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ABSTRACT

Reconfigurable Processor Arrays (RPAs) are a special class of mesh connected comput-
ers in which each node is equipped with a switching system able to internally intercon-
nect its NEWS ports and to establish paths between non neighbor nodes. The best known
proposals, in the area of RPAs, are the Mesh with Reconfigurable Bus [1], the Processor
Arrays with Reconfigurable Bus Systems [2], the Gated Connection Network [3] and the
Polymorphic Processor Array [4]. In this paper we show that only one of these architec-
tures, namely the Polymorphic Processor Array, supports virtual parallelism. The sup-
port of virtual parallelism is important because it allows the complexity measurements of
the parallel algorithms be scaled to real implementations, where the size of the processor
array can be smaller than the problem size. We demonstrate that /) the RPAs that allow
to establish an arbitrary shape two-dimensional bus do not support virtual parallelism and
2) the Polymorphic Processor Array, with its connection power limited to one-
dimensional buses, supports virtual parallelism.

1. Introduction

Reconfigurable Processor Arrays (RPAs) are a special class of mesh connected
computers in which each node is equipped with a switching system able to internally
interconnect its NEWS ports. The principle upon which RPAs are based is that of con-
tinuously changing the switch setting in each node, in such a way to dynamically estab-
lish buses interconnecting different clusters of neighbor processors. The buses are
assumed ideal and therefore communication in each cluster is considered instantaneous.

The best known proposals, in the area of reconfigurable processor arrays, are the
Mesh with Reconfigurable Bus (MRB) [1], the Processor Arrays with Reconfigurable
Bus Systems (PARBS) [2], the Gated Connection Network (GCN) [3] and the
Polymorphic Processor Array (PPA) [4]. These architectures differ from each other in



the structure of the switching system located in each node and, as a consequence, feature
different reconfiguration capabilities and achieve different performance. However, con-
sidering the small cost added to mesh [5], all the RPAs exhibit impressive performances.
For example, graph component labeling is claimed to have O(1) complexity in PARBS
[2] and image component labeling is claimed to have O(logn) complexity in MRB [6],
assuming Ya xVn as a processor array size. In comparison the computational complex-
ity of the same tasks on a plain mesh without reconfiguration capability is otr ) [7].

We are interested in understanding whether RPAs can be directly used as a basis for
the design of massively parallel computers. In order to be directly used as a basis for the
design of massively parallel computers, we require, among other properties, that RPAs
support virtual parallelism. Virtual parallelism is referred to as a situation in which the
number of parallel activities is larger than the number of available processors and some
of the activities are executed in sequence with linear performance degradation. The sup-
port of virtual parallelism is important because it allows the generalization of the com-
plexity measurements of the parallel algorithms to real situations. The concept of virtual
parallelism, widely exploited in today’s massively parallel computers, frees the algorithm
designer from the need to know the size of the parallel computer he is working on; it is
the compiler that automatically transforms the programs written for the case in which as
many processors as needed are available into programs for systems of smaller size.

The definition of virtual parallelism used throughout this paper is as follows: let the
complexity of an algorithm for a RPA of size equal to the problem size » be denoted as

O(p), the RPA supports virtual parallelism if the same algorithm has 0(%) complexity

when the RPA size m is a submultiple of the problem size (k = % 21 integer). This

definition requires not only that there exists an algorithm performing the same original
function on a smaller RPA, but also that the performance of the original algorithm scales
down linearly with the size of the RPA.

In this paper we show that only one of the aforementioned proposed RPAs, namely
PPA, supports virtual parallelism. The reason of such a different behavior is that, unlike
MRB, GCN and PARBS, PPA treats the rows and the columns of the processor array
independently and purposely avoids the coupling between the row buses and the column
buses. We term such a coupling as a two-dimensional bus and show that it does not sup-
port virtual parallelism. We draw the conclusion that only the PPA architectural model
can be directly and effectively used as a basis for the design of massively parallel com-
puters.

The paper is organized as follows: in the next section we show that the RPAs that

support the establishment of two-dimensional buses do not support virtual parallelism, in
section 3 we show that PPA supports virtual parallelism, and in section 4 we discuss the



importance of this result and provide some concluding remarks.

2. RPAs supporting two-dimensional buses

Def. 1. A one-dimensional bus is a bus that interconnects only nodes located in the same
row (or in the same column) of a RPA. A row-bus (column-bus) is a bus interconnecting
only nodes located in the same row (column).

