorem 8 For all a > 0, Prob[X > (a + 1)¥p] <
exp(—a).

Proof: For a > 0 and all nonnegative integers n, let
R, (a) be the supremum, over all stochastic processes
satisfying the above conditions, of the probability that
Xn > (14 a)Yy. We shall prove by induction on »n that,
for all n and a, R.(a) < exp(—a). The case n = 0 is im-
mediate, since Xg = 0. The induction step is based on
the following recurrence, in which the variable r ranges

over the positive reals, and the variable F ranges over
cumulative distribution functions of probability distri-
butions over [0,1] with mean (1 — r):

Rppi(a) = sup,ry  JOT17 R, (Stl2f=2) dF(z)
1
+f(a+1—r) dF(S)

The recurrence is justified as follows. We can assume
without loss of generality that Yo = 1. The quantity r
denotes a possible choice of X; and F denotes a possi-
ble choice for the distribution of Y;, given that X, =r.
Consider the case where ¥; = z. Then X, ., the cu-
mulative reward after n + 1 steps, will be greater than
or equal to the goal of @ 4+ 1 if and only if the cumu-
lative reward received at steps 2 through n 4+ 1 is at
least a4+ 1 — r. Also, the capital available at the second
step is . Thus we are interested in the supremum, over
all policies, of the probability of gaining a cumulative
reward of a + 1 — r in n steps, starting with a capi-
tal of z. This quantity is equal to 1 when %=L < |,
and is equal to Rp(2H="=Z) when 2E=C > 1. With
these observations, the recurrence follows from the the-
orem of total probability (also known as the uncondi-
tioning principle). Using the inductive hypothesis that
R, (a) < exp(—a) we obtain

Rp41(a) < supy p (fn”l_r exp(_ﬂ_‘l'l;&)dF(:r)
i ful-H.—r dF(."‘:))

for a given choice of r, we wish to determine the cumu-
lative distribution function F' that maximizes the ob-
jective functional fol' I(z)dF(z) subject to ful zdF(z) =
1 —r, where I(z) = exp(—“—'l'l;#] whenz <a+1-r
and I(z) = 1 when £ > a+1—r. Note that I(x)
is strictly increasing in [0,a + 1 — r] and constant in
[a+1—=r,1]. Applying Lemma 1 we find that the maxi-
mum value of the objective functional is a_}_;i’_ ifr>a
and (1 —r)exp(—(a —r) if » < a. It is an easy exercise
(using the inequality exp(y) > 1+ y for all real y) to
show that, for all nonnegative r, this maximum value is
less than or equal to exp(—a). o

Theorem 9 Foralla > 0, Prob[X > a+1] < exp(—a)

Proof: Assume for contradiction that there is a policy
for which Prob[X > a + 1] > exp(—a). Then there
exists an n such that Prob[X, > a + 1] > exp(—a),
contradicting Theorem 2. o

This result cannot be strengthened, as the following
example illustrates. Let a be given, and let r be a posi-
tive constant. Let the joint distributions of the random
variables X,, and Y, n =0, 1,... be defined as follows:
Xo =0, Yy = 1; for all n, one of the following situations
holds.



e Y, = 0. In this case, for all j > n, (X;,Y;) =
(Xp, Ya), and X = X,,.

e X, <a, Y, =1L1. in this case, X;,1; = X, +r; with
probability r, ¥,,,; = 0 and, with probability 1 —r,
Yn+1 3

e X, >4a,Y, =1. In this case, X,41 = 1+ a.

It is easy to check that Prob[X > 144a] = (1=r)l*¥1.
This probability approaches exp(—a) as r tends to zero.

We now indicate how Theorem 7 can be applied to
probabilistic recurrence relations. Consider a proba-
bilistic recurrence relation of the form T(z) = A(z) +

Zf,—,i T(hi(z)), where
e A(z) is a function;

o for each instance z the h;(z) are random variables
whose joint distribution is completely determined
by z;

e for all z, and all possible joint values yy,y2,..., ¥k
of the random variables h;(z),hq2),...,he(2),

Y5 E[T(w)] < E[T(2)).

The last condition expresses the strong hypothesis
that the expected cost of processing the k instances de-
rived from an instance z can never exceed the expected
cost of proceeding z.

Corollary 1 Prob[T(z) > (a + 1) E[T(2)]] < exp(—a).

Proof: The process of sampling from the distribution
of T(z) by numerically “unwinding” the given recur-
rence can be regarded as an instance of the gambling
game. Initially, the gambler’s fortune is zero and his
capital is E[T(z)]. At the first step his fortune is in-
creased by A(z). To determine the reduction in his cap-
ital he draws a sample (y1,¥y2,..., %) from the joint
distribution of hy(z),ha(z),...,hk(2), his capital be-
comes Zle E[T(y:)] and the arguments y1,y2,..., Yk
are placed on a stack for later evaluation. A general step
corresponds to taking an argument y off the stack and
drawing a sample wy, wg,...,w; from the joint distri-
bution of hy(y), ha(y),- .., he(y). The gambler’s fortune
increases by A(y) and his capital is decreased by the
(nonnegative) amount E[T(y)] — Ele E[T(w;)]. The
result now follows by noting that all the hypotheses
about the gambling game are satisfied by this stochastic
process. m|

5 Open Questions

Theorem 7, which concerns the probabilistic recur-
rence relation T(z) = A(z) + ):f=lT(h,-(z)), requires
the hypothesis that the expected remaining work can

never increase; i.e., that for every possible assignment
Y1,Y2,...,yk of joint values to the random variables
ha(2), ha(2), ., he(2), BIT()] 2 T5, E[T(3)). This
hypothesis is violated by many probabilistic recurrence
relations that arise in computational geometry and in
the study of data structures. In order to weaken or
eliminate this hypothesis it will be necessary to study a
version of the gambling game of Section 4 in which the
gambler’s capital need not decrease, but is permitted to
increase in a constrained way.

It would also be of interest to study probabilis-
tic recurrence relations of the form T'(z) = A(z) +
maxf_, T(hi(z)). Here the random variable T(z) can
be interpreted as the execution time of a parallel divide-
and-conquer algorithm having the following description:
to process instance z, spend A(z) steps to split the prob-
lem into derived instances hy(z), ho(z2),...,he(2), and
then solve these derived instances in parallel.
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