Limiting Fault-Induced
Output Errors In ANN’s.

Reed D. Clay and Carlo H. Séquin
TR-91-025
April, 1991

Abstract

The worst case output errors produced by the failure of a hidden neuron in layered
feed-forward ANN’s are investigated. These errors can be much worse than simply the loss
of the contribution of a neuron whose output goes to zero. A much larger erroneous signal
can be produced when the failure sets the value of the hidden neuron to one of the power
supply voltages.

A new method is investigated that limits the fractional error in the output signal of a
feed-forward net due to such saturated hidden unit faults in analog function approximation
tasks. The number of hidden units is significantly increased, and the maximal contribution of
each unit is limited to a small fraction of the net output signal. To achieve a large localized
output signal, several Gaussian hidden units are moved into the same location in the input
domain and the gain of the linear summing output unit is suitably adjusted. Since the
contribution of each unit is equal in magnitude, there is only a modest error under any possible
failure mode.

LIMITING FAULT-INDUCED OUTPUT ERRORS IN ANN’s.

Reed D. Clay and Carlo H. Séquin’

Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

ABSTRACT

The worst case output errors produced by the failure of a hidden neuron in layered feed-
forward ANN’s are investigated. These errors can be much worse than simply the loss of the
contribution of a neuron whose output goes to zero. A much larger erroneous signal can be
produced when the failure sets the value of the hidden neuron to one of the power supply vol-
tages.

A new method is investigated that limits the fractional error in the output signal of a
feed-forward net due to such saturated hidden unit faults in analog function approximation
tasks. The number of hidden units is significantly increased, and the maximal contribution of
each unit is limited to a small fraction of the net output signal. To achieve a large localized
output signal, several Gaussian hidden units are moved into the same location in the input
domain and the gain of the linear summing output unit is suitably adjusted. Since the contribu-
tion of each unit is equal in magnitude, there is only a modest error under any possible failure
mode.

1. INTRODUCTION

In related work [1,2], we have investigated many issues of fault tolerance in Artificial Neural Net-
works (ANN’s). A key concept discussed in these papers is that fault tolerance is not inherent in ANN's.
While neural nets do exhibit "graceful degradation” in the sense that they do not completely break down
in the presence of a single fault (as opposed to standard computers), mechanisms must be added to pro-
vide ANN'’s with the capability to automatically "learn" a task with a certain degree of fault tolerance.

In this paper, we present and examine a technique for achieving some degree of fault tolerance for
networks that are trained to approximate and interpolate analog functions. Other people have studied
the effect of failures of hidden neurons on the output signal and have tried to minimize this effect [3].
However, they only considered the case where the fault produced an error that resulted in the loss of the
contribution of a hidden unit. The case where a failure causes a hidden unit to be stuck at some nonzero
value may produce a larger error over a much wider domain. We present a new technique to limit errors
for hidden units that fail in arbitrary ways, and we only make the simple assumption that the output
error of a neuron is bounded by the most positive and most negative power supply values.

For this study, we concentrate on faults in hidden units. Faults in the input or output units would
still be catastrophic, However since the number of hidden units is typically much larger, faults are sta-
tistically more likely to occur in these intermediate layers.

'The main part of this work was done while the author was on sabbatical at ICSL

2. AN EXAMPLE PROBLEM

We first used the standard "backpropagation” algorithm of [4] to train a small 3 layer network with
a single input and a single output unit to leam the simple function shown in Figure 1a. We then tried a
variation of this algorithm where the "sigmoidal" hidden units were replaced with "Gaussian" hidden
units. The output of a sigmoidal, or logistic, unit is an "s" shaped curved based on the sum of the
weighted inputs coming into the unit. The output of a Gaussian unit is a localized "bump" defined by its
width, height, and center location. We have found that these localized "basis functions” considerably
reduce the training time for a network to leamn toapproximate analog functions [2].

AL '-0.5_f_' 1

(@
Figure 1: (a) Target function Sinc(x) = sin(2rx)/2nx for xe [-1,1] and,
(b) its decomposition into a sum of 3 Gaussians.