Def. 2. A two-dimensional bus is a bus that interconnects at least two nodes located in
different rows and columns of a RPA.

A two-dimensional bus is implemented by means of a combination of row and
column buses, as shown in Fig. 1. As an example of a very long and articulate two-
dimensional bus, in Fig. 2 we show a two-dimensional bus that interconnects the con-
nected nodes of an undirected graph G mapped on a processor array, according to the
technique proposed in [2]. The nodes of the graph are associated with the diagonal nodes
of the processor array and the upper right half of the graph adjacency matrix A (which is
symmetrical) is mapped on the upper right half of the processor array. The desired graph
is established on the processor array by commanding the switches corresponding of 0’
elements of A to connect their E and W ports horizontally and their S and N ports verti-
cally and the switches located in correspondence of ’1’ elements of A to connect all the
NEWS ports together.

The argument of supporting one-dimensional versus two-dimensional buses in
RPAs has been treated as a hardware implementation issue and its impact on program-
ming was not understood. At the first glance the two-dimensional bus model is more
powerful than its one-dimensional counterpart. However, as to be shown in Theorem 1,
the two-dimensional bus model does not support virtual parallelism while the one-
dimensional bus model does, as to be shown in Theorem 2. Consequently, programs
written for the two-dimensional bus model may depend on the system size, which is a
significant drawback in the software development for massively parallel computers.

On the contrary, the complexity of the algorithms claimed for the one-dimensional
bus model is independent of the system size and can be scaled to a real implementation
of arbitrary size. This paper addresses the issue that the bus implementation may impact
programming. We show such an impact by Theorem 1 in this section and Theorem 2 in
section 4. We state and prove Theorem 1 next.

Theorem 1: A RPA allowing the establishment of two-dimensional buses does not sup-
port virtual parallelism.

Proof: We prove the theorem by showing that a two-dimensional bus on a RPA of size
Vi xVn cannot be emulated in O(+) iterations on a RPA of size \} X \f—% where & is

an integer. The proof is accomplished by a counter-example. Fig. 3 illustrates a two-



Fig. 1 - a) zig-zag shaped two-dimensional bus and b) tree shaped two-dimensional bus,
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b) Adjacency

¢) Two-dimensional bus established
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Fig. 2 - Mapping a graph G onto a PARBS and creating a bus interconnecting all
the connected nodes. a) graph, b) adjacency matrix and c) corresponding bus on the PARBS.
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Fig. 3 - Example of a two-dimensional bus not supporting virtual parallelism



Fig. 4 - Logical way of looking at the bus of Fig. 3.



dimensional bus interconnecting the nodes in rows rq , ro+1, ry, r1+1, ra, r2+1, rs,
r3+1,rqand r4+1 and in columns cq, co+1, ¢y, ¢ +1, ¢2, 3+ 1. The switches drawn
in Fig. 3 implement the interconnection among the four NEWS ports, while the other
switches, not drawn in Fig. 3 for simplicity, only implement horizontal (E<->W) and
vertical (S<->N) interconnections. Such a bus can be established in MRB, GCN and
PARBS.

Let us consider the case of a datum arriving from the S direction in column c(. Fig.
4 shows such a flow of the datum on the bus and the forking associated with the flow
when the switches interconnecting the row-bus and the column-bus are encountered. The
labels of the nodes in Fig. 4 indicate the coordinates of such switches while the labels of
the edges show the rows and the columns added to the two-dimensional bus after cross-
ing a switch. There are 8§ different rows, namely ry, ri+1, ry, r2+1, r3, r3+1, r4 and
r4+ 1, which require three switches to be traversed.

To establish the same bus on a physical RPA of size —JZE X —\’2;—, four virtual nodes

are mapped onto each physical node as shown in Fig. 5. A pair of virtual links, such as
roand ro+1ryand ri+1, ¢y and ¢y +1 etc., share a physical link accordingly. A ’vir-
tual® configuration, i.e. the switch setting, is used to emulate one of the four virtual
switches represented by the very node. The (0, 0), (0, 1), (1, 0) and (1, 1) states of a node
in Fig. 5 represent four virtual configurations, one for each virtual switch. To support
virtual parallelism, the physical RPA needs to emulate the two-dimensional bus in O(k)
iterations (in this case we expect 4 iterations) by properly combining the switch setting of
the nodes at each iteration. On the contrary we show that the paths from ¢ to the 8 rows
that require three switches to be traversed, namely, (co— ry), (co— ri+1), (co— rp),
(co= ra+l), (co > r3), (co = r3+l), (co— r4) and (co — r4+1), must be emulated one at a
time, through a loop of 8 iterations.

