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Summary. Extending our recent work, based on the ideas of the multigrid iteration,
we decrepse the storage space for a smooth solution of a nonlinear PDE and, furthermore,
for any smooth function on a multidimensional grid and on discretization sets other than
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A new approach to the numerical evaluation and storage of the solutions to a large
class of linear partial differential equations (PDE’s) discretized over a d-dimensional grid
G was recently proposed in [PR]. The method (which we call Compact Multigrid, since
it follows the framework of the multigrid iterative process) enables us, in particular, to
decrease by roughly the factor of log N the time and the precision of computing and the
storage (memory) space where N is the number of points of the grid G and where the
Boolean (bit-) complexity measure is assumed. In practice, N is usually large, so that the
improvement is significant.

In the present paper we again follow the multigrid iteration scheme but focus on the
economization of the memory space. We set a refined and more general framework for this
method and arrive at more general results. Our generalized compact multigrid method
enables us equally well to decrease the storage space for the solutions to linear and nonlinear
PDE’s, and only a routine smoothness assumption is needed for this. Furthermore, the
method applies to the compression of the space for the storage of all smooth and many
nonsmooth solutions to PDE’s on multidimensional grids and on sets of a more general
class in a Euclidean space, which includes many practical cases not covered in [PR].

Next, we will formalize our results.

Let a, b, ¢, d and g denote five fixed positive constants, d integer, G; denotes the
d-dimensional grid of |G;| = N; = 2% points, G; = {(§127%,7227%,...,7427%), jx =
0,1,...,2'=1; k=1,...,d},i =0,1,...,n, so that the projection of G; into each coordi-
nate edge consists of 2 equally spaced points of the half-open unit interval {¢, 0 < ¢ < 1}
and the grids Go,G1,...,G, = G recursively refine each other. Suppose that we need to
store the approximations u*(x) to a smooth function u(x) given on the finest of these grids,
G = Gg, within the absolute error bound A = b/N° and normalized so that |u*(x)| < 1,
for x € G, where N = N,, = |G| = |G|. We will assume that u*(x) satisfies the following

Holder’s type) smoothness requirement on G:
YP q

[u*(x) — u*(¥)] < a(llx — y[ls)° (1)
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where, say, s = 1,2, or oo, and ¢ is a fixed positive constant, so that the fixed point binary
representation (and the storage) of each value u*(z) on G.requires [clog N — logb] bits of
memory, which is O(log N) as N — oo. It seems that the order of N log N bits are needed
for the storage of the N values of u*(x) at all the N points of G, but actually we have the
following result:

Proposition 1. O(N) bits of memory suffice in order to represent the values of all
the approzimations to the function u*(X) on a multidimensional grid of N points, provided
that (1) holds.

Remark. In the approach of [PR], where u;(x) denote the discretizations over the
grids G; of the solution u(x) to a PDE, it is assumed that log, |u(x) — u;(x)| < o — Bi
for two fixed constants o and B. This is in the spirit of solving PDE’s by the multigrid
methods (see e.g. [Br72], [Br77], [Br84], [BD81], [DD], [Ha77], [Hacg0], [Hac85], [HT82],
[McC87]). Now, however, we will show that even the weaker assumption (1) is sufficient
to make our compact scheme work.

To arrive at Proposition 1, let £(v) denote the number of bits in the fraction of the
floating point representation of a binary number v, and define the auxiliary functions
uf(x) on G; that minimize £(u}(x)) subject to |uf(x) — u*(x)| € a279 for x € G; and for
1 =0,1,...,n—1, that is, u}(x) is obtained by rounding off u*(x) to #(u}(x)) = [gi—log, a]
bits, thus ignoring the bits of u*(z) that represent the values less than 2= (x))—k

Denote
ei(x) =uj(x) —uj_4(x) for x€Gim1,i=1,...,n. (2)

Further, for every point y of G; — G;_1, fix some (say, northwestern on a 2-dimensional

grid) nearest neighbor x = x;(y) on G;_; such that
ly = x|| =27 (3)

and define
ei(y) = ui(y) — ui_y(x) . (4)
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(2) and the definiton of u¥(x) imply that
lei(x)] < a(279 4 279(-1)) = g 2-9(-1)(1 4 29) (5)

Since the bits of e;(x) corresponding to the values less than 2~ [9-1982 9] gre jgnored, we

obtain that £(e;(x)) < [g7 — log, a] — |gi — g — logy(a(1l +279))|, and therefore,
flei(x)) <2¢9+3. (6)

Furthermore, apply (2) and (4) and deduce that e;(y) = (u}(y) — uf(x)) + ei(x). Now
apply (1), (3) and (5) and deduce that |e;(y)| < a2790—1)(1 4+ 2-29), and therefore,

Uei(y)) <3g+3 if yeG;. (7)

Now, according to the compact multigrid storage scheme, we first store the value
u*(x) at the point x of Gy [by using [clog N — log b] = O(log N) memory bits] and then,
recursively for i = 1,...,n, store the values e}(y) at all the N; points y of G; [by using at
most (3¢ + 3)N; — N;_; memory bits due to (6) and (7)]. The overall storage of at most
(Bg+3) T, Ni— i, Ni= (39 +3) T, 2% — T 2% < 2(3g + 3)N = O(N) bits
suffice to store eX(y) forally € G; andfori =1,...,n.

This is a compact representation of u*(x) on G, since if we need, we may recover
u*(x) for any point x of G by using the saved values u*(x) on Gy and e(x) on G; for
¢ = 1,...,n and by recursively applying (2) and (4) for ¢ = 1,...,n. For each x of G,
this recovery takes at most O(log n) bit-operations; furthermore, in many applications, we
may store the function u*(x) in the above compressed form and only very rarely need to
decompress it (see [PR], the end of section 1.4).

The above approach and the results of Proposition 1 can be extended in the two
following directions.

1. Instead of the above functions u(x), obtained by the truncation of u(x), we may use

any auxiliary functions u;(x) on the grids G; for ¢ = 0,1,...,n, such that u*(x) =
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[BDS1]

[Br72]

[Br77]

un(x) on G, and

ui(x) = Pui—1(x) + ¢i(x) , xeG;,

where P; is a prolongation operator and P;u;_;(x) is a prolongation of u;_1(y) from
Gi-1 to G; obtained by means of interpolation (typically, by averaging) of the values
of u;(y) taken at a certain set of points y of G;_; that lie near x, and where for each
X € G; and for each ¢, the fraction of the floating point binary representation of ¢;(x)
contains at most g bits for a fixed constant g. Then Proposition 1 is extended as long

as the prolongation operators P; enforce that
€(ei(x)) = 0(1)

for all 2.

Proposition 1 can be extended to the case where the grids Gy, ...,G, are replaced by
any rapidly expanding sets Sy, ...,.S, (such that |S,;| = N, |So| = O(1), and for every
point y of S; there is its neighbor x of S;—; such that ||u;(y) — ui—1(x)|| < ¥~%, and
furthermore, |S;| > ©|S;_1], for two constants y >1and ©® >1,and 5, C $; C ... C
Sn = §). Note that this extension enables us to treat many nonsmooth functions u(x)

too, since we may increase the density of S where u(x) is not smooth.
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