A typical solution to the sinc(x) function with three Gaussian hidden units is shown in Figure 1b.
In this tutorial example, the output of the network is the weighted sum of three Gaussian hidden units
with the center unit having the largest weight. The maximal error is only 0.04. However, this network
is very sensitive to faults. For example, if there was a fault on the weight of the center hidden unit caus-
ing it to be stuck at zero, the resulting error around the center of the function would be 1.0 which is
100% of the peak of the output signal. A large percentage error can also result if the center Gaussian
gets stuck at a value of +1 over the entire range, or if the weight of one of the side units changes from its
current value of -0.2 to +1. In the latter case, a unit that makes only a small contribution to the actual
output signal could still produce a much larger error signal if it or its associate weight fails in an unfor-
tunate manner. Qur solution is to add many more hidden units that each make a small contribution to
the overall output and that also produce limited errors in case they should fail.

3. THE "BRICKS MODEL" SOLUTION

3.1. Basic Idea of the "Bricks Model"

A conceptual way to visualize our approach is shown in Figure 2. The output function to be
learned is composed of many small contributions that are of about the same size -- the so called
"bricks". A missing brick, i.e., a hidden unit that produces zero output has a very limited effect on the
output signal (Fig. 2a), in width as well as in amplitude. On the other hand, a hidden unit that is stuck at
a wrong output value can have an effect over the whole domain. It is thus necessary to set the peak out-
put value from the hidden units to be comparable to the maximum value that such a unit can deliver
under all failure modes, i.e., it should be close to the power supply voltages. These units are then con-
nected directly to the output unit without any attenuating weights, thus further avoiding the possibility
that the error signals of such a unit can be significantly larger than the peak contribution to the desired
output signal. With these precautions, a unit stuck at peak output value will have an effect that may

.-

spread over the whole domain but which will be limited in amplitude (Fig. 2b).

(a) (b)
Figure 2: (a) "Bricks” approximation to Sinc(x) with a stuck at 0 fauit (= missing brick) and,
(b) a stuck at 1 fault that affects the entire domain.

With the above scheme, the maximum amplitude error made by any single hidden unit failure is
defined by the fractional contribution that each of them make with respect to the peak output signal, and
that fractional contribution is implicitly defined by the total number of hidden units; the more units we
use, the more we can restrict the possible error signals. This fault tolerance scheme is most effective
when all units make the same contribution, hence the notion of uniform "bricks" that build up the output
function. Since there is no way to influence the height of individual hidden units, the only way to
achieve a higher output value is to pile more bricks into the same location. Thus the only individual
variable is the centers of all the Gaussian basis functions. A modified version of the backpropagation
algorithm adjusts these individual locations to minimize the error in the output. In addition, the algo-
rithm adjusts global gain and bias values in the output unit, as well as a globally defined width for all
the "bricks".

32. Implementation of the "Bricks Model"

In our exploratory implementation of this technique, the "bricks" are modeled by n-dimensional
symmetrical Gaussian "humps”. All Gaussians have the same width and height and their centers are
defined by n-dimensional points, where n is the number of input units. For reasons discussed above, the
Gaussian functions use the full amplitude range available at the level of the hidden units and the overall
gain is adjusted in the output unit so that the overall function has the right amplitude. Because of this
normalization, the maximal error due to a fault of a hidden unit cannot be larger than the peak signal it
produces under normal operation.

The network operates as follows: The n input units are set and each Gaussian calculates its output
based on the global width parameter of the Gaussians and on the distance between the individual center
of the Gaussians and the input point (in n-dimensional space). The output unit sums the values of all
the Gaussians for this location, multiplies this value by the global height parameter, and then adds a bias
term to produce the output value of the network.

Mathematically, the network performs the following calculation:
g n
F=b+hY G(wc;) and G(w,c;))=exp —% (xj"cij)z
i=1 2w® g
where F is the output of the network, b is the bias term of the output unit, 4 is the global height parame-
ter, w is the global width parameter, c;; is the j *» dimension of the center of the i* Gaussian, g is the
number of Gaussian hidden units, and n is the number of input units.