The reason why such paths must be emulated one at a time is that any pair of such
paths share at least one physical switch and require it to take a different configuration.
For example (co — r2) and (co — ro+1) share switches a, b and e and require switch e to
take the (0, 0) virtual configuration to emulate (co— r;), and the (1, 0) virtual
configuration to emulate (co— ro+1). TABLE I shows the virtual configurations to be
used in controlling each physical switch in order to establish the conflicting paths.

In the example of Fig. 5 only 8 leaves of a signal-branching tree are in conflict with
each other as explained in TABLE I. A generalization can be seen in Fig. 6, in which 2£
leaves are possibly in conflict due to the possibility that L levels of switches need to be
traversed. When two or more (i.e. k) switches are virtualized in one physical node as
illustrated in the box in Fig. 6, the RPA can only emulate one leave of the tree at a time
since each physical switch can only assume one virtual configuration at a time. Since the
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Fig. 5 - The two-dimensional bus of Fig, 3 mapped on a smaller size RPA.
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PATH PHYSICAL | VIRTUAL | PHYSICAL | VIRTUAL || PHYSICAL VIRTUAL

SWITCH CONFIG. SWITCH CONFIG. SWITCH CONFIG.
coor || a 1,1 b 1,4 d 0,1
co— ri+l a 1,1 b 1,1 d 1,1
Co—r a 1,1 b 1,0 e 0,0
comrl || a 1,1 b 1,0 e 1,0
Co—1r3 a 0,1 c 0,1 f 0,1
Co— ratl a 0,1 c 0,1 f 11
Co—ry a 0,1 c 0,1 g 0,0
co—> ratl a 0,1 c 0,1 g 1,0

TABLE I : Sequence of virtual configurations to be used as physical
configurations to establish the two-dimensional bus in Fig. 5.

size of the tree L may grow with the size of the processor array, the complexity of two-
dimensional bus emulation is O(L) and is dependent of the size of the RPA. It therefore
follows that a RPA allowing the establishment of two-dimensional buses does not sup-
port virtual parallelism.

Q.E.D.

3. RPAs supporting one-dimensional buses: the Polymorphic Processor
Array

Unlike the other RPAs currently proposed, PPA does not allow arbitrary shaped
two-dimensional buses. PPA is a processor array in which each node is equipped with a
switch like the one shown in Fig. 7, that can be oriented along any of the four mesh
directions (we call the NEWS orientation of the switch the switch orientation) and that
can be opened and shorted under program control (we call the OPEN/SHORT
configuration of the switch the switch configuration). While the switch configuration is
programmed locally in each node, the switch orientation is programmed by the central
program controller and is the same for all the nodes. Due to the fact that all the switches
share the same orientation, only one-dimensional communication is possible in PPA.

The operation of each PPA node depends both on the orientation and on the
configuration of the corresponding switch. Let us consider, as an example, the case in
which the switch orientation is E, such as shown in Fig. 8 (the extension to the other
three directions is straightforward). Each node, regardless of its switch configuration,
always receives a message from its W port; on the contrary, depending on its switch
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Fig. 7 - PPA switch

configuration, each node either connects its W port to its E port (e.g. nodes a and b in
SHORT configuration), or connects itself to the E port (e.g. nodes ¢ and d in OPEN
configuration).

An orientation and a configuration, denoted as a pair (0, C), determine the PPA
operation. We notice that a pair (0, C) partitions the PPA nodes into a set of clusters of
nodes with each cluster corresponding to a one-dimensional bus (Fig. 9). Each cluster
includes one node in the OPEN configuration and all the other nodes in the SHORT
configuration, along orientation O, up to the next node in the OPEN configuration (not
included). A cluster is identified by the coordinates of the node in the OPEN

configuration. More precisely, ¥ ij =0,1, --- ,Vn -1, node N;j € cluster C,, where st
are:
ecase . O=N

-s=@i-K)%Vn, &k =, in-_ (| Couyaiz,j = OPEN)

'I=j

12



® e

S_PLANE
- Y. P

Fig. 8 - Data propagation in PPA

ecase2: 0O =E

-5 =i
scase3:0=W

-5s=i

=%, k=, min. 01Cgu e =OPEN)
ecase 4:0=S§

‘s=(l-+k)%"rn_. k"':‘-ofrli[&;_la IC('_‘)%{:'J=OPEN)