-4 -

The four parameters are updated so as to minimize the function £ = (T—-F)2!2, where T is the tar-
get value we would like the network to output. We use a backpropagation scheme that approximates a
gradient descent. This means that we change each parameter, p, according to Ap =-k0E/dp, where £ is
a small constant typically called the learning rate. The actual update rules are:

b =min(T)

Ah = k(r-F)—;):G(w,c,-)

Ky k(r-F)hiz(G) (S i)W)
Acij = k(T-F)h G (w,c;)(xj—cij)iw?

Note that these equations differ slightly from the classical gradient descent update rules. First,
since the height of all the units must be the same, we specify that all hidden units make a positive con-
tribution and we set the bias, b, to the minimum target value that the network has been presented with.
We found that with the classical update rules, the height and width parameters changed much faster than
the Gaussian center parameters. The reason for this can be understood by noting that while the Ac;;
parameter concems each individual center, the Ah and Aw parameters affect a/l the individual units. So,
to keep the change rate of the two global terms in line with those of the center locations, we divide the
global changes by g, the total number of Gaussian hidden units.

A slight variation in the above update rules can allow the user to specify the maximum error that
can occur due to a single fault. One way to do this is by setting the global height to either a fixed abso-
lute value or to a certain fraction (say 10%) of the observed peak output signal. The global width
parameter is then adjusted by the algorithm to match the sum of the volumes of all the "bricks" with the
total volume under the goal function.

3.3. Simulations of "Bricks Model"
We demonstrate the operation of the "Bricks” model on 3 simple examples.

3.3.1. Simulation 1: sin¢(x) in 1D

In this simulation, the target function is f = sin (2nx)/2nx for —=1 £x £ 1. 40 data points, equally
spaced over the domain, are used as a training set. The network has 20 Gaussians, initially spaced uni-
formly over the input domain. The height, width, bias, and learning rate parameters were set over a
range of initial conditions with typical values of 0.0, 0.15, 0.0, and 0.2, respectively. The simulation
was run for 400 trials, which corresponds to an average of 10 presentations of the 40 patterns.

The table below compares the "Bricks" model to the standard backpropagation algorithm using
Gaussians (i.e. each Gaussian has its own width and height which are updated individually).

Model Max Err (0 Faults) | MaxAmp | Max Err (1 Fault)
Standard 0.011 0.33 0.67
Bricks 0.023 0.16 0.18

The column "Max Err (0 Faults)" shows the largest error to the approximation of the target func-
tion by the fault-free network. "Max Amp" is the maximum Gaussian amplitude assumed by one of the

o

hidden units. "Max Err (1 Fault)” is the sum of the maximum error of the fault-free network plus the
largest amplitude error that could occur given a worst case fault in the network. For the "Standard"
model we assume, this to be twice the maximum amplitude since, with suitable normalization, the worst
error is a change in the sign of this weight. Of course, this error could be much worse if the output sig-
nals of the hidden units are using only a fraction of the physically possible signal amplitude range, or if
conductance weights are used which, due to a short, could assume a large multiple of their usual value.

For the "Bricks" model, the maximum signal fault is the same as the standard amplitude, as was
illustrated in Figure 2 and discussed in Section 3.1.

3.3.2. Simulation 2: sinc(r) in 2D

In this simulation, the target function is f = sin(2rr)/2nr, where r=Vx2 +y? for—-1<x,y < 1. 400
data points, equally spaced over the domain, are used as a training set. The network has 100 Gaussians,
randomly placed in the input domain. The height, width, bias, and leaming rate parameters were set
over a range of initial conditions with typical values of 0.0, 0.1, 0.0, and 0.4, respectively. The simula-
tion was run for 3000 trials, which corresponds to an average of about 7.5 presentations of the 400 pat-
temns.

Like the table above, the following table shows the comparison of the "Bricks" model to the stan-
dard backpropagation algorithm.

Model Max Err (0 Faults) | MaxAmp | Max Err (1 Fault)
Standard 0.039 0.35 0.74
Bricks 0.084 0.10 018

Figure 3 shows graphically how the simulation progresses. The initial state of the locations and
widths of the Gaussians is shown in Figure 3a, while Figure 3b shows the final state after the simulation.
Figure 3¢ shows how the width, the height, and the maximum error change over the course of the simu-
lation.

Error .
Height __
Width __...

0 TRIALS 3000

(a) (b) (c)
Figure 3: (a) Initial Gaussian centers and widths (circles with 20 radius),
(b) final state, (c) plot of key parameters over time.

3.3.3. Simulation 3: sign(x*y) in 2D

In this simulation, the target function is the analog version of the exclusive-or problem where
f=sign(xy) for -1 < x,y < 1. The parameters of the simulation are the same as for the 2D sinc function

above. Figure 4 shows graphically how the simulation progresses, and the following table summarizes
the results in the format of the previous tables.

Model || MaxErr (0 Faults) | MaxAmp | Max Err (1 Fault)
Standard 0.07 0.75 157
Bricks 0.19 0.18 0.37

1.0

(a) (b) (c)
Figure 4: (a) Initial Gaussian centers and widths (circles with 26 radius),
(b) final state, (c) plot of key parameters over time.

3.4. Modifications of " Bricks Model"

In the following subsections, we examine some modifications to our "Bricks Model" algorithm to
see what impact they have on improving the speed or quality of convergence.

3.4.1. Adding random noise to center displacements

One problem with backpropagation is that hidden units can "clump" together. This occurs when-
ever the parameters of two hidden units coincide by chance. Since they both then “"see” the same errors,
both of their parameters are changed identically for the remainder of the simulation. This is more of a
problem with the "Bricks Model" because, by definition, the height and width parameters are the same
for all the hidden units. Thus if the locations of any two Gaussians happen to overlap, they will never
separate.

To avoid this problem, we propose adding random noise to the adjustment of the centers of the
Gaussians so that the coinciding centers will separate. The effect of noise is illustrated in Figure 5. Fig-
ure 5a shows the final state of the Gaussians in a training run without noise as described in Section
3.3.3. Although one cannot identify aligned Gaussians, the seemingly fewer number of circles in this
figure as compared to the other two indicates that a significant number of them lie in the same place.
Figure 5b shows the results of randomly modifying adjustment steps of the centers by $20%. Although
the overlapping is no longer exact, there is still a significant amount of clumping. Figure 5c shows the
results of modifying the center adjustments of the Gaussians by a factor varying from 0.5 to 2.0: this

-7

distribution is much more uniform. The convergence rates in these three cases are about the same, but
the overall sum-squared error is better with the added randomness.

N

S _54_‘.‘,’ .’-‘I,
PRANY - (v
f;{«mrﬁ;‘_\‘\ﬁ" e
S ()
O
N -

S

(a) (b) (c)
Figure 5: (a) Final state with no randomness to center adjustments,
(b) £20% randomness, (c) 50% to 200% randomness.

3.42. Height adjustment as a percentage of maximum height

In another variation to the "Bricks Model", the height of the Gaussians is set to some fixed percen-
tage of the maximum height of the target function since the primary goal is to control the maximum
fractional error that the failure of any one unit can cause. This can be done by taking the difference of
the maximum and minimum target values observed so far and then multiplying by the desired percen-
tage. Thus a user can specify the percentage of fault tolerance of a network to worst case single errors.
An example of this is shown in Figure 6. In this case the percentage error was set to 8.6% to correspond
to the resulting fraction observed in Section 3.3.3. This value was chosen such that the final height of
the Gaussians in this experiment was the same as the final height of the Gaussians in Figure 4. In this
case, since the height parameter reaches its final value very early in both simulations, the results are
very much the same.

ey
L el
W N T
T R RN
..a?'r;"((‘.;(\\“.
i\ ‘cl

‘.‘. ":.‘
- " 3
(RN
5

% :
N
-:-'\-n

(a) (b) (c)
Figure 6: (a) Initial Gaussian centers and widths (circles with 20 radius),
(b) final state, (c) plot of key parameters over time.