-‘=j

Communication in PPA can be expressed through the broadcast primitive defined
as follows:

Broadcast Communication Primitive: Given
- a pair (0, C) partitioning a PPA into a set of clusters of nodes,
- a two-dimensional array SRC mapped on a PPA one element per node and

- a two-dimensional array DST mapped on a PPA one element per node,
the broadcast communication primitive performs the assignment of the element of SRC
corresponding to the node in the OPEN configuration, i.e. SRCy, to all the elements of

13
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Fig. 9 - Partitioning a PPA in a set of clusters of nodes.

14



DST corresponding to the nodes in the same cluster, i.e. DST;j < SRCy ¥ Njj € Cy. The
broadcast just described occurs simultaneously in all clusters.

Broadcasting is carried out in constant time in PPA by taking advantage of the one-
dimensional buses associated to the clusters. In the rest of the paper we will refer to the
broadcast communication primitive by the following notation:

DST = broadcast (SRC, 0, C);

Broadcast is the fundamental communication primitive for PPA. Any PPA algo-
rithm involving any type of communication can be implemented upon broadcast. For
example, a frequently used communication primitive such as shift can be built upon
broadcast as explained in the following example:

Example:
DST = shift (SRC, E);
can be written as:
where (even column number)
DST = broadcast(SRC, E, odd column nodes OPEN);
elsewhere
DST = broadcast(SRC, E, even column nodes OPEN);

Similarly, all other operations requiring communication can also be decomposed
down to the broadcast primitive. We will show in the next section that the broadcast
fundamental communication primitive can be virtualized in PPA.

4. Virtual parallelism in PPA

In this section we demonstrate that PPA supports virtual parallelism by proving that
any algorithm having O(p ) complexity on a virtual PPA of size Yn xVn , has O(kp ) com-
plexity on a physical PPA of size Vm xVm , where n = km (k integer). Considering that a
PPA algorithm can only include operations that do not require communication and opera-
tions that do require communication, and considering that these latter operations are all
expressed in terms of the broadcast communication primitive, we only have to prove that

1) any operation requiring no communication and having O(p) complexity on a
Vn xn' PPA, has O(kp ) complexity on a Vm xVm PPA, where k = L.

2) the broadcast communication primitive has O(k) complexity for a Yn x Vn array
onaVm xVm PPA,wherek =2

m
A Yn xVn array X is mapped on a Vm xVm PPA as follows: node
Ny, st =0,1, --- Nm -1 contains all the elements x;; of the original array X, such that

i=sVk,s Vk +1,5s Yk +2, -+ , s+ Yk =1
j=t Ve, ek + 1,0 Yk +2, -, @+1) Yk =1
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We prove the virtual parallelism theorem by establishing two lemmas first.
Lemma 1. Any operation requiring no communication and having O(p ) complexity on a

Vn xVn PPA, has O(kp) complexity on a Vm xVm PPA, where k = }%

Proof- Trivial: the operation is repeatedly executed over the arrays of size Vk xVk stored
in each node, for all the nodes in parallel.
Lemma 2. The broadcast communication primitive has O(k) complexity for a Ya x Vn

array on a Vm xVm PPA, where k = L.

Proof: For brevity, we only demonstrate the lemma for the case in which orientation = §;
the generalization to the other three cases is straightforward. Let SRC and DST be two

arrays of size Yn xVn mapped onto a a PPA of size Vm x Ym where m = 7 and k is an

integer. Let the orientation O =S, and let the configuration C be an array of size
Vi xVn with arbitrary OPEN/SHORT elements. In the following, for a generic array X
we will use the notation X,, to refer to the elements of X allocated in the PPA nodes at
the same address.

The broadcasting of the Vk columns of SRC allocated in each node (each column
having Vk elements) is done sequentially and independently and requires Yk iterations;
the specific steps executed to broadcast each column v =0, - - ,Vk =1 are shown in the
pseudo-code in Fig. 10 and described next:

Step 1. Column v is scanned from row 0 to row Vk —1 to emulate the broadcasting of the
elements of SRC corresponding to OPEN virtual nodes to all the SHORT virtual nodes
belonging to the same cluster and residing in the same PPA physical node. Whenever a
C., = OPEN is found in a physical node, the corresponding SRC,, value is copied into the
elements of DST associated with the subsequent elements of DST, 1ie.
DST, 41, DSTys2y, - -+, till the next OPEN element of C (not included).
Step 2. Column v is scanned from row 0 to row Vk -1 to simultaneously compute the fol-
lowing two values in each PPA node:
- P_SRC =SRC,, where 4 =max (0, 1, -+ , Yk =1) and C,,, = OPEN
-P_C =SHORT if C,, =SHORT ¥u =0,1, -+ , Yk -1.
Step 3. The broadcast communication primitive is executed using P_C as a
configuration, P_SRC as a source and another array called P_DST, of size Vm xVm , as a
destination.
Step 4. Virtual column v is scanned from row 0 to row Vk —1 to complete the broadcast-
ing. The broadcasting is completed by simultaneously copying, in each PPA node,
P_DST into all the elements of DST up to the first virtual node N,, = OPEN, i.e. DSTy,,
DST1y, .. ,DSTy, if Coy =C1y = ... =Ci = SHORT and C o+ = OPEN.

The complexity of the algorithm can be evaluated by observing that step 1 takes
O(k ) iterations, step 2 takes O(Vk ) iterations, step 3 takes O(1) iterations and step 4
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takes O(Vk ) iterations, thus leading to an overall complexity of O(Vk ). Since the algo-
rithm must be executed vk times to cover all the virtual columns, the overall complexity
is O(k).
Q.E.D.

We now state and demonstrate the theorem demonstrating that PPA supports virtual
parallelism:

I* Loop over the virtual columns mapped on the same physical nodes */
Jor(v=0;v< 5 v++) {

1* Step I */
for(u=0;u<k;u++){
I:f(cuv = OPEN) Imp = SRCyy,
DST,, = tmp;
}

/* Step 2 */
P _C = SHORT;
for(u=0;u< ’Jf;u++){
if (Coy == OPEN) {
P C = OPEN;
P SRC = SRC,,;
}
J

I* Step 3 */
P_DST = broadcast (P_SRC, S, P_C);

I* Step 4 ¥/
tmp = TRUE;
for(u=0;u<Vk;u++){
if (tmp)
if ((tmp = (Cuy == OPEN)) DST,, = P_DST;

Fig. 10 - Implementation of virtual broadcast on PPA: case O = §.
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Theorem 2 (Virtual Parallelism). Any algorithm having O(p) complexity on a virtual
PPA of size Vi xVn , has O(kp) complexity on a PPA of size Vm xVm , with n =km and
k an integer.

Proof: Considering that the operations performed by a PPA can be either operations
requiring no communication, which support virtual parallelism as shown by Lemma 1, or
operations requiring communication based upon the broadcast communication primitive,
which supports virtual parallelism as shown in Lemma 2, theorem 2 therefore follows.
Q.E.D.

5. Discussion and concluding remarks

In this paper we have shown that among the reconfigurable processor arrays
currently proposed, namely the Mesh with Reconfigurable Bus (MRB) [1], the Processor
Arrays with Reconfigurable Bus Systems (PARBS) [2], the Gated Connection Network
(GCN) [3] and the Polymorphic Processor Array (PPA) [4], only PPA supports virtual
parallelism; the support of virtual parallelism makes PPA a more attractive architectural
model, bacause it can be directly used for the design of massively parallel computers.

The importance of virtual parallelism in a massively parallel computer is to faith-
fully keep the complexity claim made in the model independent of the system size, so
that the size-invariance of a program can be achieved automatically by the compiler.
Furthermore, programmers can write programs demanding as many processors as needed
without being concerned with the implications of the system size.

The reason why PPA supports virtual parallelism and the other reconfigurable pro-
cessor arrays do not is that PPA allows only one-dimensional buses but not arbitrary
shaped buses in two-dimension. Allowing two-dimensional buses makes reconfigurable
processor arrays so powerful that in some cases it leads to O(1) complexity algorithms,
such as in the graph problems in [2]. However, these very attractive complexity results
hide a fundamental weakness of the underlying models, that is the lack of support of vir-
tual parallelism. As a consequence, these results are only valid for the case in which the
problem size is the same as the processor size.

An important consequence of supporting virtual parallelism is that PPA algorithms
can follow a scalable programming model. A PPA programming language has been pro-
posed and various programming tools, like simulators and debuggers [8], have been
developed to ease the programming task. On the contrary, when two-dimensional buses
are allowed, the switch setting must be explicitly controlled by the programmer, which
makes programming more complex and inflexible.
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