-8-

3.43. Increasing the Attraction Width of the Gaussians

A problem that occurs with the use of Gaussians in the "Bricks Model" is that the magnitude of
the change in the positions of the Gaussians depends on the height of the Gaussian at the current pattern
input point. Thus if the data point falls at a point that is two or three sigmas from the (fixed width)
Gaussian, the function value of the latter at that point is very small and the change in its center position
is negligible. This is illustrated in Figure 7 where one can see that many of the units do not participate
in the approximation to the curve since they were too far away to be "pulled in". However, if the
“attraction width" is increased by a factor of two, as shown in Figure 8, more of the units are "pulled
in". This results in faster convergence to a smaller error than the case in Figure 7. Also, since there are
more units, their heights are smaller, and this makes the network illustrated in Figure 8 more tolerant to
failures of the hidden units,

Increasing the "attraction width" substantially beyond two times the actual "hump width" does not
provide further improvement. On the contrary, some of the units are now pulled towards the centroid of
a whole curve segment that is in the influence region of the increased "attraction width"; this tends to
pull the units of the curve that is to be approximated to areas where the curve has high curvature.

Error ——
Height __
Width

(a) (b) (c)
Figure 7: (a) Initial Gaussian centers and widths,
(b) standard algorithm, (c) plot of key parameters over time.

1.0

=

0 TRIALS 400
(a) (b) (c)

Figure 8: (a) Initial Gaussian centers and widths,
(b) algorithm with 2x effective radius, (c) plot of key parameters over time.

4. CONCLUSION

In summary, the "Bricks" model shows certain advantages over traditional ways of approximating
an analog output function with an artificial neural network. The decomposition of the output signal into
many small, equally-sized contributions makes it possible to a achieve a higher degree of fault toler-
ance, because the worst case error amplitude that any failure of a hidden unit can produce can be limited
to some known fixed value. In principle, this value can be made arbitrarily small by increasing the
number of hidden units and correspondingly lowering their individual contributions to the output signal.
However, this improved fault tolerance must be weighed against the costs of providing more hidden
units and the disadvantage of longer training times.

If small output errors on the order of a few percent of the output signal are desired, it will be
advantageous to resort to a hierarchical scheme with multiple redundant networks and a supervisory net
that disconnects nets producing output signals that deviate too much from the average signal of all the
nets [2,5]. However, the scheme presented here may have its niche for limiting output errors to about
10%; it requires only a small change to the implementation and control algorithm of traditional layered
feed-forward neural network architectures.

5. Acknowledgements

This work was supported by the Air Force Office of Scientific Research (AFSC/JSEP) under Con-
tract Number F49620-90-C-0029 and NEC.

References

[11 C. H. Séquin and R. D. Clay, "Fault Tolerance in Artificial Neural Networks", Proc. Int. Joint Conf. on
Neural Networks, pp. I-703-708, San Diego, CA, June 1990.

[2] C.H. Séquin and R. D. Clay, "Fault Tolerance in Feed-forward Antificial Neural Networks", 10 appear in
"Neural Networks, Concepts, Applications and Implementations”, Yol. 4, Antognetti and Milutinovic, eds.,
Prentice Hall, 1991. Available as Tech Report #90-031 from International Computer Science Institute,
Berkeley.

[3] C. Neti, M. H. Schneider, and E. D. Young, "Maximally Fault-Tolerant Neural Networks and Nonlinear
Programming”, Proc. Int. Joint Conf. on Neural Networks, pp. [1-483-496, San Diego, CA, June 1990,

[41 D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Leamning Intemal Representations by Error Propaga-
tion," Parallel Distributed Processing: Explorations in the Microstructure of Cognition, eds. D. E.
Rumelhart, J. L. McClelland, and PDP Research Group, Bradford Books, Cambridge, MA, 1986.

[5] W.P. Lincoln and J. Skrzypek, "Synergy of Clustering Multiple Back Propagation Networks," in Neural
Information Processing Systems 2, ed. D.S. Touretzky, pp. 650-657, Morgan Kaufmann Publishers, San
Mateo, 1990.

